
Two Techniques for Software
Engineering:

Reactive Animation and Smart Play-Out

David Harel
The Weizmann Institute of Science

I. Reactive animation

Linking a state-of-the-art reactive
system engine with a state-of-the-

art animation system

Motivation: complex reactive systems with
numerous objects, for which standard kinds of

GUIs are inadequate as a front end

Benefits: relevant to a wide variety of
application areas; flexible and realistic; the

best of both worlds

Reactive
animation

Animation
tool

(front end)

Reactive
system

tool
(driver)

Our main example so far:

Connecting the Rhapsody tool
supporting statecharts, with

Flash from Macromedia

(with S. Efroni and I. Cohen)

Traffic example

The British humor view on the
ability to predict behavior by

simulation…

Biological example
and I. Cohen)S. Efroni(with

• T-cell (thymocyte) behavior in the thymus.

• Many cells of few types, internal behavior,
complex interaction, geometric movement.

• An enormous amount of biological data
assimilated, assessed and modeled (around
300 papers).

Flash front-end of entire lobule at runtime

T cells in the thymus
days 9 to 13 27 days

Pseudo statechart of one T-cell

gradientDecisions

recheckReceptors>

startInteraction...

inter4delay

increaseY>

increaseX>

connectorState

checkChemokinesOnThy mus
Lattice...

decrease
Y>

decreaseX> C

CC

evGoRound

[Ygrad > 0]

evLeaveUpY

evDoneCheckChemokines

[Xgrad< 0]

evCheckL

[else]

[Ygrad ==
0]/tmpYlocation
= Ylocation;

[Ygrad < 0]

[Xgrad > 0]

evCheckR

[Xgrad < 0]

[Xgrad > 0]

[(Xgrad == 0) && (Ygrad == 0)]

tm((timeToMove*its
Thy mus.getTime
Ratio())/100)

[Xgrad ==
0]/tmp
Xlocation =
Xlocation;

[Xgrad > 0]

[Xgrad < 0]

evDoneRecheckZero

interactingCellsDecisions

checkNN...
executeCellFate>

proliferation>

maturation>

delay4a

delay4p

delay4m
chooseCell
For
Interaction>

interacting
WithCell

latticeInteraction>

interactingWith
EpiCell. . .

interactingWith
Macrophage.. .

interacting
WithTcell. . .

C

C

APO

[signalToCell == 2]

tm((timeToProliferate*itsThymus.getTime
Ratio())/100)

[signalToCell == 1]

[signalToCell == 3]

[currentlyInteractingCell.cellType == 0]

[currentlyInteractingCell.cellType == 2]

[currentlyInteractingCell.cellType == 1]

[currentlyInteractingCell.cellType == 3]

evDecidedCellFate

evDoneChooseCell

Sub-chart
responsible for
movement

Sub-chart
responsible for
interactions with
other cells

checkAffinity_TCR_peptide

negativeSe lection

se lf_tcr_
compar

findTCR>

findSe lf
Peptide
FromEpi
Ce ll

positiveSe lection

findSe lf
Peptide
From
Epi

se lf_tcr_
compare

findTCR>

state_37

otherEpicorticalEpi

checkMHC_

EpiClassII

No>Yes>

EpiClassI

No>Yes>

CD4Tce ll CD8Tce ll

state_36>

checkCo_

checkEpiAlive>

reportToEngine>

waiting>

reportMature>

reportNeglect>

reportNegative>

reportPositive>

deleteTheoryIns tance>

C

CC

CC

evPositiveFailed

evPositive

evNeglect

evNegative

[e lse]

[(itsEpiCe ll.ge tEpi_type () == 2)
&& (itsTce ll.ge tYlocation() <
50)]

[e lse]

[itsEpiCe ll.ge t
ClassType ()
== 2]

[itsEpiCe ll.ge t
ClassType () ==
1]

[e lse]

evKillTheoryInstance

[(itsTce ll.ge tCD8_R() ==
false) &&
(itsTce ll.ge tCD4_R() ==
true)]

evCheckCD4or8
[(itsTce ll.ge tCD8_R() ==
true) && (itsTce ll.ge tCD4_
R() == false)]

e vNoCo

evYesCo

evKillTheoryInstance

[(itsTce ll.ge tCD8_R() ==
false) && (itsTce ll.ge tCD4_
R() == false)]

evNo
evKillTheoryInstance

evYes

evKillTheoryInstance

Statechart of special object for a
T-cell/epithelial-cell interaction

Zooming in

Experimentation in silico

Cell migration

Some additional goodies

• We are not committed to a particular
theory (e.g., of cell interaction or
movement). Several such are modeled, and
are selectable at pre-run or at run-time.

• We have associated the source publications
with the model and the front-end in a way
that facilitates easy retrieval.

T cells in the thymus
statecharts running zooming show paper mid-run changes

reactive animation illustrated

We envision numerous applications
of reactive animation

Are working on a second example ––
linking the Play-Engine with Maya , e.g.,
incorporating 3D –– and on making the

idea technically generic

II. Smart Play-Out

Using hard-core verification tools
to run real-world programs, rather
than to prove properties thereof

Motivation: declarative, logical or constraint-
based languages, whose inherent execution

mechanism is highly nondeterministic

Benefits: predictive scenario-based
programming, smart executable requirements

and use cases, powerful testing, etc.

Our main example so far:

Using model-checking to run
live sequence charts (LSCs) in
the Play-Engine environment

(with H. Kugler, R. Marelly and A. Pnueli)

Live sequence charts (LSC’s)

(Damm & H, ‘98)

A natural extension of classical MSCs,
with modalities (universal/existential,

hot/cold, etc.) and structure (subcharts,
conditionals, loops, etc.)

Basic form of a (universal) LSC

prechart
(if)

main chart
(then)

(similar to [a] in dynamic logic)

• Subcharts

• Loops

• Cold conditions enable control structures

• Hot conditions enable anti-scenarios:

False

the forbidden
scenario

Play-in/Play-out
(H & Marelly ’99-’03)

• Extensive strengthening of the 1998 version
of LSCs (e.g., symbolic instances, time &
real-time, weighted choice, forbidden
elements,…)

• Play-In (friendly & convenient GUI-based
capture)

• Play-Out (execution techniques &
algorithms)

The Play-Engine: Play-Out
Play-out works like an over-obedient, but strictly

minimalistic citizen, zealously adhering to the
Book of Rules.

• Universal charts drive the execution; relevant chart
copies started and monitored continuously; instances &
variables bound on the fly.

(external event; step*; stable?) = superstep

Hot stuff will be done, cold stuff might.

At the very least, this enhances
many aspects of the standard

system design process:

executable requirements,
“deep” prototyping,
runnable test suites,

solid basis for synthesis, etc.

But why not be a lot more
ambitious??

Can use LSCs and the Play-Engine to
program a system as a final

implementation

Recent book attempts to
describe it all:

Come, Let’s Play:
Scenario-Based Programming

Using LSCs and the Play-Engine
D. Harel and R. Marelly
Springer, June 2003

(includes the Play-Engine software and
formal operational semantics:)

“Smart” Play-out

• LSCs may give rise to different legal runs, even
within supersteps, due to partial order within a
chart, and multiple charts interleaving.

• Play-engine takes a practical approach:
implements policies and heuristics to execute
system runs, not controllable by the user
(except by explicit acts programmed into the
LSCs themselves).

• Applying powerful methods taken from program
verification can help find the “correct” run or

identify inconsistencies.

• Goal 1 : compute a superstep; that is, figure out a
“good” series of responses of the system to an
action from the user or the environment, and drive
the play-engine’s execution.

• Goal 2 : compute a way to satisfy a full existential
chart; that is, figure out a “good” sequence of events
that will drive the engine to satisfy a test scenario.

• Approach :
- Formulate the goal as a generic verification problem.
- Perform model-checking (TLV, CMU-SMV…).
- Model-checker produces a desired super-step (if

there is one), or the sought-after run of the entire
existential chart (if there is one).

The translation

Variables:

- chart mi is active (in main chart)

- Oj sends msg to Ok

- Ok receives msg from Oj

- Oj‘s location (0 . . . lmax)

Translation relation

Translation relation (cont.)

There is an active chart causing msg, and
all active charts must agree on msg

Chart activation
Chart is active when the prechart reaches
maximal locations, and is deactivated when
the main chart reaches maximal locations.

Model checking for super-step execution

There is an eventual point where none of the
universal charts is active:

If this is true, the model-checker finds a
satisfying run, which is a desired superstep

This is then fed automatically into the
Play-Engine for execution

Being smart helps

Biological example
, M. Stern, J. Hubbard, A. Pnueli)N. Kam(with

Modeling vulval precursor cell fate in
C. elegans

•

•

•

• E

•

•

Small (1mm long) and
transparent.
The most completely
described creature ever.
Studied in about 450 labs
worldwide.

xtremely resilient
(survived Feb. ‘03 Columbia
crash)
Its pioneers (e.g., Sydney
Brenner) rec’d 2002 Nobel
Prize
Fixed development (
wildtype has fixed number
of cells with fixed roles).

Development of the Egg-Laying System

Bird’s eye

A biologist’s “GUI”

P3.p

(Jungblut et al., 2001)

P4.p P5.p P6.p P7.p P8.p

Smart Let-23
(make anti-scenario)

Smart P7pAlone
(use anti-scenario)

We envision an increasingly broader
potential for smart play-out

Are working hard on strengthening the
technique, extending the language
features it covers, and linking it to

notions of consistency and synthesis

Thank you for listening

	I. Reactive animation
	Our main example so far: Connecting the Rhapsody tool supporting statecharts, with Flash from Macromedia (with S. Efroni
	Biological example(with S. Efroni and I. Cohen)
	Pseudo statechart of one T-cell
	Some additional goodies
	II. Smart Play-Out
	Our main example so far: Using model-checking to run live sequence charts (LSCs) in the Play-Engine environment (with H.
	Play-in/Play-out (H & Marelly ’99-’03)
	The Play-Engine: Play-Out
	At the very least, this enhances many aspects of the standard system design process: executable requirements, “deep” protot
	But why not be a lot more ambitious??
	“Smart” Play-out
	The translation
	Translation relation
	Translation relation (cont.)
	Chart activation
	Model checking for super-step execution

