to Services
v

From bjects

Formal models for service-oriented

interfaces and layered architectures
Manfred Broy

Technische Universitat Minchen E2%%Y
Institut fir Informatik ——
D-80290 Minchen, Germany ‘ z % Z E

to Services
v

Manfred Broy

Institut fur Informatik
D-80290 Minchen, Germany

Technische Universitat Minchen 523%)

System structures and architectures

Marktoberdorf, August 2004 Manfred Broy T|.|T| |

System structures and architectures

Marktoberdorf, August 2004 Manfred Broy T|.|T| |

System structures and architectures

Marktoberdorf, August 2004 Manfred Broy T|.|T| |

System structures and architectures

Marktoberdorf, August 2004 Manfred Broy T|.|T| |

System structures and architectures

Marktoberdorf, August 2004 Manfred Broy “.m |

System structures and architectures

Manfred Broy

Component and systems

A
system
IS

a component
IS
a system

Marktoberdorf, August 2004 Manfred Broy

What is an observable/black box/interface behaviour

Component C1 is observable/behavioural compatible
(has compatible interface behaviour) to component
C2, if we can replace C2 in every (syntactically)
correct system by C1 without violating the
correctness.

If C1 is compatible to C2 and vice versa we call C1
and C2 observable/behavioural equivalent(having the
same interface behaviours).

Note: Classes with quite different state spaces may
nevertheless be compatible/equivalent

Marktoberdorf, August 2004 Manfred Broy T|_|T| | 4

System structures and architectures

Marktoberdorf, August 2004 Manfred Broy “.m |

System structures and architectures

Replace a component by
another one

Marktoberdorf, August 2004 Manfred Broy T|.|T| |

System structures and architectures

Replace a component by
another one

Marktoberdorf, August 2004 Manfred Broy “.m |

Composition / Decomposition of Systems

Marktoberdorf, August 2004 Manfred Broy T|.|T| |

Composition / Decomposition of Systems

Composition ®: System x System — System "syntactic" construction

Marktoberdorf, August 2004 Manfred Broy '"_m | 6

Composition / Decomposition of Systems

Composition ®: System x System — System "syntactic" construction
S=51®8S2

Marktoberdorf, August 2004 Manfred Broy '"_m | 6

Composition / Decomposition of Systems

Composition ®: System x System — System "syntactic" construction
S=51®8S2
Observation: B : System — Observation provides abstraction

Marktoberdorf, August 2004 Manfred Broy '"_m | 6

Composition / Decomposition of Systems

Composition ®: System x System — System "syntactic" construction
S=51®8S2
Observation: B : System — Observation provides abstraction

Behaviour model o : System — Behaviour

Marktoberdorf, August 2004 Manfred Broy T|_|T| | 6

Composition / Decomposition of Systems

Composition ®: System x System — System "syntactic" construction
S=51®8S2
Observation: B : System — Observation provides abstraction

Behaviour model o : System — Behaviour

Compositionality: ®': Behaviour x Behaviour — Behaviour

Marktoberdorf, August 2004 Manfred Broy T|_|T| | 6

Composition / Decomposition of Systems

Composition ®: System x System — System "syntactic" construction
S=51®8S2
Observation: B : System — Observation provides abstraction

Behaviour model o : System — Behaviour
Compositionality: ®': Behaviour x Behaviour — Behaviour
o(S) = a(S1) ®"' a(52)

Marktoberdorf, August 2004 Manfred Broy T|_|T| | 6

Composition / Decomposition of Systems

Composition ®: System x System — System "syntactic" construction
S=51®8S2
Observation: B : System — Observation provides abstraction

Behaviour model o : System — Behaviour
Compositionality: ®': Behaviour x Behaviour — Behaviour
o(S) = a(S1) ®"' a(52)

Expressivity: v : Behaviour — Observation

Marktoberdorf, August 2004 Manfred Broy T|_|T| | 6

Composition / Decomposition of Systems

Composition ®: System x System — System "syntactic" construction
S=51®8S2
Observation: B : System — Observation provides abstraction

Behaviour model o : System — Behaviour

Compositionality: ®': Behaviour x Behaviour — Behaviour
o(S) = a(S1) ®"' a(52)

Expressivity: v : Behaviour — Observation

Y(a(S)) = B(s)

Marktoberdorf, August 2004 Manfred Broy T|_|T| | 6

Composition / Decomposition of Systems

meneral, there does not exist an operator
®": Observation x Observation — Observation

such that
B(S) = B(S1) ®" B(S2)

7

System "syntactic" construction

Composition

Observation: B : System — Observation provides abstraction
Behaviour model o : System — Behaviour
Compositionality: ®': Behaviour x Behaviour — Behaviour
o(S) = a(S1) ®"' a(52)
Expressivity: v : Behaviour — Observation

Y(a(S)) = B(s)

Marktoberdorf, August 2004 Manfred Broy T|_|T| | 6

Composition / Decomposition of Systems

Composition ®: System x System — System "syntactic" construction
S=51®8S2
Observation: B : System — Observation provides abstraction

Behaviour model o : System — Behaviour

Compositionality: ®': Behaviour x Behaviour — Behaviour
o(S) = a(S1) ®"' a(52)

Expressivity: v : Behaviour — Observation

Y(a(S)) = B(s)

Marktoberdorf, August 2004 Manfred Broy T|_|T| | 6

Composition / Decomposition of Systems

a is called
fully abstract (w.r.t. the observation §3),

if there does not exist
Composition ®: Sy @ behaviour Behaviour” and an abstraction function
S = o' : Behaviour — Behaviour’
_ where for a.°a’ compositionality and expressivity holds
Observation: B:S /

Behaviour model o : Syste

Compositionality: ®': r x Behaviour — Behaviour
o(S) = a(S1) ®"' a(52)

Expressivity: v : Behaviour — Observation

Y(a(S)) = B(s)

Marktoberdorf, August 2004 Manfred Broy T|_|T| | 6

Composition / Decomposition of Systems

Composition ®: System x System — System "syntactic" construction
S=51®8S2
Observation: B : System — Observation provides abstraction

Behaviour model o : System — Behaviour

Compositionality: ®': Behaviour x Behaviour — Behaviour
o(S) = a(S1) ®"' a(52)

Expressivity: v : Behaviour — Observation

Y(a(S)) = B(s)

Marktoberdorf, August 2004 Manfred Broy T|_|T| | 6

Complications in OO: call backs/forwarded calls

s CRiany,

r.suggestdate(d, s, v) » { ~isfreed(y, d);

{ isfreed(y, e)}

s.suggestalt(e, r, b)

Call back

Return b’ = true

>

Return v = e
<

{y = putd(y, e)}

Marktoberdorf, August 2004 Manfred Broy T|.|T| |

Forming architectures in OO: Interface specifications

interface Dating1

{
method finddate

What is a component in OO?

] - A class?

- A unit with several sub-

interfaces all with export and
import methods?

component ScheduleManager1 —T

interface Coord
{ method sugdate
method changedate

Marktoberdorf, August 2004 Manfred Broy '"_m | 8

Forming architectures: Composition

interface Dating1

{
method finddate

component DatingSystem

O

O

component ScheduleManager1

|

|

interface Coord
{ method sugdate
method changedate

interface Coord
{ method sugdate
method changedate

component ScheduleManager1

interface Dateing2

{
method finddate

Marktoberdorf, August 2004

Manfred Broy

Forming architectures: Composition

interface Dating1

{
method finddate

Compose components
by matching interfaces

component DatingSystem

O

O

component ScheduleManager1 T

|

interface Coord
{ method sugdate
method changedate

interface Coord
{ method sugdate

method changedate

component ScheduleManager1

_

J

interface Dateing2

{
method finddate

Marktoberdorf, August 2004

Manfred Broy

OO0O: why classes/objects are not enough

Conventional OO has the following deficiencies:

Synchronous method invocation inadequate concept
¢ for system with varying availability and QoS

¢ inherently sequential

Interface specifications in OO insufficient

¢ Design by contract breaks principle of encapsulation

¢ In the presence of forwarded calls atomicity of method
invocation does not work - design by contract fails

¢ Export/import specs needed
Appropriate notion of component missing

Concept of composition missing/unclear/too
complicated

No support of hierarchical composition/decomposition
No build-in concept of real time/concurrency

Marktoberdorf, August 2004 Manfred Broy T|_|T| | 10

Forming architectures: Decomposition into layers

interface Dating1

{
method finddate

component ScheduleManager1 —T

interface Coord
{ method sugdate
method changedate

Marktoberdorf, August 2004

Manfred Broy

11

Forming architectures: Decomposition into layers

interface Dating1

{
method finddate

component ScheduleManager1 —T

interface Coord

{ method sugdate

method changedate

Marktoberdorf, August 2004

Manfred Broy

11

Forming architectures: Decomposition into layers

interface Dating1

{
method finddate

component ScheduleManager1 —T

interface Coord
{ method sugdate
method changedate

|
v

Exported service

Layer

d

Marktoberdorf, August 2004 Manfred Broy

11

Forming architectures: Decomposition into layers

interface Dating1

{
method finddate

Exported service

component ScheduleManager1 —T Layer

interface Coord
{ method sugdate
method changedate

} I' ‘ T Ov

Imported service

Marktoberdorf, August 2004 Manfred Broy T|_|T| | 11

What is a service?

The term service is use extensively in IT!
Often without a precisely defined meaning!

Service:
¢ A set of interaction patterns!

Typical service structures:

¢ Service access protocol

& Service provision protocol
Essential concepts:

¢ Service specification

¢ Service composition
Service composition

¢ Service import/export

Service refinement

Marktoberdorf, August 2004 Manfred Broy

12

Goals of the work

A formal model for services, layers
and layered architectures

A theory for relating, composing, and
refining services, layers, and layered
architectures

Techniques for specifying services, layers, and layered
architectures

Techniques for verifying services, layers, and layered architectures

A methodology for designing services, layers, and layered architectures
Design patterns for services, layers, and layered architectures

Marktoberdorf, August 2004 Manfred Broy T|_|T| | 13

Streams

Streams are communication histories for
sequential communication devices called channels.

A stream of digits:

X= (2 17 433 892 6

Marktoberdorf, August 2004 Manfred Broy T|.|T| |

14

Streams

Streams are communication histories for
sequential communication devices called channels.

A stream of digits:

X= (2 17 433 892 6 ..)

time

Marktoberdorf, August 2004 Manfred Broy T|.|T| |

Streams

Streams are communication histories for
sequential communication devices called channels.

A stream of digits:
x=(‘2 ‘17 ‘ ‘433‘892' ‘6)
time

Marktoberdorf, August 2004 Manfred Broy T|.|T| |

Timed Streams

Timed Streams are communication histories for
sequential communication devices called channels.

A timed stream of digits:

x= (@ [(17) [0 [433)89 O (6) ..)

time

Marktoberdorf, August 2004 Manfred Broy T|_|T| | 15

Timed Streams

Timed Streams are communication histories for
sequential communication devices called channels.

A timed stream of digits:

x= (@2 A7) O “433)@892) ¢ (6 ..)

time

Marktoberdorf, August 2004 Manfred Broy T|_|T| | 15

Timed Streams

Timed Streams are communication histories for
sequential communication devices called channels.

A timed stream of digits:

x=(Q) (A7) O 433)892) ¢ (6) ..

)

Marktoberdorf, August 2004 Manfred Broy T|.|T| |

15

Timed Streams

Timed Streams are communication histories for
sequential communication devices called channels.

A timed stream of digits:

x= (@2 (A7) O “433)@892) ¢ (6 ..)

X:IN—{0,..,9}* timed stream of digits

Marktoberdorf, August 2004 Manfred Broy T|_|T| | 15

Basics of our System Model: Streams and Behaviours

M Universe of messages/data elements
TYPE Set of all types
C set of typed channels

a channel is an identifier with a type
IN — M* timed stream

x:C—(IN—=M*) channel history for the channel set
X(c) Is a timed stream with messages of
the type of channel ¢
IH(C) and C set of channel histories for channel set C
(z®z) €IH(CU C') union of histories

Marktoberdorf, August 2004 Manfred Broy T|_|T| | 16

Notation

Let s, r be streams

z’s concatenation of a sequence or stream z to a stream s,
scr sisaprefixofr scr=du:sTu=r

SOs substream of s with only the elements 1n the set S,
S#s number of elements in s that are elements in the set S,
s.k k-th sequence in the stream s,

s{k prefix of the first k sequences in the timed stream s,
sTk stream s without the first k sequences,

S finite or infinite (nontimed) stream that 1s the result of
concatenating all sequences in s

All these notions apply also for channel histories

Marktoberdorf, August 2004 Manfred Broy T|.|T| |

17

Notation

Marktoberdorf, August 2004

Manfred Broy

18

Notation

let s

=(2) (170 #33)(892)()(6)...)

Marktoberdorf, August 2004 Manfred Broy

18

Notation

let s

=(2) (170 #33)(892)()(6)...)

2,310s =(2) 0 0G3) @& 0 0-)

Marktoberdorf, August 2004 Manfred Broy

18

Notation

let s

=(2) (170 #33)(892)()(6)...)

2,310s =(2) 0 0G3) @& 0 0-)

s.3

= 0

Marktoberdorf, August 2004 Manfred Broy

18

Notation

let s

=(2) (170 #33)(892)()(6)...)

2,310s =(2) 0 0G3) @& 0 0-)

S.3
s{3

= 0
=2 A0

Marktoberdorf, August 2004 Manfred Broy

18

Notation

lets ={(2){1 7Y O{433(892)()(6)...)

{2,310s =((2) ()
s.3 =

0G33) 2 00-)
0

i3 =(Q)A 7O

s13 =(

(433)(892)()(6)...)

Marktoberdorf, August 2004

Manfred Broy

18

Notation

lets ={(2){1 7Y O{433(892)()(6)...)

{2,310s =((2) ()
s.3 =

0G33) 2 00-)
0

i3 =(Q)A 7O

s13 =(
B -2 17

(433)(892)()(6)...)

433 892 6..)

Marktoberdorf, August 2004

Manfred Broy

18

Notation

lets ={(2){1 7Y O{433(892)()(6)...)

{2,310s =((2) ()
s.3 =

0G33) 2 00-)
0

i3 =(Q)A 7O

s13 =(
s -2 17

(433)(892)()(6)...)

433 892 6..)

letz =(35(G67)()

Marktoberdorf, August 2004

Manfred Broy

18

Notation

lets =(2)(17)((433)(892)()(6)...)
{2,3}0s =((2)) 0B3) 2 O O-)

s.3 = ()

i3 =2 7O

s13 =((433)(892)()(6)...)
s =2 17 433 892 6...)
let z =({(35)(567)())

{5, 7}#z =3

Marktoberdorf, August 2004 Manfred Broy

18

Notation

let s

=(2) (170 #33)(892)()(6)...)

{2,310s =)0 033 @ 0 0.)

s.3 = ()

i3 =2 7O

s13 =((433)(892)()(6)...)

s =2 17 433 892 6...)

let z =({(35)(567)())

{5,7}#z =3

z’s =35 G67)ORT7))E33)(892)((6)...)

Marktoberdorf, August 2004 Manfred Broy T|.|T| |

18

Components

I » 0O) syntactic interface with set of
input channels I and of output channels O

F:1— p(é) component interface for (I » O)
with timing property
(letx,ze I,y€ O, tEIN):

x{t=z|t={y|t+]l: yEFX)} ={y|t+]l: y EF(z)}

X |t prefix of x with t finite sequences

Ii To

total Component interface

Marktoberdorf, August 2004 Manfred Broy T|_|T| | 19

Components

I » 0O) syntactic interface with set of
input channels I and of output channels O

F:1— p(é) component interface for (I » O
with timing property
(letx,ze I,ye O,t

x{t=z|t={y|t+]l: yEFX)} ={y|t+]l: y EF(z)}

X |t prefix of x with t finite sequences

d o
total Component interface

Marktoberdorf, August 2004 Manfred Broy T|_|T| | 19

Causality

Consider the identity function:
F:C— p(O)
where yEFx=X=y
causality enforces
Fx={y:X=yAVteIN:

Example:

x =((2) (I17) O (433)892)
y= (0 0 a7

ylt+le x|t}

Y (6) ...

(433892)() (6)..)

Marktoberdorf, August 2004 Manfred Broy

nm |

20

Causality

Consider the identity function:

F:C— (0

where

causality enforces

Example:
x =((2)
y= (Q

yeEFXxX=X=

(17)
0

Y
(2)

(43 3)

(17)

y

(89 2)

Y

Y

(433892)

Fx={y:X=yaAVteIN: y|t+l= x|t}

(6)]...

0

(6) ...)

Marktoberdorf, August 2004

Manfred Broy

nm |

20

Causality

Consider the identity function:

F:C— (0

where

yeEFXxX=X=

causality enforces

Fx={y:X=yaAVteIN: y|t+l= x|t}

Example:
X = <ZL
y= ({

02

T~

Y

(43 3)

0

e
(2)

{7)

y

(8.9 2)

()
T~

T~
()

(433892)()

(6)]...

(6) ...)

Marktoberdorf, August 2004

Manfred Broy

nm |

20

Causality

Consider the identity function:

F:C— (0 The golden rule of
communication:

where yE&F.x=X=Y Aninformation can never occur

as output before it was
causality enforces received as input

Fx={y:X=yaAVteIN: y|t+l= x|t}

Example:

X =(2) | (L[[(433)[892)() (6)|---)
\\\§\ ey

y= (010 T BSWW (6) ...)

Marktoberdorf, August 2004 Manfred Broy T|_|T| | 20

