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Part 1: 
The General Setup
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Many exciting & diverse applications

TV and video (e.g., nature programs, movies)

e-commerce and internet purchasing

medical procedures and diagnostics

e-games (as part of game strategy too)

The ultimate dream, & technically the hardest:
Real-time and realistic TV transmission of a 

cooking program

travel, personal, telephone, e-mail, …

odor-related industries



Hardware:  The Sniffer

Maps odor
molecules

into numbers
(e.g., one number

per sensor)

(o;c) dS(o;c)



Requirements

Small, fast, cheap

Uniqueness of fingerprint (discrimination)

Low complexity of analysis

Some correlation with odor “quality”

Expensive eNoses are probably excellent 
sniffers; but need cheap ones that are good



What is an eNose?

An array of broadly tuned sensors that 
are different in response

And that’s basically how our own noses 
work too…



eNoses in use

NASA NCSU IIT

What they do with these is, by and large, 
extremely primitive compared to our goal



Hardware: The Whiffer

Requirements

Palette of basic odorants (50-200)
Precise mixing in specified ratios
Accurate and timely release

whiffer=+



iSmell®; built jointly with Eli Fisch, Sagit Fink and 
others, at Aromix Technologies (later DigiScents Israel)

but commercial venture is on hold for now…

Excellent whiffers have been built



Part 2: 
The Algorithmic Scheme

1998
with the help of Doron Lancet



Motivation (Human Olfaction)

Qualitatively additive, and reproducible, 
spatio-temporal patterns

Limited backtracking (mixing new odors)

Olfactory “illusions” ( can fool the brain)

A non-specific, broadly tuned, “sensor array”

Exclusive cerebral paths of olfactory neurons

We have:



Unachievable odor space

The nose space

(o;c) brain input

300-500
active

receptor 
types



(o;c) dS(o;c)

e-nose space(S)

m-dimensional
(o;c) dH(o;c)

human panel space)

l-dimensional

Achievable odor spaces



Single odorant vector

i ’th odorant vector pi

(assuming concentration vi)



Palette yields matrix

palette of 
size n

palette odorants matrix P



The Algorithm (I)

=
s s

I.   Fooling an eNose

+ +



The Algorithm (II)

=
s1

I.   Fooling an eNose

+ +

II.  Fooling a different eNose

s2



The Algorithm (III)

=
+ +

s

I.   Fooling an eNose
II.  Fooling a different eNose
III. Fooling the human nose

Human
nose



The Algorithm (III)

=
+ +

s

I.  Fooling an eNose
II.  Fooling a different eNose
III. Fooling the human nose

Human
panel

III. Fooling a human panel



Assume linear sniffer S

Concentration linearity
dj (o;c) = αj(o)·c j = 1, …, mS

Mixing linearity
(o1;c1), (o2;c2), …, (on;cn)

dj = αj(o1)c1 + αj(o2)c2 + … + αj(on)cn
S

j = 1, …, m



For palette P and vector of concentrations v,
P⋅v is an odor signature in S–space.

find v so as to minimize
⏐P⋅v − dS(o;c)⏐

Hence, given an odorant (o;c), the following least 
squares problem captures mimicking o with P :



I. Fooling an eNose

1. Use S to digitize odorant (o;c); yields dS (o;c)

2. Given palette P analyzed using S,
find v so as to minimize⏐P·v − dS (o;c)⏐



II. Fooling a different eNose

3. Given palette P analyzed using S2,
find v so as to minimize ⏐P·v − dS (o;c)⏐2

2. Transform dS (o;c) → dS (o;c)21

1. Use S1 to digitize odorant (o;c); yields dS (o;c)1



21

We have to find  a general mapping
from dS (o;c) to dS (o;c)

different dimensionality

different sensors

different response patterns



How can we find this mapping?

Artificial neural networks

Genetic algorithms

Polynomial fitting

Direct analysis of the sensors' signals

And more …



III.  Fooling a human panel

3. Given palette P analyzed using H,
find v so as to minimize ⏐P·v − dH(o;c)⏐

2. Transform dS(o;c) → dH(o;c)

1. Use S to digitize odorant (o;c);  yields dS(o;c)



The mapping

We have to find  a general mapping
from dS(o;c) to dH(o;c)

In principle, can use methods like those used to 
find the mapping between two different eNoses

But,… this could be more complicated,
since the spaces are very different

Yet,… there is encouraging evidence; 
e.g., Nestle used eNose to predict human panel 

results on off-odors in packaging materials 



Working with a human panel

Must build up lots of information on dH(o;c)

Must “pass the palette through” H

Involves much careful and consistent work; 
using a wide spectrum of odors

Psychophysical work; best to use comparative, 
rather than absolute, questioning techniques



Is our brain linear?

Concentration linearity?
Stevens’ law: I = kcr

For small enough regions of concentration, 
we can assume the linear approximation I = k’c

Mixing linearity?
Several results (incl. olfactory bulb response

patterns) indicate: probably yes, in many cases



Part 3: 
Work in Progress

1999-2003
mostly joint with PhD student Liran Carmel



Modular Sensor System;
II’nd generation

headspace 
auto-sampler

personal 
computer

MosesII:  desktop eNose ($70K)



temperature & humidity sensors

flow sensor & controller

pump

three input channels

sixteen sensors (2 x 8)



frequency counter

How does it work?
piezoelectric quartz crystal
polymer coating
acoustic waves

Measures frequency shifts upon adsorption

8 Quartz MicroBalance sensors (QMB)



surface combustion reactions

How does it work?
metal oxide
catalytic additives (doping)
heater coil

Measures conductivity changes

8 Metal Oxide Sensors (MOS)



Cyranose320:  handheld eNose ($7K)

32 different 
conducting 

polymer 
sensors

(have recently begun work on this)



QMB MOS

Example (MosesII):  butyl butyrate



• Mathematical modeling of response

• Odor identification

• Identification w/ concentrations

• Analysis of mixing

• Mappings between eNoses

• (A little human panel work)

So, what have we been doing?



Mathematically modeling the response

By feature extraction and shape modeling

An attempt to match chemistry
with workable mathematics



Plausible feature 1

Common practice: single number per sensor !

peak



Plausible feature 2

Common practice: single number per sensor !

peak
area



Plausible  feature 3

Common practice: single number per sensor !

peak
area
area to peak



Plausible  feature 4

Common practice: single number per sensor !

peak
area
area to peak
time to peak



Our Lorentzian Shape Model
Resulted from playing with the application of some
simple physical principles to the measuring system
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Example
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3) β = 30.52 (amplitude)

τ = 11.71 (decay time)

ti = 10.15 (rise time)

T = 18.19 (rise to peak time)



What is a shape model good for?

algorithmic & mathematical workability

error correction

compression, calibration, drift, etc.

efficient outlier detection

high classification rate



Odor identification

Classify an incoming unknown sample

Used database of 70 pure chemicals

different
scaling

Very different in nature

But uniform working conditions



Chemicals used

1s-(-)-beta-pinene
butyl butyrate
citral
ethyl acetoacetate
isoamyl formate
terpinolene
3,4-hexanodione
anethole supra
carvacrol
d-carvone
Dihydrocarvone
terpinotene

vanillin iso-butyrate
1s-(-)-alpha-pinene
R-(-)-limonene
S-(-)-limonene
1-methylpyrrole
2-acetylpyridine
cis-3-hexenyl acetate
ethyl isobutyrate
ethyl isovalerate
2-methyl-4-propyl-1,3-oxathiane

Dihydronootkatone
Carveol

dihydrocarvyl
ethyl-2-methyl-4-pentenoate
phenylacetaldehyde dimethyl acetal
phenylacetaldehyde diisobutylacetal
2,3-heptanedione
2-methyl-2-pentenal
acetyl propionyl
acetylbutyryl
1-phenyl-1,2-propanedione
2,3-hexanedione
4-methylanisole
acetal



ethylpyrazine
propylidene phthalide
amyl butyrate
butyl butyryl lactate
dihydrocarveol
ethyl valerate
trans-2-methyl-2-pentenal

valencene
carvacryl ethyl ether
ethyl-3-methylthiopropionate
geranyl-2-methyl butanoate

L-carvyl propionate

nootkatone ex valencene 86%
tetrahydrocarvone
butylidene phthalide
dihydroanethole
methyl-2-methylbutyrate
rum ether
trans-2-hexenal
trans-2-hexenol
trans-cinnamaldehyde
cis-6-nonenol
4-methyl-5-thiazolylethyl acetate

alpha-angelica lactone
carvacryl methyl ether
cis-6-nonenal
geranyl undecylenate
4-methyl-5-vinylthiazole
ethyl caproate
ethyl-2-methylbutyrate
ethyl-3-hydroxybutyrate
trans-2-methyl-2-pentenoic
trans-2-octenal
ethyl n-valerate

Chemicals used  (cont.)



Example – 50 pure chemicals
(2-dim PCA)
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PCA: Total explained in 2d - 82.44% (DScale = raw, UScale = unity)

(1s)-(-)-(beta)-pinene           
buty lbuty rate                    
citral                           
ethy lacetoacetate                
(1s)-(-)-alf a-pinene             
(R)-(-)-limonene                 
(s)-(-)-limonene                 
2-acety lpy ridine                 
cis-3-hexeny lacetate             
ethy l-2-methy l-4-pentenoate   
pheny lacetaldehy dedimethy lac
2,3-heptanedione                 
ethy l-2-methy lbuty rate           
4-methy lanisole                  
ethy lpy razine                    
propy lidenephthalide             
amy lbuty rate                     
buty lbuty ry llactate              
ethy l-3-methy lthio-propionate  
buty lidenephthalide              
trans-2-hexenal                  
trans-2-hexenol                  
alf a-angelicalactone             
cis-6-nonenal                    
ethy lcaproate                    
1-pheny l-1,2-propanedione      
trans-2-methy l-2-pentenoicacid
trans-2-octenal                  
ethy ln-v alerate                  
terpinotene                      

Example – 30 chemicals
2-dim principle components analysis (PCA)



Classification algorithms

K-Nearest Neighbors (KNN)

Closest group by Mahalanobis distance

Bayesian classification:
Linear Discriminant Analysis (LDA)

Bayesian classification:
Quadratic Discriminant Analysis (QDA)



Classification results

excess 
7:3

random
2:1

random
1:1

KNN 72% 93% 14%
Mahalanobis 22% 92% 4%

LDA 100% 100% 100%
QDA 100% 100% 100%

Success % for 30 chemicals  
reference vs. sample:  method, ratio



Identification with concentration

Classify an incoming unknown sample
and determine its concentration

The problem:
It is possible that (o,c) will “fall” on the 

same spot as (o’,c’)



Concentration linearity

propanol

QMB MOS



Concentration linearity

QMB MOS

heptyl alcohol



The algorithm
Inspired by J. J. Hopfield, “Odor Space and Olfactory 

Processing: Collective Algorithms and Neural 
Implementation”, PNAS 96 (1999) 12506-12511

straightforward and intuitive

explicitly using the multiplicity of sensors

easy to implement

proposed similar ideas for the biological                   
olfactory processing mechanism



Algorithm for 
identification with concentration

build database 
(training phase)

loop on odorants

loop on sensors

predict concentration 
and accumulate results

end loops

choose best odorant 
(smallest variance

of results)



Demonstration

Concentration

Re
sp

on
se



Demonstration
Is it the circle odorant?

Concentration

Re
sp

on
se



Concentration

Re
sp

on
se
Demonstration

Is it the cross odorant?



Example (identifying w/ concentration)



Results

Applying the algorithm to the training dataset:

100% correct 
classification

1.4% relative 
error in 

concentration 
prediction



Groups in validation dataset

Group I: candidates at concentrations from 
within those that were used during 
the training phase

Group II: candidates at concentrations not 
present during the training phase

Group III: non-candidates



Mixing odors ( fooling)

Get to a desired point by mixing

how do chemicals mix???

Predict location of a mixture

Crucial: Must have non-1-1 transformations



Example of results for mixing 
(notice both kinds of linearity!)

PC1 (97.22%)

PC
2 

(2
.5

7%
)



Mapping one eNose to another
(with Oded Shaham)

We have been able to map the 8 QMB sensors of 
MosesII to the 32 conducting polymers (CP) 

sensors of the Cyranose 

Method:  tessellation-based linear interpolation



Circles: actual samples Diamonds: predictions



Zoom-in on the dense area



Ideas for advanced research

Flexibility of choice based on requirements:
• hardware (methods improve with age…)
• palette  (size, contents, etc.)
• tolerance (error, mixing limitations, etc.)

Non-uniform palette techniques:
• multi-tier mixing
• varying reservoir sizes
• feedback-driven mixing 

(e.g., by personalization)



Lots of work still to be 
done

Most important: careful and 
detailed investigation of 

human panel space…
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