
Model Driven Security

David Basin
ETH Zürich

Joint work with Jürgen Doser and Torsten Lodderstedt



David Basin 1

Talk Objectives

Present a methodology for automatically constructing
secure, complex, distributed, applications.

Formal: Has a well defined mathematical semantics.

General: Ideas may be specialized in many ways.

Usable: Based on familiar concepts and notation.

Wide spectrum: Integrates security into overall design process.

Tool supported: Compatible too with UML-based design tools.

Scales: Initial experiments positive.



David Basin 1

Talk Objectives

Present a methodology for automatically constructing
secure, complex, distributed, applications.

Formal: Has a well defined mathematical semantics.

General: Ideas may be specialized in many ways.

Usable: Based on familiar concepts and notation.

Wide spectrum: Integrates security into overall design process.

Tool supported: Compatible too with UML-based design tools.

Scales: Initial experiments positive.

Submessage: formal and semiformal can live harmoniously together

and the results can be practically useful.



David Basin 2

Road Map

Mon Motivation and objectives

Mon Background

Tues Secure components

Tues Semantics

Thurs Generating security infrastructures

Thurs Secure controllers

Fri Experience, demonstration, and conclusions



David Basin 3

Motivation

How do we go from requirements to secure systems?



David Basin 4

From Requirements to Systems

• Ideally: Automated synthesis from specifications.

� The Holy Grail of Software Engineering!

� But problem is not recursively solvable.



David Basin 4

From Requirements to Systems

• Ideally: Automated synthesis from specifications.

� The Holy Grail of Software Engineering!

� But problem is not recursively solvable.

• As described by process models.

Analysis

Implementation

Design

Deployment

Testing

Models

Code
Code

Mostly Text

Iterative Process
(in theory)



David Basin 4

From Requirements to Systems

• Ideally: Automated synthesis from specifications.

� The Holy Grail of Software Engineering!

� But problem is not recursively solvable.

• As described by process models.

Analysis

Implementation

Design

Deployment

Testing

Models

Code
Code

Iterative Process
(in theory)

short cut

Mostly Text

• In practice: code-and-fix.

Adequate in-the-small. But poor quality control and scalability.



David Basin 5

From Requirements to Systems: Security

• Engineering security into system design is usually neglected.

Analysis

Implementation

Design

Deployment

Testing

Tool support?
?

?
?

How?

• Ad hoc integration has a negative impact on security.

• Two gaps to bridge:

Requirements Analysis

Security Policies

Implementation

Design Models



David Basin 6

An Example: A Meeting Scheduler

Functional requirements:

System should maintain a list of users and records of meetings. A meeting

has an owner, a list of participants, a time, and a place. Users may carry

out operations on meetings such as creating, reading, editing, and deleting

them. A user may also cancel a meeting, which deletes the meeting and

notifies all participants by email ...

Security requirements:

1. All users can create new meetings and read all meeting entries.

2. Only owners may change meeting data, cancel meetings, or delete

meeting entries.

3. However, a supervisor can cancel any meeting.



David Basin 7

Example — Some Questions

• How do we formalize both kinds of requirements?

• How are requirements refined into multi-tier architectures with support

for GUIs, controllers, database back ends ...

• Can this be done in a way that supports modern standards/technology

for modeling (UML), middleware (EJB, CORBA, ...), and security?

• How are security infrastructures kept consistent, even when

requirements change and evolve, or the underlying technologies

themselves change?

The methodology and the tool presented in this course will
address all of these concerns.



David Basin 8

Approach: Specialize Model Driven Architecture

Application Server

A

B

A B

System Model

Target System

Model Transformation



David Basin 8

Approach: Specialize Model Driven Architecture

Application Server

A

B

A B

System Model

Target System

Model Transformation

Application Server

A

B

A B Customer

+ Extentions

+ Security Infrastructure

System Model + Security Model

Target System

Model Transformation

(RBAC, assertions, etc.)

<<secuml.Role>>
<<secuml.Permission>>

to Model Driven Security.



David Basin 8

Approach: Specialize Model Driven Architecture

Application Server

A

B

A B

System Model

Target System

Model Transformation

Application Server

A

B

A B Customer

+ Extentions

+ Security Infrastructure

System Model + Security Model

Target System

Model Transformation

(RBAC, assertions, etc.)

<<secuml.Role>>
<<secuml.Permission>>

to Model Driven Security.
Requirements Analysis

Security Policies

Implementation

Design Models



David Basin 9

Components of MDS
Application Server

A

B

A B Customer

+ Extentions

+ Security Infrastructure

System Model + Security Model

Target System

Model Transformation

(RBAC, assertions, etc.)

<<secuml.Role>>
<<secuml.Permission>>

Models:

• Modeling languages combine security and design languages.

• Models specify security and design aspects.

Security Infrastructure: code + standards conform infrastructure.

Assertions, configuration data, calls to interface functions, . . .

Transformation: parameterized by component standard (e.g.,

J2EE/EJB, .NET, CORBA, ...).

Ideas very general.
Approach open with respect to languages and technology.



David Basin 10

Road Map

• Motivation and objectives

☞ Background

• Secure components

• Semantics

• Generating security infrastructures

• Secure controllers

• Experience, demonstration, and conclusions



David Basin 11

Background

☞ Model Driven Architecture

• Unified Modeling Language

• Extensibility and Domain Specific Languages

• Code generation



David Basin 12

MDA: the Role of Models

• A model presents a view of the system useful for conceptual

understanding,

• When the models have semantics, they constitute formal specifications

and can also be used for (rigorous) analysis, and refinement.

• MDA: A Model-centric development process

Analysis

Implementation

Design

Deployment

Testing
Code

Mostly Text

Process
MDA

Code (Platform Infrastructure)

Code (+ Business Logic)

Crucial difference: much of transformation is automated.



David Basin 13

MDA: the Role of Standards

• MDA is an emerging Object Management Group standard.

� Standards are political, not scientific, constructs.

� They are valuable, however, for building interoperable tools

and for the widespread acceptance of tools and notations used.

• MDA is based on standards for

Modeling: the Unified Modeling Language, for defining graphical,

view-oriented models of requirements and designs.

Metamodeling: the Meta-Object Facility, for defining modeling

languages, like UML.

We will selectively introduce both of these standards.



David Basin 14

Background

• Model Driven Architecture

☞ Unified Modeling Language

• Extensibility and Domain Specific Languages

• Code generation



David Basin 15

UML

• Family of 9 graphical languages for OO-modeling. Each language:

� is suitable for formalizing a particular view of systems;

� has an abstract syntax defining primitives for building models;

� has a concrete syntax (or notation) for display.

• Also includes the Object Constraint Language.

� Specification language loosely based on first-order logic.

� Used to formalize invariants, and pre- and post-conditions.

• A mixed blessing

+ Wide industrial acceptance and considerable tool support.

– Semantics just for parts. Not yet a Formal Method.

We focus here on class diagrams and statecharts, presenting the main
ideas by example.



David Basin 16

Class Diagrams

Describe structural aspects of systems. A class formalizes a set of objects
with common services, properties, and behaviors. Services are described
by methods and properties by attributes and associations.

Room

floor : int
number : int

Person

name : string
e-mail : string

Meeting

start : date
duration : time

notify()
cancel()

1
0..*

+location

1
0..*

1..*
0..*

+participants
1..*

0..*

10..*

+owner

10..*

Sample requirements: The system should manage information about meetings.
Each meeting has an owner, a list of participants, a time, and a place. Users may carry
out standard operations on meetings such as creating, reading, editing, and deleting
them. A user may also cancel a meeting, which deletes the meeting and also notifies all
participants by email.



David Basin 17

Statecharts

Describes the behavior of a system or class in terms of states and events

that cause state transitions.

ListMeetings

EditMeeting

CreateMeeting
insert

update

delete / deleteMeeting

cancel / cancelMeeting

edit

create

Sample requirements: Users are presented with a list of meetings.
They can perform operations including creating meetings, editing existing
meetings, deleting and canceling meetings.



David Basin 18

Background

• Model Driven Architecture

• Unified Modeling Language

☞ Extensibility and Domain Specific Languages

• Code generation



David Basin 19

Domain Specific Languages

• UML provides general modeling concepts, yet lacks a vocabulary for

modeling Domain Specific Concepts. E.g.,

Business domains like banking, travel, or health care

System aspects such as security

• There are various ways, however, to extend UML

1. by defining new profiles, or

2. at the level of metamodels.

We will use both of these in our work, to define domain specific

modeling languages for security and system design.



David Basin 20

1) Profiles: Extending Core UML

• UML is defined by a metamodel: core UML.

• Core UML can be extended by defining a UML profile.

For instance, stereotypes can be declared that introduce modeling

primitives by subtyping core UML types and OCL constraints can be

used to formalize syntactic well-formedness restrictions.

• Example:

A class with stereotype <<Entity>>

represents a business objects with an

associated persistent storage mechanism

(e.g., table in a relational database).

• Profiles useful for light-weight specializations.

Substantial changes use metamodels to define languages directly.



David Basin 21

2) Metamodels

• A Metamodel defines the (abstract) syntax of other models.

Its elements, metaobjects, describe types of model objects.

• MOF is a standard for defining metamodels.

Meta level Description Example elements

M3 MOF Model MOF Class, MOF Attribute
M2 Metamodel, defines a language Entity, Attribute
M1 Model, consisting of instances of

M2 elements
Entities“Meeting”and“Person”

M0 Objects and data Persons“Alice”and“Bob”

M2 M1

Attribute

name : string

Entity

name : string

getAttributeByName()

0..*1

attributes

0..*

entity

1 EntityAttributes

ExampleLanguage
<<metamodel>>

Meeting

+ start : date
+ duration : int

<<Entity>>
Person

+ name : string
+ eMail : string

<<Entity>>



David Basin 22

2) Metamodeling (cont.)

M2 M1

Attribute

name : string

Entity

name : string

getAttributeByName()

0..*1

attributes

0..*

entity

1 EntityAttributes

ExampleLanguage
<<metamodel>>

Meeting

+ start : date
+ duration : int

<<Entity>>
Person

+ name : string
+ eMail : string

<<Entity>>

• Abstract syntax of metamodels defined using MOF.

� Metamodels may be defined using UML notation.

� Supports OO-metamodels, using concepts like subtyping.

• Concrete syntax of DSL defined by a UML profile.

• MOF/UML tools automatically translate models in concrete syntax

into models in abstract syntax for further processing.



David Basin 23

Background

• Model Driven Architecture

• Unified Modeling Language

• Extensibility and Domain Specific Languages

☞ Code generation



David Basin 24

MDA: Translation

Application Server

A

B

A B

System Model

Target System

Model Transformation

• Fix a platform with a security architecture: J2EE/EJB, .NET, ...

• Consider EJB standard. Beans are:

1. Server-side components encapsulating application business logic.

2. Java classes with appropriate structure, interfaces, methods, ...

+ deployment information for installation and configuration.

• Generation rules explain how each kind of model element is translated

into part of an EJB system.

• Translation produces Java code and XML deployment descriptors.



David Basin 25

MDA Generation by Example

Room

+ floor : int
+ number : int

<<Entity>>

Meeting

+ start : date
+ duration : int

+ notify()
+ cancel()

<<Entity>>

0..1

0..*
+location

0..1

0..*

Person

+ name : string
+ e-mail : string

<<Entity>>

0..*0..*
+participants

0..*0..*

10..*

+owner

10..*

• Entity 7→ EJB component with implementation

class, interfaces (local, remote, home, ...),

factory method create, finder method findByPrimaryKey, ...

• Entity Attribute 7→ getter/setter methods
date getStart() { return start;}

void setStart(date start) { this.start = start; }

• Entity Method 7→ method stub
void notify() { }

• Association Ends 7→ schema for maintaining references
Collection getParticipants() { return participants; }

void addToParticipants(Person participant) { participants.add(participant); }

void deleteFromParticipants(Person participant){participants.remove(participant);}



David Basin 26

Road Map

• Motivation and objectives

• Background

☞ Secure components

• Semantics

• Generating security infrastructures

• Secure controllers

• Experience, demonstration, and conclusions



David Basin 27

Context: Models
and Languages

Modeling Language

Modeling Language

Security Design Language

System Design

Dialect

Security

Privacy
Information flow

RBAC

Sequence diagrams

Class diagrams
Statecharts

RBAC + class diagrams

Modeling language

based on

• A Security Design Language glues two languages together.

Approach open (modulo some minimal semantic requirements).

• Each language is equipped with an abstract and concrete syntax, a

semantics, and a technology dependent translation function.

• Dialect bridges design language with security language

by identifying which design elements are protected resources.

• UML employed for

Notation: Concrete language syntax for security design models.

Metamodeling: Object oriented def. of language syntax (MOF).



David Basin 28

Secure Components

☞ Role-Based Access Control

• Generalization to SecureUML

• Component modeling and combination

We address here relevant concepts and their syntactic representation.

Semantics will be handled subsequently.



David Basin 29

Security Policies
Modeling Language

Modeling Language

Security Design Language

System Design

Dialect

Security

Privacy
Information flow

RBAC

Sequence diagrams

Class diagrams
Statecharts

RBAC + class diagrams

Modeling language

based on

• Many policies concern the confidentiality and integrity of data.

Confidentiality: No unauthorized access to information

Integrity: No unauthorized modification of information

• Example: Users may create new meetings and view all meetings, but

may only modify the meetings they own.

• These can be formalized as Access Control Policies detailing which

subjects have rights (privileges) to read/write which objects.

• Can be enforced using a reference monitor as protection mechanism.

• We will focus on Access Control Policies/Mechanisms in following.



David Basin 30

Access Control

• Two variants usually supported.

Declarative: u ∈ Users has p ∈ Permissions :⇐⇒ (u,p) ∈ AC.

Programmatic: via assertions at relevant program points.

System environment provides information needed for decision.

• Role Based Access Control is a commonly used declarative model.

� Roles are used to group privileges.

� Other additions (e.g., hierarchies) are possible.

• These are often combined to make stateful decisions, e.g.,

a user in the role customer may withdraw money from an account

when he is the owner and the amount is less than 1,000 SFr.



David Basin 31

Access Control — Declarative

• Declaratively: access control amounts to a relation.

A user is granted access iff he has the required permission.

u ∈ Users has p ∈ Permissions :⇐⇒ (u, p) ∈ AC.

• Example:

User
Alice
Bob
John

User Permission
Alice read file a
Alice write file a
Alice start application x
Alice start application y
Bob read file a
Bob write file a
Bob start application x
John read file a
John write file a
John start application x

Permission
read file a
write file a

start application x
start application y



David Basin 32

Role-Based Access Control

• Role-Based Access Control decouples users and permissions by roles

representing jobs or functions.

• Formalized by a set Roles and the relations UA ⊆ Users× Roles and

PA ⊆ Roles× Permissions, where

AC:=PA ◦ UA

i.e., AC := {(u, p) ∈ Users× Permissions |
∃r ∈ Roles : (u, r) ∈ UA ∧ (r, p) ∈ PA} .

• Example:

User Role
Alice User
Alice Superuser
Bob User
John User

Role
User

Superuser

Role Permission
User read file a
User write file a
User start application x

Superuser start application y



David Basin 33

Role-Based Access Control

• Benefits of RBAC:

� Roles model a basic abstraction (job/function)

� Reduces complexity of access control policies (scalability)

• RBAC-Extensions:

� Role hierarchy (for ≥ a partial order):

AC := PA ◦ ≥ ◦ UA

Intuitively: larger roles inherit permissions from all smaller roles

User

Superuser

� Hierarchies on users (UA) and permissions (PA).

� Authorization Constraints: predicates used to make stateful access

control decisions, e.g. “a user in the role customer may withdraw

money from an account when he is the owner and the amount is less

than 1,000 EUR.”



David Basin 34

Secure Components

• Role-Based Access Control

☞ Generalization to SecureUML

• Component modeling and combination



David Basin 35

SecureUML – Syntax

• Abstract syntax defined by a MOF metamodel.

• Concrete syntax based on UML and defined with a UML profile.

• Syntax and semantics based on an extension of RBAC.

• The key idea:

� Access Control formalizes the permissions to perform actions on

(protected) resources.

� We leave these open: types whose elements are not fixed.

� Elements specified during combination with design language (via

subtyping from existing types).



David Basin 36

Users, Roles and Typed Permissions

AtomicActionUser Group

Subject

*

*

*

*
UserHierarchy

AuthorizationConstraint

Role

* **

RoleHierarchy

*

** **

UA

CompositeAction

Resource

0..1* 0..1

ResourceDerivation

*

Permission

0..1

*

0..1

*

CA

1..* *1..* *

PA Action

*

*

*

*
ActionHierarchy

* 1* 1

RA

* 1..** 1..*

AA

* 0..1*

/ActionDerivation

0..1

• Left hand part: essentially Standard RBAC

• Right hand part: permissions are factored into the ability to carry out

actions on resources.

� Resource is the base class of all model elements representing

protected resources (e.g. “Class”).

� Actions of a“Class”could be“Create”,“Read”,“Delete” ...



David Basin 37

Hierarchies over Users, Roles and Actions

AtomicActionUser Group

Subject

*

*

*

*
UserHierarchy

AuthorizationConstraint

Role

* **

RoleHierarchy

*

** **

UA

CompositeAction

Resource

0..1* 0..1

ResourceDerivation

*

Permission

0..1

*

0..1

*

CA

1..* *1..* *

PA Action

*

*

*

*
ActionHierarchy

* 1* 1

RA

* 1..** 1..*

AA

* 0..1*

/ActionDerivation

0..1

• UserHierarchy: Users (and groups) are organized in groups.

• RoleHierarchy: Roles can be in an inheritance hierarchy.

• ActionHierarchy (Sub/Super), e.g. “FullAccess” is a super-action

of “Read” 7→ Intuitive semantics for high-level actions and reduced

development effort for generators (rules for atomic actions only).

• ActionDerivation: derived from inheritance hierarchy between

Resources (ResourceDerivation). (Details technical and omitted.)



David Basin 38

Authorization Constraints

AtomicActionUser Group

Subject

*

*

*

*
UserHierarchy

AuthorizationConstraint

Role

* **

RoleHierarchy

*

** **

UA

CompositeAction

Resource

0..1* 0..1

ResourceDerivation

*

Permission

0..1

*

0..1

*

CA

1..* *1..* *

PA Action

*

*

*

*
ActionHierarchy

* 1* 1

RA

* 1..** 1..*

AA

* 0..1*

/ActionDerivation

0..1

• A permission can be restricted by an authorization constraint.

E.g., user is account owner and amount is less than 1,000 EUR.

• This predicate describes an additional condition on

� the state of the resources of the assigned actions,

� properties of method arguments (name of the calling user) or

� global system properties (time, date)

that must hold in order to grant access.



David Basin 39

Roles and Users

Bob
<<User>>

Alice
<<User>>

User
<<Role>><<SubjectAssignment>>

Supervisor
<<Role>><<SubjectAssignment>>

• Concrete Syntax (UML-encoding) of SecureUML is defined by a

UML-Profile (stereotypes, tagged values)

• Roles, Users, User-Role-Assignments and Role-Hierarchies are encoded

as UML classes and relations with stereotypes.

• In practice, user administration and role assignments are not part of

actual security model. These assignments are made after system

deployment by system administrators.



David Basin 40

Permissions

• Moedling permissions require that actions and resources have already

been defined.

Possible only possibly after language combination. (Coming up!)

• A permission binds one or more actions to a single resource.

• Concrete syntax could directly reflect abstract syntax

Specify two relations: Permission ⇔ Action and Action ⇔ Resource.

• Alternative: use association class to specify a ternary relation.

� Attributes of association relate permissions with actions.

� Actions identified by resource name and action name



David Basin 41

Permissions (Cont.)

ReadAndNotify

<<ClassAction>> Meeting : read
<<ClassMethodAction>> Meeting_notify : execute

Person

name : string
e-mail : string

<<Entity>>Meeting

start : date
duration : time

notify()
cancel()

<<Entity>>

0..*0..*

+participants

0..*0..*

10..*

+owner

10..*
User

<<Role>>

<<Permission>>

model anchor

action references

1

2

• Encoding as association class connecting a role and a UML class

(model anchor).

• Actions of the model anchor (1) or its sub-elements (2) may be

assigned to the permission (action references).



David Basin 42

Authorization Constraints

ReadAndNotify

<<ClassAction>> Meeting : read
<<ClassMethodAction>> Meeting_notify : execute

caller = self.owner.name

Person

name : string
e-mail : string

<<Entity>>Meeting

start : date
duration : time

notify()
cancel()

<<Entity>>

0..*0..*

+participants

0..*0..*

10..*

+owner

10..*
User

<<Role>>

<<Permission>>

• Expressions are given in an OCL subset

� constant symbols: self and caller (authenticated name of caller)

� attributes and side-effect free methods

� navigation expressions (association ends)

� Logical (and, or, not) and relational (=, >, <, <>) operators

� Existentially quantified expressions

• Example: “caller = self.owner.name”



David Basin 43

Secure Components

• Role-Based Access Control

• Generalization to SecureUML

☞ Component modeling and combination



David Basin 44

A Design Modeling Language for Components

• ComponentUML: a class based language for data modeling.

EntityAssociationEntityAssociationEnd

2 12 1

EntityAttribute EntityMethod

Entity

1 0..*

+type

1 0..*

0..*0..* 0..*0..*

• Example design: group meeting administration system.

Each meeting has an owner,

participants, a time, and possibly

a location. Users carry out operations

on meetings like create, read, edit,

delete, or cancel (which notifies the

participants).

Room

+ floor : int
+ number : int

<<Entity>>

Meeting

+ start : date
+ duration : int

+ notify()
+ cancel()

<<Entity>>

0..1

0..*
+location

0..1

0..*

Person

+ name : string
+ e-mail : string

<<Entity>>

0..*0..*
+participants

0..*0..*

10..*

+owner

10..*



David Basin 45

Combination with SecureUML
Modeling Language

Modeling Language
System Design

Dialect

Security

1. Combine syntax of both modeling languages

Merge abstract syntax by importing SecureUML metamodel into

metamodel of ComponentUML.

Merge notation and define well-formedness rules in OCL.

E.g., restrict permissions to those cases with stereotype «Entity».

2. Identify protected resources

3. Identify resource actions

4. Define action hierarchy

First task is automated. Remainder are creative tasks.
They constitute what we have called a dialect or glue.



David Basin 46

Defining a Dialect
Modeling Language

Modeling Language
System Design

Dialect

Security

Security Modeling Language = SecureUML

AtomicActionUser Group

Subject

*

*

*

*
UserHierarchy

AuthorizationConstraint

Role

* **

RoleHierarchy

*

** **

UA

CompositeAction

Resource

0..1* 0..1

ResourceDerivation

*

Permission

0..1

*

0..1

*

CA

1..* *1..* *

PA Action

*

*

*

*
ActionHierarchy

* 1* 1

RA

* 1..** 1..*

AA

* 0..1*

/ActionDerivation

0..1

System Design Modeling Language = Component UML

EntityAssociationEntityAssociationEnd

2 12 1

EntityAttribute EntityMethod

Entity

1 0..*

+type

1 0..*

0..*0..* 0..*0..*

What are the resources and actions of ComponentUML?



David Basin 46

Defining a Dialect
Modeling Language

Modeling Language
System Design

Dialect

Security

• Identify protected resources and actions.

Composite Action
(from SecureUML)

Resource
(from SecureUML)

EntityAssociationEndEntity

EntityUpdateEntityReadEntityFullAccessAtomic Action
(from SecureUML)

EntityAttribute EntityMethod

create fullaccess read updatedelete

• As well as the action hierarchy (with blue atomic actions).

resource type action subordinated actions

Entity full access create, read, update and delete of the entity

Entity read read for all attributes and association ends of the entity

execute for all side-effect free methods of the entity

Entity update update for all attributes of the entity

add and delete all association ends of the entity

execute for all methods with side-effects of the entity

Attribute full access read and update of the attribute

Association End full access read, add and delete of the association end



David Basin 46

Defining a Dialect
Modeling Language

Modeling Language
System Design

Dialect

Security

• Identify protected resources and actions.

Composite Action
(from SecureUML)

Resource
(from SecureUML)

EntityAssociationEndEntity

EntityUpdateEntityReadEntityFullAccessAtomic Action
(from SecureUML)

EntityAttribute EntityMethod

create fullaccess read updatedelete

• As well as the action hierarchy (with blue atomic actions).

resource type action subordinated actions

Entity full access create, read, update and delete of the entity

Entity read read for all attributes and association ends of the entity

execute for all side-effect free methods of the entity

Entity update update for all attributes of the entity

add and delete all association ends of the entity

execute for all methods with side-effects of the entity

Attribute full access read and update of the attribute

Association End full access read, add and delete of the association end



David Basin 47

Defining a Dialect — Technical Details

• Resources are identified (graphically) using subtyping.

Metatypes inherit from the SecureUML type Resource

• Resource actions are graphically defined using named dependencies

from resource types to action classes (either atomic action or a

subtype of composite action).

• Action hierarchy defined using OCL invariants
context EntityFullAccess inv:

subordinatedActions = resource.actions->select(

name="create" or name="read" or name="update" or name="delete")

Formalizes that the composite action EntityFullAccess is larger than

the actions create, read, update, and delete of the entity the action

belongs to.



David Basin 48

Modeling a Security Policy

1. All users can create new meetings and read all meeting entries.

2. Only owners may change meeting data, cancel meetings, or delete

meeting entries.

3. However, a supervisor can cancel any meeting.



David Basin 48

Modeling a Security Policy

1. All users can create new meetings and read all meeting entries.

2. Only owners may change meeting data, cancel meetings, or delete

meeting entries.

3. However, a supervisor can cancel any meeting.

UserMeeting

<<EntityAction>> Meeting : read
<<EntityAction>> Meeting1 : create

OwnerMeeting

<<EntityAction>> Meeting : update
<<EntityAction>> Meeting1 : delete

SupervisorCancel

<<EntityMethodAction>> Meeting.cancel : execute
<<EntityMethodAction>> Meeting.notify : execute

caller = self.owner.name

User
<<Role>>

Supervisor
<<Role>>

Person

name : string
e-mail : string

<<Entity>>Meeting

+ start : date
+ duration : time

+ notify()
+ cancel()

<<Entity>>

<<Permission>>
<<Permission>>

<<Permission>>

0..* 0..*0..*
+participants

0..*

0..* 10..*

+owner

1

Room

floor : int
number : int

<<Entity>>
0..*

0..1

0..*

+location

0..1



David Basin 49

Road Map

• Motivation and objectives

• Background

• Secure components

☞ Semantics

• Generating security infrastructures

• Secure controllers

• Experience, demonstration, and conclusions



David Basin 50

Semantics

☞ SecureUML without constraints (static, fixed at build time)

• Secure UML, adding constraints (state based)

• Semantics of general combinations (transition-system based)



David Basin 51

Semantics: Why Bother?

Conceptually: what do all these boxes and arrows actually mean?

Note that a metamodel is not a model in the logical sense but rather a

description of well-formed syntax.

Analysis: what are the consequences of what we have modelled?

Even when we understand all the modeling constructs, we may not

understand all that our model entails.

Translation: are our generation functions correct?

Code has a semantics (at least an operational one).

Does it respect the model’s semantics, in some appropriate sense?



David Basin 52

General Idea

• SecureUML formalizes two kinds of Access Control decisions:

1. Declarative Access Control, where decisions depend on static

information: the assignments of users and permissions to roles.

2. Programmatic Access Control, where decisions depend on dynamic

information: the satisfaction of authorization constraints in the

current system state.

• For (1), we cast the static (RBAC) information as a first-order

structure SRBAC. Semantics of declarative AC decisions given by

SRBAC |= φRBAC(u, a)

where φRBAC(u, a) formalizes that user u can perform action a.



David Basin 53

Idea (cont.)

• (2) concerns conditions on permissions (as opposed to actions), whose

satisfiability depends on system state.

� system states St 7→ first-order structures SSt

� authorization constraints 7→ formulas φp
st over states

(φp
st denotes a family of formulae, one for each permission p)

� Satisfiability of constraints in state 7→ SSt |= φp
st

• Combination interpreted by“combining”structures and formulas.

Combined semantics roughly:

〈SRBAC,SSt〉 |= φAC(u, a) ,

where φAC(u, a) is built from both φRBAC(u, a) and φp
st, and

〈SRBAC,SSt〉 denotes the“union”of these structures.



David Basin 54

Declarative
Semantics

• Order-sorted signature ΣRBAC = (SRBAC,FRBAC,PRBAC).

SRBAC = {Users, Subjects, Roles, Permissions, Actions} ,

FRBAC = ∅ ,

PRBAC = {≥Subjects,UA,≥Roles,PA,AA,≥Actions} ,

• Users is a subsort of Subjects.

• Types as expected, e.g., ≥Subjects has type Subjects × Subjects and UA has
type Subjects× Roles.

• UA, PA, and AA correspond to identically named associations in metamodel.

• ≥Subjects, ≥Roles, and ≥Actions name hierarchies on users, roles and actions.



David Basin 55

Declarative Semantics (without hierarchies)

• A SecureUML model straightforwardly defines a ΣRBAC-structure SSt.

� Users (Roles, ...) in model 7→ elements of set Users (Roles ...).

� Associations (e.g., between users and roles) 7→ tuples in the associated

relation (e.g., UA).

• φRBAC(u, a) formalizes standard RBAC semantics.

� “Can user u perform permission p?”

φRBAC(u, p) ⇐⇒ (u, p) ∈ AC, where AC := PA ◦ UA.

� is refined to: “Does user u have the permission to carry out action a?”

φRBAC(u, a) ⇐⇒ (u, a) ∈ AC, where AC := AA ◦ PA ◦ UA, i.e.

� In first-order logic:

φRBAC(u, a) ⇐⇒ ∃r, p : UA(u, r) ∧ PA(r, p) ∧ AA(p, a)}

• AC Decision Problem is: SRBAC |= φRBAC.



David Basin 56

AC Decision Problem: SRBAC |= φRBAC

• Problem is satisfiability in a finite structure, amounting to a graph.

Bob
Alice

John Superuser

User write file a
read file a

start application y
start application x

• Can John start application x?

Just try all roles: complexity O(|Roles|).

• When we add more sets and relations, depth first search can be used.



David Basin 57

Adding Hierarchies

• Additional ordering relations ≥Subjects, ≥Roles, and ≥Actions:

� ≥Subjects defined by reflexive, transitive closure of UserHierarchy,

where a group is larger than all its contained subjects.

� ≥Roles and ≥Actions are defined analogously from ActionHierarchy

and ActionHierarchy.

• φAC formalizes ≥Actions ◦ AA ◦ PA ◦ ≥Roles ◦ UA ◦ ≤Subjects

i.e., φAC(u, a) = ∃s ∈ Subjects, r1, r2 ∈ Roles, p ∈ Permissions, a′ ∈ Actions.
s ≥Subjects u ∧UA(s, r1) ∧ r1 ≥Roles r2∧
PA(r2, p) ∧AA(p, a′) ∧ a′ ≥Actions a ,



David Basin 58

Declarative Semantics — Reformulation

φRBAC(u, a) with variables u of sort Users and a of sort Actions is defined by

∃s ∈ Subjects, r1, r2 ∈ Roles, p ∈ Permissions, a′ ∈ Actions.

s ≥Subjects u ∧UA(s, r1) ∧ r1 ≥Roles r2∧
PA(r2, p) ∧AA(p, a′) ∧ a′ ≥Actions a ,

This can be equivalently formulated by factoring out the permissions explicitly:

φRBAC(u, a) =
∨

{p∈Permissions}

φUser(u, p) ∧ φAction(p, a) ,

where φUser(u, p) ≡ (u, p) ∈ PA ◦ ≥Roles ◦ UA ◦ ≤Subjects

φAction(p, a) ≡ (p, a) ∈ ≥Actions ◦ AA



David Basin 59

Example

UserMeeting

<<EntityAction>> Meeting : read
<<EntityAction>> Meeting1 : create

OwnerMeeting

<<EntityAction>> Meeting : update
<<EntityAction>> Meeting1 : delete

SupervisorCancel

<<EntityMethodAction>> Meeting.cancel : execute
<<EntityMethodAction>> Meeting.notify : execute

caller = self.owner.name

User
<<Role>>

Supervisor
<<Role>>

Person

name : string
e-mail : string

<<Entity>>Meeting

+ start : date
+ duration : time

+ notify()
+ cancel()

<<Entity>>

<<Permission>>
<<Permission>>

<<Permission>>

0..* 0..*0..*
+participants

0..*

0..* 10..*

+owner

1

Room

floor : int
number : int

<<Entity>>
0..*

0..1

0..*

+location

0..1

Assume configuration with users Alice and Bob where Alice is a Supervisor.

Users = {Alice, Bob}
Roles = {User, Supervisor}

Permissions = {OwnerMeeting, UserMeeting, SupervisorCancel, . . . }
Actions = {Meeting.update, Meeting::cancel.execute, . . . }

UA = {(Bob, User), (Alice, Supervisor)}
PA = {(User, OwnerMeeting), (Supervisor, SupervisorCancel), . . . }
AA = {(OwnerMeeting, Meeting.update), (SupervisorCancel, Meeting::cancel.execute), . . . }

≥Roles = {(Supervisor, User), (Supervisor, Supervisor), (User, User)}
≥Actions = {(Meeting.update, Meeting::cancel.execute), . . . } ,



David Basin 60

Semantics

• SecureUML without constraints (static, fixed at build time)

☞ Secure UML, adding constraints (state based)

• Semantics of general combinations (transition system based)



David Basin 61

Authorization Constraints

• Authorization constraints are OCL formulae, attached to permissions.

business hours: time.hour >= 8 and time.hour <= 17

caller is owner: caller = self.owner.name

• Straightforward translation into sorted FOL, e.g.,

hour(time) ≥ 8 ∧ hour(time) ≤ 17
caller = name(owner(self))

• Semantics of OCL relative to a system state (or“snapshot”).

� Can be recast as a structure, giving semantics for translation.

� Fixes objects, their attribute values, and which pairs of objects are

instances of associations.

Details, e.g., Beckert, Keller, Schmitt, Translating the Object
Constraint Language into First-order Predicate Logic, 2002.



David Basin 62

Constraint
Syntax

• Vocabulary of OCL constraint is relative to given (data) model.

Same holds for translation φp
st: model determines ΣSt.

• Let’s consider this for class diagrams. ΣSt = (S, F, P ) contains:

SSt: sort for each class in the system model

FSt: function symbol for each attribute, side-effect free method, and n-1 association.

PSt: predicate symbol for each m-n association.

• And additionally

� FSt contains constant selfC for each class C in the system model.

� Sorts, functions, and predicates over base types like Integer and String.

� A constant symbol caller of type String denoting the name of the user on whose

behalf an action is performed at a time point t.



David Basin 63

Example

• Signature for example (partial)

S := {Meeting, Person, . . . } ∪ {String, . . . }
F := {selfMeeting, . . . , meetingOwner, personName} ∪ {caller}
P := {meetingParticipants, . . . } ∪ {=String, . . . }

• φOwnerMeeting
St is:

caller =String personName(meetingOwner(selfMeeting()))

Formalizes that the method caller’s (authenticated) name is the same

as the name of the person who is the owner of the meeting.



David Basin 64

Constraint Semantics

• A system snapshot at any point during execution defines a state.

duration = 2 hours
start = 1.1.2004

participants

owner
Name = "Bob Smith"
email = "bobs@ethz.ch"

Email = "aj@mpi−sb.mpg.de"
Name = "Alice Jones"

location

Meeting

Person

Person

Room

Number = 220
Floor = 2

• In general, there are finitely many objects of each class C, each with

its own attribute values and references to other objects.

• Interpretation idea

� Attributes and references define functions (or relations) from objects

to corresponding values.

� Currently executing object of class C gives interpretation for selfC.



David Basin 65

Snapshot 7→ SSt duration = 2 hours
start = 1.1.2004

participants

owner
Name = "Bob Smith"
email = "bobs@ethz.ch"

Email = "aj@mpi−sb.mpg.de"
Name = "Alice Jones"

location

Meeting

Person

Person

Room

Number = 220
Floor = 2

• Object of class C 7→ element of (carrier set of) sort C.

• Attribute in class C of type T 7→ function of type C → T , returning

the attribute value of object to which it is applied.

E.g., Name : Person → String returns value of Name attribute of

person object in current state.

• Side-effect-free methods and attribute ends handled analogously.

• Base types/functions/predicates have their standard interpretations.

• selfC 7→ the currently executing object (of type C).

(Fix an arbitrary interpretation of selfD for all D, D 6= C.)

• caller 7→ name of the (authenticated) user executing the method.

• A constraint φSt is satisfied iff SSt |= φSt.



David Basin 66

RBAC + Constraints

• A user u can perform an action a if he has a permission for this action

where the associated constraint is satisfied:

φAC(u, a) =
∨

p∈Permissions

φUser(u, p) ∧ φAction(p, a) ∧ φp
st

• Formulae φAC are built over a signature combining ΣRBAC and ΣSt

by taking their union (unproblematic as signatures disjoint).

ΣAC = (SRBAC ∪ SSt,FRBAC ∪ FSt,PRBAC ∪ PSt)

• SAC = 〈SRBAC,SSt〉 is the structure that consists of the carriers

sets, functions and predicates from both SRBAC and SSt.

• AC decision: SAC |= φAC.



David Basin 67

Example Again

UserMeeting

<<EntityAction>> Meeting : read
<<EntityAction>> Meeting1 : create

OwnerMeeting

<<EntityAction>> Meeting : update
<<EntityAction>> Meeting1 : delete

SupervisorCancel

<<EntityMethodAction>> Meeting.cancel : execute
<<EntityMethodAction>> Meeting.notify : execute

caller = self.owner.name

User
<<Role>>

Supervisor
<<Role>>

Person

name : string
e-mail : string

<<Entity>>Meeting

+ start : date
+ duration : time

+ notify()
+ cancel()

<<Entity>>

<<Permission>>
<<Permission>>

<<Permission>>

0..* 0..*0..*
+participants

0..*

0..* 10..*

+owner

1

Room

floor : int
number : int

<<Entity>>
0..*

0..1

0..*

+location

0..1

Roles := {User, Supervisor}
Permissions := {OwnerMeeting, UserMeeting, SupervisorCancel}

AA := {(OwnerMeeting, Meeting.update), (SupervisorMeeting, Meeting.cancel.execute), . . . }
PA := {(User, OwnerMeeting), (Supervisor, SupervisorCancel), . . . }
CA := {(OwnerMeeting, "caller = self.owner.name")}

≥Roles := {(Supervisor, User)}



David Basin 68

Example (cont.)

Assigning Bob to the role User
and Alice to the role Supervisor

Bob
<<User>>

Alice
<<User>>

User
<<Role>><<SubjectAssignment>>

Supervisor
<<Role>><<SubjectAssignment>>

means our structure contains

Users := {Bob, Alice}
UA := {(Bob, User), (Alice, Supervisor)}

≥Roles := {(Supervisor, User)}

Recall φAC(u, a):
∨

p∈Permissions φUser(u, p) ∧ φAction(p, a) ∧ φp
st

So in this example, Alice could execute the action Meeting.update, in any state where
caller = personName(meetingOwner(selfMeeting)) is satisfied, i.e., where she is
the meeting’s owner.



David Basin 69

Semantics

• SecureUML without constraints (static, fixed at build time)

• Secure UML, adding constraints (state based)

☞ Semantics of general combinations (transition system based)



David Basin 70

Semantic
of Combinations

Modeling Language

Modeling Language

Security Design Language

System Design

Dialect

Security

Privacy
Information flow

RBAC

Sequence diagrams

Class diagrams
Statecharts

RBAC + class diagrams

Modeling language

based on

• SecureUML semantics has a fixed static part plus a stateful part,

dependent on the notion of state defined by design modeling language.

• What is the semantics of the combination?

Intuitively: system with access control should behave as before,

except that certain actions are disallowed in certain states.

Formally: semantics defined in terms of labeled transition systems.

• Minimal assumptions required on semantics of design language.

Namely, semantics must be expressible as an LTS.



David Basin 71

Semantics of Design Modeling Language

• LTS ∆ = (Q,A, δ).

� set Q of nodes consists of ΣSt-structures

� edges are labeled with elements from a set of actions A,

� δ ⊆ Q×A×Q is transition relation.

• System behavior defined by traces as is standard:

s0
a0→ s1

a1→ . . .
an→ sn+1 is a possible behavior iff (si, ai, si+1) ∈ δ,

for 0 ≤ i ≤ n.

• Combination with SecureUML yields LTS ∆AC = (QAC, AAC, δAC).

Traces of ∆AC should be a subset of those of ∆, where just those

traces with prohibited actions are removed.



David Basin 72

From ∆ to ∆AC = (QAC, AAC, δAC)
• QAC = QRBAC ×Q, combines system states with RBAC

Here QRBAC denotes universe of all finite ΣRBAC-structures.

• AAC = A is unchanged.

• δAC restricts δ and lifts to QAC:

δAC = {(q, a, q′) ∈ lift(δ) | q |= φAC(u, a)} ,

where lift(δ) denotes the lifting of δ to QAC, i.e.,

lift(δ) =
{

(q, a, q′) ∈ QAC ×AAC ×QAC | (πSt(q), a, πSt(q′)) ∈ δ ∧
πRBAC(q) = πRBAC(q′)

}
,

and πSt : QAC → Q and πRBAC : QAC → QRBAC are projections.

• N.B.: RBAC configuration never changes, i.e., it really is static.



David Basin 73

Example: SecureUML + ComponentUML

• ComponentUML as LTS ∆ = (Q,A, δ)

� Q is the universe of all possible system states: interpretations over the

signature ΣSt with finitely many objects for each entity.

� Family of actions A defined by methods and their parameters. E.g.,

(setat, e, v) ∈
⋃

{at∈Attributes}

{setat} ×Qe ×Qat ,

where Qe and Qat denote the sets of all possible instances of the type of

the attribute’s entity, and the type of the attribute respectively.

� δ defined by semantics of methods themselves. E.g.,

∗ if a is a“get”action (q, a, q′) ∈ δ iff q = q′.

∗ if a = (setat, e, v) is a “set” action, then (q, a, q′) ∈ δ implies q′ |=
getat(e) = v.

• Combined semantics ∆AC = (QAC, AAC, δAC) as just described.

δAC, contains only transitions allowed by SecureUML semantics.



David Basin 74

Semantics: What’s It Good For?

Transform

AnalyzeDesigns

Systems

Analysis: Answer questions like:

• Is a given trace possible?

• Can Alice reach a given state?

• Which users may reach that state?

Current work is on model checking: Semantics can be translated into a

rewriting logic theory and Maude tools used to answer such questions.

Correctness:
SAC |=SecureUML φAC(u, p) ⇐⇒ “Implementation”|=EJB φAC(u, p).

• Semantics provides basis for judging correctness of translation.

• For high-level pen-paper verification, see course notes.



David Basin 75

Road Map

• Motivation and objectives

• Background

• Secure components

• Semantics

☞ Generating security infrastructures

• Secure controllers

• Experience, demonstration, and conclusions



David Basin 76

Generating Security Infrastructures

☞ Generating EJB Infrastructures.

� Motivation

� Basics of EJB and EJB access control

� Generation Rules

� Correctness

• Generating .NET Infrastructures.



David Basin 77

Why Transform?

Decreases burden on programmer.

Faster adaption to changing requirements.

Scales better when porting to different platforms.

Correctness of generation can be proved, once and for all.

☞ enables a faster, cheaper, and more secure development process.



David Basin 78

Basic EJB concepts

Bean

Bean

Bean

Bean

Application Server

• Enterprise Java Beans (EJB) is a widely used component architecture.

• Components (Beans) are executed inside of an application server.

• The server (container) is responsible for

� persistency, authentication, transaction management,. . .

� access control



David Basin 79

EJB: Deeclarative and Programmatic AC

• Static configurations mapped to deployment descriptors, which are

controlled by the application server.

� The protected resources are the components’ methods.

� Mapping not direct. EJB supports vanilla RBAC without hierarchies.

• Runtime evaluation of assertions embedded in the application code,

with mechanisms to access security-relevant data of the current user,

e.g., his name or his roles.

<method-permission>

<role-name>Supervisor</role-name>

<method>

<ejb-name>Meeting</ejb-name>

<method-intf>Remote</method-intf>

<method-name>cancel</method-name>

<method-params/>

</method>

</method-permission>

if( !(ctxt.isCallerInRole("SuperVisor")

|| ctxt.getCallerPrincipal.getName().equals(

getOwner.getName()))){

throw new AccessControlException("Access Denied");

}



David Basin 80

Starting Points of Transformation

• Basis: Existing (MDA-style) transformation functions that transform

ComponentUML models into EJB applications.

• Objective 1: Adhere to the SecureUML semantics:

φAC(u, a) =
∨

p∈Permissions

φUser(u, p) ∧ φAction(p, a) ∧ φp
st

φUser(u, p) ≡ (u, p) ∈ PA ◦ ≥Roles ◦ UA ◦ ≤Subjects

φAction(p, a) ≡ (p, a) ∈ ≥Actions ◦ AA

• Objective 2: Use what is available on the technology platform:

EJB supports both declarative RBAC (without role-hierarchies) and

runtime access to security-relevant data of the current user.



David Basin 81

Overview of Transformation Rules

• Permissions for atomic actions.

� Generate method-permission elements of the corresponding

method in the deployment descriptor, naming all authorized roles.

� Calculate these roles according to the hierarchy on action (≥Actions),

the assignment of actions to permissions (AA), the assignment of

permissions to roles (PA), and the hierarchy on roles ≥Roles.

• Permissions for composite actions.

No rules needed: action hierarchy is used when calculating roles above.

• Authorization constraints on permissions.

Add assertions at the start of the corresponding methods, checking

the necessary roles and evaluating the constraint(s).



David Basin 82

Transformation Rules
Static Part

For each atomic action a:

• determine the corresponding EJB method(s) m.

• compute the set of Roles R that have access to the action a:

R := {r ∈ Roles | (r, a) ∈ ≥Actions ◦ AA ◦ PA ◦ ≥Roles} .

This can be done by (depth-first) searching the directed acyclic graph defined by
the relations AA,≥Actions, PA,≥Roles.

☞ generate the following deployment-descriptor code (with R = {r1, . . . , rn}):

<method-permission>

<security-role>r1</security-role>

...

<security-role>rn</security-role>

<method>m</method>

</method-permission>



David Basin 83

Transformation Rules
Dynamic Part

For each atomic action a on a method m:

• compute the set of permissions P for this action:

P := {p ∈ Permissions | (p, a) ∈ ≥Actions ◦ AA}

• for each p ∈ P , compute the set of roles R(p) assigned to the permission p:

R(p) := {r ∈ Roles | (r, p) ∈ PA ◦ ≥Roles}

• Check, if one of the p ∈ P has an authorization constraint attached.

☞ if yes, include at the start of the method m the assertion:

if (!(
∨
p∈P

(( ∨
r∈R(p)

ctxt.isCallerInRole(r)
)
∧ Constraint(p)

)
))

throw new AccessControlException("Access denied."); ,

where Constraint(p) is the translation of the attached constraint into Java syntax.



David Basin 84

Example

generates both RBAC configuration data and Java code:

<method-permission>

<role-name>User</role-name>
<role-name>Supervisor</role-name>
<method>

<ejb-name>Meeting</ejb-name>
<method-intf>Remote</method-intf>
<method-name>setStart<//method-name>

</method>

</method-permission>

public void setStart(Date start)

{

if (!((ctxt.isCallerInRole("User") ||

ctxt.isCallerInRole("Supervisor"))

&& ctxt.getCallerPrincipal.getName().equals(

getOwner().getName())))

)) throw new AccessControlException("Access

denied.");

...

}



David Basin 85

Generating Security Infrastructures

• Generating EJB Infrastructures.

☞ Generating .NET Infrastructures.



David Basin 86

.NET versus EJB (from the AC perspective)

• Like with EJB, the protected resources are the component methods.

• .NET also supports both declarative and programmatic access control.

• Declarative access control is not configured in deployment descriptors,

but by“attributes”of the methods, which name the allowed roles.

• programmatic access control is conceptually very similar to EJB.

For our purposes, the differences are only in the method names.

☞ Transformation function must be changed only slightly.



David Basin 87

Example

generates the following C#-code:

[SecurityRole("User")]

[SecurityRole("SuperVisor")]

public void setStart(Date start){

if (!((ctxt.isCallerInRole("User")

|| ctxt.isCallerInRole("Supervisor"))

&& ctxt.OriginalCaller.AccountName ==

getOwner().getName()))

throw new UnauthorizedAccessException("Access

denied.");

...

}

First two lines are“attributes”, naming the allowed roles.



David Basin 88

Road Map

• Motivation and objectives

• Background

• Secure components

• Semantics

• Generating security infrastructures

☞ Secure controllers

• Experience, demonstration, and conclusions



David Basin 89

Secure Controllers

☞ ControllerUML: a modeling language for controllers.

• Integrating ControllerUML with SecureUML.

• Generating secure web applications based on the Java Servlet

architecture.



David Basin 90

Motivation
Modeling Language

Modeling Language

Security Design Language

System Design

Dialect

Security

Privacy
Information flow

RBAC

Sequence diagrams
Statecharts

Class diagrams

• Explore parameter space.

Integrate SecureUML with a process-oriented modeling language.

• Applications include:

� Work-flow management: Restrict process execution to entitled

parties.

� Application controllers: Build a first line of defense against attackers

in multi-tier systems.

Control access to states, transitions, associated actions, etc.

• Explore interrelationships between different views.

E.g., securing controllers versus securing components versus ...



David Basin 91

What are Controllers?

• A controller defines how a system’s behavior may evolve.

Definition in terms of states and events, which cause state transitions.

• Examples

� A user-interface of an application changes its state according to

clicks on certain menu-entries.

� A washing machine goes through different washing/drying modes.

� A control process that governs the launch sequence of a rocket.

• Mathematical abstraction: a transition system or some (hierarchical or

parallel) variant.



David Basin 92

Modeling Controllers

• Let’s consider a language for modeling controllers for multi-tier

architectures.

• A common pattern for such systems is the Model-View Controller.

Visualization tier: for viewing information. Typically within a web

browser.

Persistence tier: where data (model) is stored, e.g., backend

data-base system.

Controller tier: Manages control flow of application and dataflow

between visualization and persistence tier.

• Our models must link“controller classes”with (possibly persistent)

state with visualization elements.



David Basin 93

Abstract Syntax

Metamodel (MOF):

ViewStateSubControllerState StatemachineAction

EventController

1 +controller1

StateTransition

0..1effect 0..1

1

trigger

1

Statemachine
1

behavior

1
State 0..n1

incoming

0..ntarget1

0..n1

outgoing

0..nsource
1n

states

n

0..*0..1
+substates
0..*

StateHierarchy

container
0..1

• A Statemachine formalizes the behavior of a Controller.

• The statemachine consist of states and transitions.

• Two state subtypes: SubControllerState refers to a sub-controller,

ViewState represents an user interaction.

• A transition is triggered by an Event and the (optionally) assigned

StatemachineAction is executed during the state transition.



David Basin 94

Concrete Syntax

ViewStateSubControllerState StatemachineAction

EventController

1 +controller1

StateTransition

0..1effect 0..1

1

trigger

1

Statemachine
1

behavior

1
State 0..n1

incoming

0..ntarget1

0..n1

outgoing

0..nsource
1n

states

n

0..*0..1
+substates
0..*

StateHierarchy

container
0..1

create

back

edit

End

exit

Startdelete / deleteMeeting

select

cancel / cancel/Meeting
apply / update

<<Controller>>

− selectedMeeting:Meeting

MainController

CreationController
<<Controller>>

MainController’s Statechart

<<ViewState>>
ListMeetings

<<SubControllerState>>
CreateMeeting

<<ViewState>>
EditMeeting

• Concrete syntax defined by a UML-profile (stereotypes, tagged values).

• Encoding uses elements from both UML class diagrams and state

charts. (References not visualized, e.g., from subcontroller states to

controllers are stored in tagged values.)



David Basin 95

Syntax (cont.)
ViewStateSubControllerState StatemachineAction

EventController

1 +controller1

StateTransition

0..1effect 0..1

1

trigger

1

Statemachine
1

behavior

1
State 0..n1

incoming

0..ntarget1

0..n1

outgoing

0..nsource
1n

states

n

0..*0..1
+substates
0..*

StateHierarchy

container
0..1

create

back

edit

End

exit

Startdelete / deleteMeeting

select

cancel / cancel/Meeting
apply / update

<<Controller>>

− selectedMeeting:Meeting

MainController

CreationController
<<Controller>>

MainController’s Statechart

<<ViewState>>
ListMeetings

<<SubControllerState>>
CreateMeeting

<<ViewState>>
EditMeeting

• Controller 7→ UML class (stereotype“Controller”) with an assigned

UML statemachine.

• State, Transition, Event, and StatemachineAction 7→ their respective

UML counterparts (transition name := name of triggering event).

• ViewState/SubControllerState 7→ UML state with corresponding

stereotype.



David Basin 96

Statemachine of the MainController
Start

End

CreateMeeting
<<SubControllerState>>

EditMeeting
<<ViewState>>

ListMeetings
<<ViewState>> back

select

exit

create

edit

cancel / cancelMeeting

delete / deleteMeeting

apply / update

Start: System makes an“epsilon”transition into the state ListMeetings.

ListMeetings: User can browse all meeting entries and select one for

further processing.

End: The final state of the system after receipt of the exit event.



David Basin 97

Statemachine of the MainController
Start

End

CreateMeeting
<<SubControllerState>>

EditMeeting
<<ViewState>>

ListMeetings
<<ViewState>> back

select

exit

create

edit

cancel / cancelMeeting

delete / deleteMeeting

apply / update

Outgoing transitions (from ListMeetings) include:

• cancel 7→ cancellation of the selected meeting.

• edit 7→ transition to EditMeeting, where the selected meeting can

be edited.

• create 7→ transition to CreateMeeting, where a new meeting entry is

created (using CreationController).



David Basin 98

Secure Controllers

• ControllerUML: a modeling language for controllers.

☞ Integrating ControllerUML with SecureUML.

• Generating secure web applications based on the Java Servlet

architecture.



David Basin 99

Dialect as a Bridge
• Security Modeling Language = SecureUML

SubjectAssignment

CompositeAction

Resource

0..1
*

0..1

ResourceDerivation

*

Action

*

*

*

*
ActionHierarchy

* 1* 1

ResourceAction

AuthorizationConstraint AtomicAction

User

Permission

* 1..** 1..*

ActionAssignment

0..1

*

0..1

*

ConstraintAssignment

Role

* **

RoleHierarchy

*

1..* *1..* *

PermissionAssignment

Group

Subject

*

*

*

*

*

*

*

* SubjectGroup

• System Design Modeling Language = ControllerUML

ViewStateSubControllerState StatemachineAction

EventController

1 +controller1

StateTransition

0..1effect 0..1

1

trigger

1

Statemachine
1

behavior

1
State 0..n1

incoming

0..ntarget1

0..n1

outgoing

0..nsource
1n

states

n

0..*0..1
+substates
0..*

StateHierarchy

container
0..1

What are ControllerUML’s protected resources? (States, Actions, ...?)



David Basin 100

Dialect Definition

ControllerActivateRecursive

CompositeAction
(from SecureUML)

AtomicAction
(from SecureUML)

StateActivateRecursive

Controller State

Resource
(from SecureUML)

StatemachineAction

executeactivateRecursive activate activateRecursiveactivate

• Define resources and actions:

� Controller (activate, activateRecursive)

� State (activate, activateRecursive)

� StatemachineAction (execute)

• Define the action hierarchy (in OCL):

� State.activateRecursive: activate on the state, activateRecursive on

all substates, and execute on all actions on outgoing transitions

� Controller.activateRecursive: activate on the controller and

activateRecursive on all states of the controller

Result is a vocabulary for defining permissions on both high-level and

low-level actions.



David Basin 101

LTS Semantics: Idea

• Each controller c in model gives rise to:

Controller sort Cc, whose elements represent controller instances.

(Assumption: finitely many controllers running at any time point).

State sort Sc, whose elements represent the states of controller’s

statemachine. and current states.

• Actions are defined by:

Atomic actions in SecureUML dialect, and

state-transitions from model.

These may change controller’s data and“current state”attribute

• That’s it!

General schema gives semantics for combination with SecureUML



David Basin 102

Semantics: Signature ΣSt = (SSt,FSt,PSt)

• SSt = {Cc | c is a controller} ∪ {Sc | c is a controller}
∪ {String, Int, Real, Boolean}

• FSt = {getat | at is a controller attribute} ∪ {selfc | c is a controller}

� Contollers have only attributes at, no methods.

� Types as expected, e.g., getat has type s → v, where s is controller

sort v is sort of attribute’s type.

� Initial and current states of a controller’s statemachine are denoted

by attributes initialState and currentState of type Sc.

• PSt = ∅ (no predicate symbols)



David Basin 103

Semantics: LTS ∆ = (Q,A, δ)

• Q is set of all first-order structures over the signature ΣSt with finitely

many elements for each controller sort.

� Interpretations of String, Int, Real, Boolean are standard ones

� Sc is set of states of controller c

• Actions A correspond to atomic actions defined in dialect (activate

controller and state, and execute state machine action) + transitions.

• δ defined via any“standard”state-machine semantics

E.g., for each transition s1
a→ s2 in the model there are corresponding

tuples (sold, a, snew) in δ, where the current state of the controller is s1

in sold and is s2 in snew.

• Can be combined further with ComponentUML by merging the sorts,

function and predicate symbols defined by them.



David Basin 104

Example Policy: Permissions

CreationController
<<Controller>>

UserCreation

<<ControllerAction>> CreationController : activate_recursive

UserMain

<<ControllerAction>> MainController : activate
<<StateAction>> ListMeetings : activate

User
<<secuml.Role>>

<<secuml.Permission>>

OwnerMeeting

<<ActionAction>> ListMeetings.remove : execute
<<ActionAction>> ListMeetings.cancel : execute
<<StateAction>> EditMeeting : activate_recursive

self.currentMeeting.owner = 
caller

Supervisor
<<secuml.Role>>

MainController

currentMeeting : Meeting

<<Controller>>
<<secuml.Permission>>

<<secuml.Permission>>

SuperVisorCancel

<<ActionAction>> ListMeetings.cancel : execute

<<secuml.Permission>>

Start

End

CreateMeeting
<<SubControllerState>>

EditMeeting
<<ViewState>>

ListMeetings
<<ViewState>> back

select

exit

create

edit

cancel / cancelMeeting

delete / deleteMeeting

apply / update

1. All users of the system can create new meetings and read all meeting
entries.



David Basin 105

Example Policy: Permissions

CreationController
<<Controller>>

UserCreation

<<ControllerAction>> CreationController : activate_recursive

UserMain

<<ControllerAction>> MainController : activate
<<StateAction>> ListMeetings : activate

User
<<secuml.Role>>

<<secuml.Permission>>

OwnerMeeting

<<ActionAction>> ListMeetings.remove : execute
<<ActionAction>> ListMeetings.cancel : execute
<<StateAction>> EditMeeting : activate_recursive

self.currentMeeting.owner = 
caller

Supervisor
<<secuml.Role>>

MainController

currentMeeting : Meeting

<<Controller>>
<<secuml.Permission>>

<<secuml.Permission>>

SuperVisorCancel

<<ActionAction>> ListMeetings.cancel : execute

<<secuml.Permission>>

Start

End

CreateMeeting
<<SubControllerState>>

EditMeeting
<<ViewState>>

ListMeetings
<<ViewState>> back

select

exit

create

edit

cancel / cancelMeeting

delete / deleteMeeting

apply / update

2. Only the owner of a meeting may change meeting data and cancel or
delete the meeting.



David Basin 106

Example Policy: Permissions

CreationController
<<Controller>>

UserCreation

<<ControllerAction>> CreationController : activate_recursive

UserMain

<<ControllerAction>> MainController : activate
<<StateAction>> ListMeetings : activate

User
<<secuml.Role>>

<<secuml.Permission>>

OwnerMeeting

<<ActionAction>> ListMeetings.remove : execute
<<ActionAction>> ListMeetings.cancel : execute
<<StateAction>> EditMeeting : activate_recursive

self.currentMeeting.owner = 
caller

Supervisor
<<secuml.Role>>

MainController

currentMeeting : Meeting

<<Controller>>
<<secuml.Permission>>

<<secuml.Permission>>

SuperVisorCancel

<<ActionAction>> ListMeetings.cancel : execute

<<secuml.Permission>>

Start

End

CreateMeeting
<<SubControllerState>>

EditMeeting
<<ViewState>>

ListMeetings
<<ViewState>> back

select

exit

create

edit

cancel / cancelMeeting

delete / deleteMeeting

apply / update

3. However, a supervisor can cancel any meeting.



David Basin 107

Secure Controllers

• ControllerUML: a modeling language for controllers.

• Integrating ControllerUML with SecureUML.

☞ Generating secure web applications based on the Java
Servlet architecture.



David Basin 108

What are Java Servlets?

• A Servlet is (essentially) a Java class that runs on a webserver and is

used to implement web-applications, e.g.,

� process data submitted by HTML forms

� provide dynamic content (e.g., answers to database queries)

� manage state information (e.g., your shopping cart)

• Similar to EJBs, Servlets execute in an application server (called

“Servlet container”, e.g., Tomcat). The Java Servlet specification

defines the API for this container.

• Java Servlet provides declarative access control mechanisms (where

protected resources are URLs) and programmatic access control

mechanisms, based on RBAC.



David Basin 109

Overview of Transformation

• Starting point (MDA): A transformation function, translating

ControllerUML models into web applications based on the Servlet

standard.

• Limitations of the Java Servlet Access Control Architecture:

� Declarative Access Control only enforces policies upon requests from

the outside, not for requests from Servlets to other Servlets on the

same server. This is problematic for some kinds of system

architectures, e.g., when using the“front-controller pattern”.

� As with EJBs, role-inheritance is not supported.

• Approach: Basic transformation function is extended by rules, which

create an access control infrastructure based on the programmatic

access control of Java Servlet.



David Basin 110

Basic Transformation Rules

We build on (standard, MDA) transformation rules that transform a

ControllerUML model into a DFA, implemented as Java Servlets:

• State 7→ Singleton class containing information about the state, e.g.,

enabled transitions. Also includes a method activate for activating

the state. E.g., for the ListMeetings state:

public class ListMeetingsState{

... public void activate(){ ... } ...

}

• StatemachineAction 7→ Java class with a method perform,

containing the action’s“business logic”. E.g., for deleteMeeting action:

public class deteleMeetingAction{

... public void perform() { ... } ...

}



David Basin 111

Basic Transformation Rules (cont.)

• Controller 7→ Servlet class implementing the control logic as

formalized by the controller’s statemachine. This includes for example

processing events that result in state transitions. Also includes a

method activate for activating the controller.

public class MainControllerServlet extends HttpServlet{

...

public void activate(){ ... }

...

}



David Basin 112

Extended Transformation Rules

• For each protected atomic action of ControllerUML there is a

corresponding method in the controller implementation.

� activate of the controller 7→ Controller.activate()

� activate of the state 7→ State.activate()

� execute of StatemachineAction 7→
StatemachineAction.perform()

• Add Java assertions to the start of the bodies of these methods, which

enforce the policy for the corresponding protected action.

� necessary authentication information about the current caller are

obtained using the programming interfaces for procedural access

control of Java Servlet.

How does such an assertions look like?



David Basin 113

Generating Assertions

As with componentUML, for each atomic action, compute the set of

permissions P for this action and the set of Roles R(p) assigned to each

permission p ∈ P :

P := {p ∈ Permissions | (p, a) ∈ AA ◦ ≥Actions ◦ PA}
R(p) := {r ∈ Roles | (r, p) ∈ PA ◦ ≥Roles} .

Then create an assertion of the form

if (!(
∨
p∈P

(( ∨
r∈R(p)

request.isUserInRole(r)
)
∧ constraint(p)

)
))

c.forward("/unauthorized.jsp"); .

Denial of access signaled by viewing the error page unauthorized.jsp.



David Basin 114

Example Assertion

Generated assertion for the action execute on the statemachine action
ListMeetings.cancel:

if (!(request.isUserInRole("Supervisor") ||

((request.isUserInRole("User") || request.isUserInRole("Supervisor")) &&

getSelectedMeeting().getOwner().getName().equals(request.getRemoteUser()))))

c.forward("/unauthorized.jsp");



David Basin 115

Road Map

• Motivation and objectives

• Background

• Secure components

• Semantics

• Generating security infrastructures

• Secure controllers

☞ Experience, demonstration, and conclusions



David Basin 116

Current Status

Foundational:

• Developed idea of Model Driven Security.

• Supports model-centric, generative development.

Practical/Tool: Prototype built on top of Rational RoseTM .

• Generators for J2EE (Bea EJB Server) and .NET.

• Industrial version developed by iO GmbH.

Positive experience:

• In following, we briefly describe one of our case-studies: E-Pet Store.

• Standard J2EE example: an e-commerce application with web

front-ends for shopping, administration, and order processing.

• Carried out by Torsten Lodderstedt during his Ph.D.



David Basin 117

Pet Store Case Study
Analysis

Implementation

Design

Deployment

Testing
Code

Mostly Text

Process
MDA

Code (Platform Infrastructure)

Code (+ Business Logic)

• Requirements analysis: Use Case Model identifying 6 roles (2 kinds of

customers, 4 kinds of employees) and their tasks.

• Use Cases and their elaboration in Sequence Diagrams paved the way

for the design phase.

� 31 components

� 7 front-end controllers

� 6 security roles based on the Use Case roles.

• Security policy based on principle of least privilege.

Typical requirement: Customers need to create and read all catalog

data, to update their own customer data, to create purchase orders,

and to read their own purchase orders.



David Basin 118

Case Study — Evaluation

System

2,000 lines Java  (overall 20,000)
5,000 lines XML (overall 13,000)

15 authorization constraints
60 permissions
6 roles

Model

Which would you
rather maintain?



David Basin 119

Evaluation (cont.)

• Expansion due to high-abstraction level over EJB.

Analogous to high-level language / assembler tradeoffs.

Also with regards to comprehensibility, maintainability, ...

• Claim: Least privilege would be not be practically implementable

without such an approach.

• Effort manageable: 2 days for designing access control architecture

(overall development time: 3 weeks).

• MDS process provides conceptual support for building models

� Fits well with a requirements/model-driven development process.

� Provides a good transition from semi-formal to formal modeling.



David Basin 120

Future Work

• Explore the parameter space.

� Security/privacy properties.

� Modeling languages.

Modeling Language

Modeling Language

Security Design Language

System Design

Dialect

Security

Privacy
Information flow

RBAC

Sequence diagrams

Class diagrams
Statecharts

• Exploit well-defined semantics.

� Analysis possible at model level.

Examples: model-consistency, model checking.

� So is a verifiable link to code.

Transform

AnalyzeDesigns

Systems

⇒ applications to building certifiably secure systems!



David Basin 121

Demonstration


