
Combining Stepwise Feature

Introduction with User-Centric Design

Heikki Anttila, Ralph-Johan Back, Pekka Ketola,

Katja Konkka, Jyrki Leskelä, Erkki Rysä

Nokia Mobile Phones

Abo Akademi University and TUCS

4.4.2002 / Jyrki Leskelä

2

Existing Techniques

• Stepwise Feature Introduction
– Architecture for constructing software in very thin

layers
• Each layer introduces one new feature in the system

• Each layer forms a complete application that can be
tested against requirements conformance

• The structure of layers is maintained during updates

• User-Centric Design
– Iterative approach for concept and design creation

• Understand users requirements and environment

• Identify users' tasks

• Define the success criteria for the product, per task

• Incorporate HCI knowledge (visual/interaction/usability)

• Produce design specification

• Evaluate the design specification against success criteria

• Repeat when the criteria are not met

4.4.2002 / Jyrki Leskelä

3

Goals

• Combine Stepwise Feature Introduction and User-
Centric Design into a new incremental software
development process called the Ladder Process.

• Aim of the process:
• The process is steered by continuous feedback from

users

• Faster and more flexible response to end-user needs

• Thin increments feature by feature

• Improves flexibility of SW architecture

• Ease of SW maintenance

• Increased reliability through incremental testing

• Easy to make product variants

• Better co-operation between teams

• Evaluate and refine the Ladder Process by studying
a concrete case.

• Teenage Girl Diary

• For Nokia Communicator -like platform

4.4.2002 / Jyrki Leskelä

4

The Ladder Process

Release 4

Release 3

Release 2

Release 1

Implementation Specification

4.4.2002 / Jyrki Leskelä

5

The Ladder Process

Feature implementation
Feature corrections
Automatic unit testing
Refactoring

Feature specification
Specification corrections
Conformance testing
Usability testing

4.4.2002 / Jyrki Leskelä

6

Application of User Centric Design

• UCD works best in the very early development, like
concept definition

• Continuous challenges in applying UCD in
traditional sequenced SW development
– Timetable pressures (separate design step not

always possible)

– Confidentiality limitations (involving real users)

– Increasing complexity of systems (a lot of SW
designed and implemented one-shot)

– Complex and evolving user requirements

• Opportunity for Stepwise Feature Introduction
– Design iteration easier with thin layers

– Easier to coordinate future release plan based on
user feedback

– Iteration between releases is natural activity

– System complexity grows in small steps

– User requirements can be checked between each
release

4.4.2002 / Jyrki Leskelä

7

Long-Term Planning of the Releases

Simple editor implemented

Better editor specified

Super editor drafted

Simple editor specified

Super editor drafted

4.4.2002 / Jyrki Leskelä

8

Case: Teenage Girl Diary

Time-management
For teenage girls

School timetable
Calendar

School terms

Colourful

Attaching pictures
Attaching notes

Diary
MultimediaConnectivity

Always with you

4.4.2002 / Jyrki Leskelä

9

Running the Specification Process

4.4.2002 / Jyrki Leskelä

10

Long-term planning

Term View

Image View

Term View

Week View

To-Do View

Term View

Week View

Image View

4.4.2002 / Jyrki Leskelä

11

Stories / User Scenarios

Scenario: “Helmi, 12 years, wants to add a photo from
a scout camp she went last summer as a background

image to school term 2, which is the current school
term. In addition, she likes to have a small photo of

her friend Pekka on the current week, because during

that week is Pekka’s birthday.”

4.4.2002 / Jyrki Leskelä

12

Tasks Analysis

Steps

• Helmi has her smart diary open on the current week.

• She activates the term part of the week view (specification 2d).

• She selects add background image from menu/Add background image.

• She selects the camp photo from the files and, clicks ok (hypothetically
the devices has file structure, and the image is already modified to be
suitable as a background image).

• The camp image appears as a background image to the current term.

• Helmi activates the diary part of the week view of her smart diary from soft ke

• She selects add image from menu/Add image

• She selects Pekka’s photo from the files and clicks ok.

• Pekka’s photo appears to the week view as a small movable object.

4.4.2002 / Jyrki Leskelä

13

Use cases
USE CASE 4 Adding images to diary week view or term view (R2/5).

Goal in Context User can add background image or small image/s to term view or diary
week view.

Scope & Level Secondary task ?

Preconditions User has the smart diary open on the diary week view or on the term
week view depending on to which view s/he is adding an image/images
User has images saved to the device (hypothetically the device has file
structure, and images are already modified to be suitable).

Success End
Condition

A user can add background image or small image/s to the selected view

Failed End
Condition

A user can’t add background image or small image/s to the selected vie

Primary,

 Secondary Actors

A user.

Trigger User wants to personalize/decorate the device.

4.4.2002 / Jyrki Leskelä

14

Use cases (continued)
DESCRIPTION Step Action

1 A user has the smart diary open on the current week.

2 User activates the term view (R2/5).

3

4

5

6

7

User selects add background image from menu.

User selects a photo from the files and, clicks ok

The photo appears as a background image to the current term

User activates the diary week part of the smart diary (R2/5).

User selects add image from menu.

User selects a photo from the files and, clicks ok.

Photo appears to the week view as small movable object.

EXTENSIONS Step Branching Action

1a

SUB-
VARIATIONS

Branching Action

4.4.2002 / Jyrki Leskelä

15

Requirements

R2.Req.4. Add and remove images

Operations on images:

• Removing images from term view.

• Removing images from diary week view.

• Select image file.

• Select background/photo (file).

• Activate image (scroll-on).

4.4.2002 / Jyrki Leskelä

16

UI Specifications

R2.UIspec.4: Adding and removing images

Add background image

User can set a background image to selected term or week
view. Each view (term, week) can have max. 1 image.

The image is added with Menu/Add Image/, with selection
from submenu To Background. When this menu command is
activated, a list of available images is given.

4.4.2002 / Jyrki Leskelä

17

Running the Implementation Process

4.4.2002 / Jyrki Leskelä

18

Week

TermTermView

WeekView

TermModel

WeekModel

ImageView

ImageAdapter

ImageApplication

TermApplication

MenuApplication MenuView

WeekCBAPanel

TermSelectDialog

TermOverlapDialog

TermDialog

ImageInfo

ImageFileChooser ImageFilter ImageLabel

UtilsImagePreview

WeekApplication

ImageTestApplication

Image Layer

Menu Layer

Term Layer

Week Layer

Image Helper Layer

Implementation

Layers

4.4.2002 / Jyrki Leskelä

19

User Interface Implementations

Image View

Term View

Week View

4.4.2002 / Jyrki Leskelä

20

Main Refactorings

• Change from Python/TKinter to Java/Swing

– Need to work in familiar language and GUI

– Java more realistic example for Nokia Mobile Phones

• Splitting the original Week Layer into a simplified
Week Layer and Term Layer

– Improving structure of the software

• Introducing an auxiliary Image Helper Layer

– Simplify the introduction of images to the diary model

• Refactoring parallel development into strictly
sequential layers

– Java supports only single inheritance

– With multiple inheritance, parallel feature introduction
would have been possible

4.4.2002 / Jyrki Leskelä

21

Conclusions

4.4.2002 / Jyrki Leskelä

22

Pros and Cons
• Pros

– Process is simple to follow

– Parallel user testing

– Reduced risk

– Layered structure makes the overall architecture clear

• Cons
– Resulting code may be difficult to understand (due to

inheritance)

– Refactorings can be potentially quite large

– Not optimised for embedded SW

• Improvements
– Extreme programming in the implementation process

– Support for distributed development

4.4.2002 / Jyrki Leskelä

23

Goals Achieved ?

NOT TESTEDEasy to make product variants

EXCELLENTBetter co-operation between teams

GOODIncreased reliability through incremental testing

NOT TESTEDEase of SW maintenance

EXCELLENTImproves flexibility of SW architecture

EXCELLENTThin increments feature by feature

EXCELLENTFaster and more flexible response to end-user needs

EXCELLENTThe process is steered by continuous feedback from

users

4.4.2002 / Jyrki Leskelä

24

4.4.2002 / Jyrki Leskelä

25

Future Research

• Integrating Ladder Process with

Extreme Programming.

• More thorough case study how Ladder

Process works for constructing

software products for mobile terminals.

• Study the construction of product

variants in Ladders. Possibilities for

open source development.

• Deeper study of testing, verification

and validation of the specification and

implementation.

4.4.2002 / Jyrki Leskelä

26

Related work

• Extreme programming (Beck, 2000)
– short iteration cycles, planning game

– code as the main asset De-emphasises careful
documentation and design

– striving for simplicity by avoidin planning far in future

– frequent autimatic testing and integration, tests first

– Refactor duplicate code: Not much more quidance how
to structure the code.

– on-site customer: has much of the specification
responsibility… that activity is not defined clearly

• Aspect-oriented programming (Miller, 2001)
– Method for combining features but weaving them to

the SW structure rather than clear layering.

• Layers in general common in SW systems
– Stepwise feature introduction uses very thin layers,

each layer introduces small increase of functionality

4.4.2002 / Jyrki Leskelä

27

References

• [1] Back, R.J.R.: Software Costruction by Stepwise
Feature Introduction. In ZB2002: Formal Specification
and Development. In Z and B (eds. D. Bert, J. Bowen, M.
Henson and K. Robinsons), pp. 162-183. Springer
Lecture Notes in Computer Science 2272, January 2002.

• [2] Back, R. J. R, L. Milovanov, I. Porres and V. Preoteasa:
XP as a Framework for Practical Software Engineering
Experiments. To be presented at the Third International
Conference on eXtreme Programming and Agile
Processes in Software Engineering, May 2002, in
Alghero, Sardinia, Italy

• [3] Beck, K.: Extreme Programming explained. Addison
Wesley 1999.

• [4] Cockburn, A.: Writing effective use cases. Addison-
Wesley 2000.

4.4.2002 / Jyrki Leskelä

28

References

• [5] Fowler, M.: Refactoring: Improving the Design of
Existing Code. Addison Wesley, 1999.

• [6] ISO13407:. Human-centred Design Processes for
Interactive Systems. International Organisation for
Standardization, Genève, Switzerland. 1999.

• [7] Kasesniemi E-L. and Rautiainen P.: Kännyssä
piilevät sanomat (Embedded messages in mobile
phones, In Finnish). Tampere University Press.
Tampere, Finland, 2001

• [8] Miller, S.K.: Aspect-oriented Programming Takes
Aim at Software Complexity, Computer, April 2001.

4.4.2002 / Jyrki Leskelä

29

Appendix 1
• Experiences from the Diary Specification

– Data is mainly platform independent

– Platform elements not defined in the process (for
example how common menu functionality works)

• Guessing things in the implementation

• Corrected by selecting 9210 as reference UI

– There was a trade off when cursor keys were very
costly to implement as pointing device for Swing UI

4.4.2002 / Jyrki Leskelä

30

Appendix 2
• Experiences from the Diary Implementation

– Week Layer implementation
• Basic application structure

• Separate tracer and tester classes for application model

– Term Layer implementation
• First experiences on layering

• Model and view were extended significantly, dialogs added

• Run-time flexibility of GUI (Swing) was needed

• Data structures of layers kept separate when possible

– Menu layer implementation
• Menu was added as extension layer for the view

• The UI components installed in lower layers slightly moved

– Image layer implementation
• New layer derived from view to add and remove images

• Injecting image storage support into existing data elements with helper
layer at the bottom (model not derived)

• Entirely new classes such as image file selection

4.4.2002 / Jyrki Leskelä

31

Contents

• Introduction

• The Ladder Process

• Case: Teenage Girl Diary

• Evaluating the Ladder Process

• Related Work

• Conclusions

4.4.2002 / Jyrki Leskelä

32

Introduction

• Context of the Study

• Existing Techniques

• Goals

4.4.2002 / Jyrki Leskelä

33

Context of the Study

• The environment of software construction
getting turbulent

– User needs and technology changing
unpredictably

– Software is often an evolving artefact that
needs continuous adaptation

• It is necessary to provide an architecture
and process to make the software
evolution possible

• Two recent techniques address the problem
domain

– Stepwise Feature Introduction (Back, 2002)

– User-Centric Design (ISO13407, 1999)

4.4.2002 / Jyrki Leskelä

34

Stepwise Feature Introduction

Release 2
- edit text
- cut & paste
- styles

Release 1
- edit text

Test

Test

Refactoring (Fowler, 1999)
- Modifying the class structure
- Not adding functionality
- To improve design of existing code

Planning

4.4.2002 / Jyrki Leskelä

35

User-Centric Design

understand &
specify the context

of use

specify the user &
organizational
requirements

evaluate designs
against

requirements

produce
design

solutions

system meets
specified functional,
user & organisational

requirements

identify need of
human-centred design

Main activities of UCD as defined in ISO 12407
User,
Environment,
Users tasks

Success criteria
(for example how
quickly user gets
task done)

Incorporate HCI
knowledge (visual/
interaction design,
usability)

Evaluate the design
against user tasks

4.4.2002 / Jyrki Leskelä

36

Release n specification process

The Release Specification Sub-Process

Use scenarios

Task analysis

Use cases

Requirements

UI specification

Specification
compliance

check

Implementation
usability tests
and analysis

New feature
proposals

New feature
proposals

Release n-1 specification process

Release n+1 specification process

Release n
implementation
process

Release
specification

Release
implementation Start:

user needs
studies,
feature
proposals
from misc
sources

Understand the user needs for the release
Compose stories, user scenarios
Analyse the steps
Document the activity
Compose and analyse requirements
Turn requirements to concrete UI specs

4.4.2002 / Jyrki Leskelä

37

Release n
specification
process

The Release Implementation Sub-Process

Release n implementation process
Release
implementation

Release
specification

Layer design

Implementation Refactoring

Unit testing

Releasing

Integration

Release n+1 implementation process

Release n
implementation

Release n-1 implementation process

Release n-1
implementation

Spikes
Add new layer with subclassing
Re-factor e.g. when duplicated code
When support needed to lower layers

- Inject ancestor classes as helper layer
- Minumum changes as last resort

4.4.2002 / Jyrki Leskelä

38

The Integrated Process

Release n implementation process

Release n
implementation

Release n
specification

Release n+1 implementation process

Release n
implementation

Release n+1 implementation process

Release n-1
implementation

Release n specification process

Use scenarios

Task analysis

Use cases

Requirements

UI specification

Specification
compliance

check

Implementation
usability tests
and analysis

New feature
proposals

New feature
proposals

Release n-1 specification process

Release n+1 specification process

Layer design

Implementation Refactoring

Unit testing

Releasing

Integration

