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A brief look back on Marktoberdorf Summer Schools

• Structured programming (E.W. Dijkstra, C.A.R. Hoare,
O.-J.Dahl)

• Data abstraction (C.A.R. Hoare)
• Weakest preconditions (E.W. Dijkstra)
• Program Transformation (F.L. Bauer)
• Abstract Data Types (J. Guttag)
• Denotational Semantics (D. Scott/J. Stoy)
• Logic Programming (J.A. Robinson)
• Temporal Logics (Manna/Pnueli)
• Concurrency (CCS: R. Milner/CSP: C.A.R. Hoare)
• Parallel Programming (J. Misra, M. Chandy)
• Process Algebras (J. Bergstra)
• Interactive Program Verification (J. Moore, L. Paulson)
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What we face: characteristics of systems today

External view:
• Multi-functional, dialogue driven user interfaces
• High degree of interaction with the environment:
◊ many user interfaces,
◊ many peripheral devices,
◊ many links to neighboured systems

• Communication and interaction
• Distributed on networks
• Concurrent
• Real time dependent
Internal view and structuring:
• Multi-layer architectures
• Hierarchical decomposition
• Flexible hardware/software partition
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What we need: musts for software and systems engineering

System models that support
• Modularity
• Time
• Concurrency
• User interface specification
◊ Property oriented
◊ Functional (de)combination

• Component interface specification
◊ Behavioural interface specifications
◊ Nonfunctional properties (resources, QoS)

• Hierarchical composition/decomposition
• Abstraction layers and layered architectures
• Assumption/commitment (rely/guarantee) specs
• Export/import specifications
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What does the “summer school” contribute

• So-called “Formal Methods”
◊ Why “formal”
◊ Why “methods”

• The significance of models
◊ Understanding software & systems needs abstractions
◊ Models are abstractions

• The evaluation of engineering theories
◊ Clean (consistent) theory
◊ Powerful enough and all the needed properties
◊ Scales up
◊ Tool support possible
◊ Easy to comprehend
◊ Applicable in an engineering context
◊ Can be integrated into existing processes
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Overview: Agenda for my presentation

• What we face: characteristics of systems today
• What we aim at: views and models
• What we need: musts for software and systems

engineering
• What we miss: why objects are not enough
• What we suggest: Interfaces, components, and services
• Specifying services
• Combining services
• Service hierarchies
• Composition of services
• Service layers and layered architectures
• Specification of layers and layered architectures
• Summary and outlook
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How to specify and verify systems

• Black Box (interface) specification
◊ User interface
◊ Component interface

• Architecture description
◊ Systems as families of components (and their interface specs)
◊ Putting together the components forming the architecture

(composition)
◊ Modularity: The interface abstraction supports the construction

(composition) of the interface abstraction of a composed
system from the

• Verification of an architecture
◊ Prove the interface specification of the composed system from

the interface specification of the components and the
composition verification rules
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Interfaces

• A connecting interface between two system describes
◊ The information (messages, method calls) exchanged

between the two systems
◊ The logical rules and dependencies between the exchanged

messages

• Ways to look at interfaces
◊ Under which condition may a method be invoked or a

message be send or received at an interface and what are
the effects

◊ Which sequences of methods or messages can be
exchanged over an interface

• Interfaces of systems
◊ How can we describe, in which connecting interfaces a

system (component) fits
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A first simple example: diaries and scheduling of dates

• As an example we consider a diary administrating the
schedule for a person

• Operations:
◊ Ask whether a date is possible/free
◊ Enter a date that is possible
◊ Delete a date
◊ Ask for the set of dates that are in conflict with a given date

in the diary
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Data types for appointments

• We work with the following types

Date
Diary
Person

We do not give - for the moment - more specific
explanations/specifications for these types

We assume a function

conflict : (Date, Date) Bool
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This does not specify the 
Interface behaviour of the class

A class CDiary - syntactic interface

Class CDiary =
{ y :  Diary

p : Person

Method create_CDiary = (p : Person, r : Var CDiary)
Method isfree = (d : Date, b : Var Bool)
Method setdate = (d : Date)
Method deldate = (d : Date)
Method getdate = (d : Date, v : Var Set Date)

}
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An algebraic specification of the basic data type

Specification of the theory of dates:

Spec DIARY =
{ imports Date

Diary : Type

emptyd : Diary
isfreed : (Diary, Date) Bool
putd : (Diary, Date) Diary
getd : (Diary, Date) Set Date
deld : (Diary, Date) Diary
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Axioms

Diary generated_by emptyd, putd

isfreed(emptyd, d) = true
isfreed(y, d) ⇒ isfreed(putd(y, d), e) = (¬conflict(d, e) ∧ isfreed(y, e))

isfreed(y, d) ⇒ getd(y, d) = { }
isfreed(y, d) ⇒ getd(putd(y, d), d) = {d}
conflict(d, e) ∧ isfreed(y, d) ⇒ getd(putd(y, d), e) = {d} ∪ getd(y, e)
¬conflict(d, e) ∧ isfreed(y, d) ⇒ getd(putd(y, d), e) = getd(y, e)

deld(putd(y, d), e) = if d = e then y else putd(deld(y, e), d) fi
}

Theorem: getd(y, d) = { }  ⇔ isfreed(y, d)
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Value of y after the method invocation

Value of y before the method invocation

A basic idea: design by contract

• The idea: describe for each method/message under
which conditions (precondition) a method may be
invoked/a message may be received/sent and which
effects this has (postcondition).
◊ This is expressed in terms of state assertions and predicates

describing relation between states

Example:

Method setdate = (d : Date)
Pre isfreed(y, d)
Post y’ = putd(y, d)
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A basic idea: design by contract

Observations
• Method invocations are considered as atomic state

changes
• We have to refer to states of the systems/components

that should be considered being hidden (following the
principle of information hiding)

• We need a separated algebraic specification for the
involved data types

• Methods/messages are treated in isolation and not in
the context of comprehensive interactions
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System structures and architectures

A component An interface 
between components

An external 
(“user”) interface 
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What is an observable/black box/interface behaviour

Component C1 is observable/behavioural compatible
(has compatible interface behaviour) to component
C2, if we can replace C2 in every (syntactically)
correct system by C1 without violating the
correctness.

If C1 is compatible to C2 and vice versa we call C1
and C2 observable/behavioural (have the same
interface behaviours) equivalent.

Note: Classes with quite different state spaces may 
nevertheless be compatible/equivalent


