
Lecture #1 1

Software Model Checking:
automating the search for abstractions

Thomas Ball
Testing, Verification and Measurement

Microsoft Research

Lecture #1 2

People Behind SLAM
Microsoft Research

– Thomas Ball and Sriram Rajamani

Summer interns
– Sagar Chaki, Todd Millstein, Rupak Majumdar (2000)
– Satyaki Das, Wes Weimer, Robby (2001)
– Jakob Lichtenberg, Mayur Naik (2002)
– Georg Weissenbacher, Fei Xie (2003)

Visitors
– Giorgio Delzanno, Andreas Podelski, Stefan Schwoon

Windows Partners
– Byron Cook -> MSR Cambridge
– Vladimir Levin, Abdullah Ustuner, Con McGarvey, Bohus Ondrusek
– Jakob Lichtenberg

Lecture #1 3

Thanks Also to Friends of SLAM
• BLAST

– Thomas Henzinger
– Ranjit Jhala
– Rupak Majumdar
– Gregoire Sutre

• MOPED
– Stefan Schwoon

• MAGIC
– Sagar Chaki

Lecture #1 4

Outline
• Lecture 1

– automating the search for program abstractions
• Lecture 2

– predicate abstraction with procedures + pointers
• Lecture 3

– predicate discovery via interpolants
• Lecture 4

– relative completeness of abstraction refinement with
respect to widening

• Lecture 5
– predicate abstraction and testing

Lecture #1 5

Name as many examples/types of software as you can

Lecture #1 6

Name as many examples/types of software as you can

Lecture #1 7

What major inventions have improved software
development in the past 50 years?

Lecture #1 8

What major inventions have improved software
development in the past 50 years?

Lecture #1 9

How does a researcher demonstrate that an
invention is a good idea?

Lecture #1 10

Lessons
• Software products are varied, so is development

– Niche: desktop, net, consumer device, command & control
– Relation to other software: first vs nth version, member of family
– Seriousness of purpose: safety critical, prototype, one-use script
– Installation base: all consumers, all PC owners, company-specific
– …

• SE researchers produce many research products
– Formalisms, tools and algorithms, yes, but also...
– Processes, methodologies
– Guidance, recipes, patterns, distilled experience
– Formulas for scheduling, cost estimation, quality assessment, …
– Notations, languages, descriptive tools

• Validating a SE invention often harder than inventing it
– True cost effectiveness typically too hard to measure
– Controlled experiments often impossible or too expensive
– Ideas need time to develop before validation stage

Lecture #1 11

Automating Verification of Software

• Remains a “grand challenge” of computer
science but a “minor player” in practice

• Behavioral abstraction is central to this effort

• Abstractions simplify our view of program
behavior

• Proofs over the abstractions carry over to proofs
over the program

Lecture #1 12

How many program abstractions can you list?

Lecture #1 13

How many program abstractions can you list?

Lecture #1 14

No “Silver Bullet”

• According to Frederick Brooks, there is no “silver
bullet” that will improve software production by
an order of magnitude.

• A corollary is that there is no “gold abstraction”

• Development of abstractions is dependent on
– class of programs
– class of properties

Lecture #1 15

The Usefulness of Abstractions
• Prove a theorem and write a paper

• Experimentation
– Efficiency

• run-time
• memory consumption

– Precision
• # spurious counterexamples / total # of counterexamples

– Termination
• sometimes hard to distinguish from efficiency (or lack

thereof)

Lecture #1 16

Abstraction Refinement:
PLDI’03 Case Study of Blanchet et al.

• “… the initial design phase is an iterative manual
refinement of the analyzer.”

• “Each refinement step starts with a static analysis of the
program, which yields false alarms. Then a manual
backward inspection of the program starting from sample
false alarms leads to the understanding of the origin of
the imprecision of the analysis.”

• “There can be two different reasons for the lack of
precision:
– some local invariants are expressible in the current version of

the abstract domain but were missed
– some local invariants are necessary in the correctness proof but

are not expressible in the current version of the abstract
domain.”

Lecture #1 17

Software Verification:
Search for the Right Abstraction

• A complex
search space
with a fitness
function

• Can a machine
beat a human at
search?

• Deep Blue beat
Kasparov

Lecture #1 18

Automating the Search for
Abstractions

• A knowledge base of useful abstractions

• A way to generate, combine and refine
abstractions

• A fitness function

• A brute force search engine

Lecture #1 19

Puzzle Pieces

• Application Programming Interfaces (APIs)

• Model checking

• Theorem proving

• Program analysis

Lecture #1 20

A Brief History of Microsoft

19801980 19901990 20002000

R
ic

hn
es

s
R

ic
hn

es
s

Win16Win16 Win32Win32
COMCOM

MFCMFC
Components

Components
Services
Services

APIsAPIs

Windows
3.0

Lecture #1 21

Model Checking
• Algorithmic exploration of state space of a (finite state)

system

• Advances in the past decades:
– symbolic model checking based on BDDs

• [Bryant, 1986]
• [Burch, Clarke, McMillan, Dill, Hwang, 1992]

– predicate abstraction (parametric analysis)
• [Graf,Saidi, 1997]

– symmetry reductions
– partial order reductions
– compositional model checking
– bounded model checking using SAT solvers

• Most hardware companies use a model checker in the
validation cycle

Lecture #1 22

Model Checking
• Strengths

– Fully automatic (when it works)
– Computes inductive invariants

• I such that F(I) ⇒ I
– Provides error traces

• Weaknesses
– Scale
– Operates only on models, usually

provided by humans

Lecture #1 23

Theorem proving
– Early theorem provers were proof checkers

• built to support assertional reasoning
• cumbersome and hard to use

– Greg Nelson’s thesis in early 80s paved the
way for automatic theorem provers
• theories of equality with uninterpreted functions,

lists, linear arithmetic
• combination of the above !

– Automatic theorem provers based on
Nelson’s work are widely used
• SAL/ICS, ESC/Java, Proof Carrying Code

– Makes predicate abstraction possible

Lecture #1 24

Automatic theorem proving
• Strengths

– Handles unbounded domains naturally
– Good implementations for

• equality with uninterpreted functions
• linear inequalities
• combination of theories

• Weaknesses
– Hard to compute fixpoints (no abstraction)
– Requires inductive invariants

• Pre and post conditions
• Loop invariants

Lecture #1 25

Program analysis
• Originated in optimizing compilers

– constant propagation
– live variable analysis
– dead code elimination
– loop index optimization

• Type systems use similar analysis
– are the type annotations consistent?

• Theory of abstraction interpretation

Lecture #1 26

Program analysis
• Strengths

– Works on code
– Pointer aware
– Integrated into compilers
– Precision/efficiency tradeoffs well studied

• flow (in)sensitive
• context (in)sensitive

• Weaknesses
– Abstraction is hardwired and done by the

designer of the analysis
– Not targeted at property checking (traditionally)

Lecture #1 27

Model Checking, Theorem
Proving and Program Analysis

• Very related to each other

• Different histories
– different emphasis
– different tradeoffs

• Complementary, in some ways

• Combination can be extremely powerful

Lecture #1 28

Stretch!

Lecture #1 29

APIs and Usage Rules

•Rules in documentation
– Incomplete, unenforced, wordy
– Order of ops. & data access
– Resource management

•Breaking rules has bad effects
– System crash or deadlock
– Unexpected exceptions
– Failed runtime checks

•No compile-time checking

Lecture #1 30

Socket API

the "communication domain" in which communication is to take
place; see protocols(5).

Sockets of type SOCK_STREAM are full-duplex byte streams,
similar to pipes. A stream socket must be in a connected
state before any data may be sent or received on it. A con-
nection to another socket is created with a connect(2) call.
Once connected, data may be transferred using read(2V) and
write(2V) calls or some variant of the send(2) and recv(2)
calls. When a session has been completed a close(2V), may
be performed. Out-of-band data may also be transmitted as
described in send(2) and received as described in recv(2).

The communications protocols used to implement a SOCK_STREAM
insure that data is not lost or duplicated. If a piece of

Lecture #1 31

The Windows Driver Problem

• Device drivers
– glue between OS and devices
– many are kernel plug-ins
– huge part of PC ecosystem

• Windows Driver Model
– complex legacy API
– direct access to Windows kernel
– low-level binary debugging

Lecture #1 32

Source Code

Testing
Development

Precise
API Usage Rules

(SLIC)

Software Model
Checking

Read for
understanding

New API rules

Drive testing
tools

Defects

100% path
coverage

Rules

Static Driver VerifierStatic Driver Verifier

Lecture #1 33

state {
enum {Locked,Unlocked}

s = Unlocked;
}

KeAcquireSpinLock.entry {
if (s==Locked) abort;
else s = Locked;

}

KeReleaseSpinLock.entry {

if (s==Unlocked) abort;
else s = Unlocked;

}

Locking Rule in
SLIC

State Machine
for Locking

Rel

Unlocked Locked

Error

Rel Acq

Acq

Lecture #1 34

The SLAM Process:
counterexample-driven refinement

#include
<ntddk.h>

predicate
abstraction

boolean
program

path
feasibility

&
predicate
discovery

symbolic
reachability

Harness
SLIC
Rule

+

refinement
predicates

error
path

[Clarke et al. ’00]
[Ball, Rajamani ’00]

[Kurshan et al. ’93]

Lecture #1 35

Example

do {
KeAcquireSpinLock();

nPacketsOld = nPackets;

if(request){
request = request->Next;
KeReleaseSpinLock();
nPackets++;

}
} while (nPackets != nPacketsOld);

KeReleaseSpinLock();

Does this code
obey the

locking rule?

Lecture #1 36

Example

do {
KeAcquireSpinLock();

if(*){

KeReleaseSpinLock();

}
} while (*);

KeReleaseSpinLock();

Reachability in
boolean program

model checker
U

L

L

L

L

U

L

U

U

U

E

Lecture #1 37

Example

do {
KeAcquireSpinLock();

nPacketsOld = nPackets;

if(request){
request = request->Next;
KeReleaseSpinLock();
nPackets++;

}
} while (nPackets != nPacketsOld);

KeReleaseSpinLock();

Is error path feasible
in C program?

theorem prover
U

L

L

L

L

U

L

U

U

U

E

Lecture #1 38

do {
KeAcquireSpinLock();

nPacketsOld = nPackets; b = true;

if(request){
request = request->Next;
KeReleaseSpinLock();
nPackets++; b = b ? false : *;

}
} while (nPackets != nPacketsOld); !b

KeReleaseSpinLock();

Example Add new predicate
to boolean program

predicate abstraction
theorem prover

b : (nPacketsOld == nPackets)

U

L

L

L

L

U

L

U

U

U

E

Lecture #1 39

do {
KeAcquireSpinLock();

b = true;

if(*){

KeReleaseSpinLock();
b = b ? false : *;

}
} while (!b);

KeReleaseSpinLock();

b

b

b

b

Example
Model checking

refined
boolean program

b : (nPacketsOld == nPackets)

U

L

L

L

L

U

L

U

U

U

E

b

b

!b

Example

do {
KeAcquireSpinLock();

b = true;

if(*){

KeReleaseSpinLock();
b = b ? false : *;

}
} while (!b);

KeReleaseSpinLock();

b : (nPacketsOld == nPackets)

b

b

b

b

U

L

L

L

L

U

L

U

U

b

b

!b

Model checking
refined

boolean program

Lecture #1 40

Lecture #1 41

Observations about SLAM
• Automatic discovery of invariants

– driven by property and a finite set of (false) execution paths
– predicates are not invariants, but observations
– abstraction + model checking computes inductive invariants

(boolean combinations of observations)

• A hybrid dynamic/static analysis that
– “executes” a finite set of “concrete” paths symbolically
– explores all paths through abstraction

• A new form of program slicing
– program code and data not relevant to property are dropped
– non-determinism allows slices to have more behaviors

Lecture #1 42

Static Driver Verifier

Lecture #1 43

Static Driver Verifier

• Driver: Parallel port device driver
• Rule: Checks that driver dispatch routines

do not call IoCompleteRequest(…) twice on
the I/O request packet passed to it by the
OS or another driver

Lecture #1 44

Lecture #1 45

Lecture #1 46

Lecture #1 47

Lecture #1 48

Lecture #1 49

Lecture #1 50

Lecture #1 51

Lecture #1 52

Lecture #1 53

Lecture #1 54

Lecture #1 55

Lecture #1 56

Lecture #1 57

Lecture #1 58

Lecture #1 59

Lecture #1 60

Lecture #1 61

SLAM Results

• Boolean program model has proved itself

• Successful for device driver contracts
– control-dominated safety properties
– few boolean variables needed to do proof or find real

errors

• Counterexample-driven refinement
– terminates in practice
– incompleteness of theorem prover not an issue

Lecture #1 62

SLAMming on the shoulders of …

• Model checking
– predicate abstraction
– counterexample-driven

refinement
– BDDs and symbolic

model checking

• Program analysis
– abstract interpretation
– points-to analysis
– dataflow via CFL-

reachability

• Automated deduction
– weakest preconditions
– theorem proving

• Software
– AST toolkit
– Das’s Golf
– CU and CMU BDD
– Simplify
– OCaml

SLAM/SDV History
• 2000-2001

– foundations, algorithms,
prototyping

– papers in CAV, PLDI, POPL,
SPIN, TACAS

• March 2002
– Bill Gates review

• May 2002
– Windows committed to hire

two Ph.D.s in model checking
to support Static Driver Verifier

• July 2002
– running SLAM on 100+

drivers, 20+ properties

• September 3, 2002
– made initial release of SDV to

Windows (friends and family)

• April 1, 2003
– made wide release of SDV to

Windows (any internal driver
developer)

• September, 2003
– team of six in Windows

working on SDV
– researchers moving into

“consultant” role

• November, 2003
– demonstration at Driver

Developer Conference

Release on DDK in late 2004!
Lecture #1 63

Lecture #1 64

Summary

• Use APIs and properties to guide search
for appropriate abstractions

• Predicate abstraction provides parametric
abstraction algorithm

• Predicates generated by analysis of
spurious counterexamples

Lecture #1 65

A Brief History of Verification

Lecture #1 66

A Brief History of Verification

Lecture #1 67

A Brief History of Verification

Lecture #1 68

A Brief History of Verification

Lecture #1 69

A Brief History of Verification

Lecture #1 70

Glossary
Model checking Checking properties by systematic exploration of the state-space of a

model. Properties are usually specified as state machines, or using
temporal logics

Safety properties Properties whose violation can be witnessed by a finite run of the system.
The most common safety properties are invariants

Reachability Specialization of model checking to invariant checking. Properties are
specified as invariants. Most common use of model checking. Safety
properties can be reduced to reachability.

Boolean programs “C”-like programs with only boolean variables. Invariant checking and
reachability is decidable for boolean programs.

Predicate A Boolean expression over the state-space of the program eg. (x < 5)

Predicate abstraction A technique to construct a boolean model from a system using a given set
of predicates. Each predicate is represented by a boolean variable in the
model.

Weakest precondition The weakest precondition of a set of states S with respect to a statement T
is the largest set of states from which executing T, when terminating,
always results in a state in S.

Lecture #1 71

3x + 1

Lecture #1 72

3x + 1

Lecture #1 73

Lecture #1 74

	Software Model Checking:automating the search for abstractions
	People Behind SLAM
	Thanks Also to Friends of SLAM
	Outline
	Name as many examples/types of software as you can
	Name as many examples/types of software as you can
	What major inventions have improved software development in the past 50 years?
	What major inventions have improved software development in the past 50 years?
	How does a researcher demonstrate that an invention is a good idea?
	Lessons
	Automating Verification of Software
	How many program abstractions can you list?
	How many program abstractions can you list?
	No “Silver Bullet”
	The Usefulness of Abstractions
	Abstraction Refinement:PLDI’03 Case Study of Blanchet et al.
	Software Verification:Search for the Right Abstraction
	Automating the Search for Abstractions
	Puzzle Pieces
	A Brief History of Microsoft
	Model Checking
	Model Checking
	Theorem proving
	Automatic theorem proving
	Program analysis
	Program analysis
	Model Checking, Theorem Proving and Program Analysis
	Stretch!
	APIs and Usage Rules
	Socket API
	The Windows Driver Problem
	State Machine for Locking
	The SLAM Process:counterexample-driven refinement
	Example
	Example
	Example
	Example
	Example
	Example
	Observations about SLAM
	Static Driver Verifier
	Static Driver Verifier
	SLAM Results
	SLAMming on the shoulders of …
	SLAM/SDV History
	Summary
	A Brief History of Verification
	A Brief History of Verification
	A Brief History of Verification
	A Brief History of Verification
	A Brief History of Verification
	Glossary
	3x + 1
	3x + 1

