Interface-based Design 1

Tom Henzinger
EPFL and UC Berkeley

A Complex System is built from Components.

What does “Compositionality” mean?

Bottom-up Compositionality:
A collection of components is again a component.

Bottom-up Compositionality:
Supports some form of abstraction (hiding).

Bottom-up Compositionality:
“Properties” are also abstractions.

Bottom-up Compositionality:
Abstractions/properties can again be composed.

Bottom-up Compositionality:
Stepwise composition and abstraction (hierarchy).

~

Bottom-up Compositionality:
Iff-gand f - g’, thenf||f’ - g]|g’.

o

38
1
3p

Bottom-up Compositionality:
Supports Compositional Verification.

f[lf5 - 9
fallfs - 95
fsllfe - 93
01/1921195 - h

f1||f2”f3”f4”f5”f6 -h

The Reverse Process

The Reverse Process:
Stepwise decomposition and refinement.

ﬁ

The Reverse Process:
Independent Implementability.

ﬁ

The Reverse Process:
Independent Implementability.

ﬁ

Top-down Compositionality:
Ifg,fand g’ , f, thengl|g’, f||f.

Top-down Compositionality:
Supports Compositional Design.

h, g1llg2]|g3
9, . fillf;
9 . f3llfs
95 . fsllfe

AR | LP L E DAL L

Bottom-up Compositionality:
Iff-gandf - g, thenf||f’ - g||g’.

Top-down Compositionality:
Ifg,fand g’ , f, then gl|g’, f||f.

What's the Difference?

Bottom-up Compositionality:
Iff-gandf - g, thenf||f’ - g||g’.

Top-down Compositionality:
Ifg,fand g’ , f, then gl|g’, f||f.

What's the Difference?
If composition is a total function, then there is none.

However, Composition is often Partial.

.XEN yZi.

Compatible.

.XEN yZi.

Incompatible.

However, Composition is often Partial.

’—’

Compatible.

>

Incompatible.

Partial Composition

Bottom-up Compositionality:
If f||f’ defined and f-gand f' - g/,
then g||g’ defined and f||f’ - g]|g’.

Top-down Compositionality:
If g||g’ defined and g, fand g’ , f,
then f||f’ defined and g||g’ , f||f'.

Partial Composition

Bottom-up Compositionality:
If f||f’ defined and f-gand f' - g/,

then g||g’ defined and f||f’ - g]|g’. -

Top-down Compositionality:
If g||g’ defined and g, fand g’ , f,

then f||f’ defined and g||g’ , f||f'.

Block Diagram Algebra

-A set P of (typed) variables.
-A set F of blocks.
-For each block f2F, a set PuP of ports.

-A partial binary function || on blocks, called composition.

Block Diagram Algebra

-A set P of (typed) variables.

-A set F of blocks.

-For each block f2F, a set PuP of ports.

-A partial binary function || on blocks, called composition.

-A partial function mapping a block f2F and an interconnect G2P£P to a block Pé.

f f 0={Xxy), (x,2) }

Block Diagram Algebra

-A set P of (typed) variables.

-A set F of blocks.

-For each block f2F, a set PuP of ports.

-A partial binary function || on blocks, called composition.

-A partial function mapping a block f2F and an interconnect G2P£P to a block Pé.

-A binary relation - on blocks, called hierarchy.

Side Conditions on Composition:

Sif]
if (f
Sif]

g defined, then g||f defined and equal
|9)||h defined, then f||(g]|h) defined and equal
g defined, then P, = P¢[P,

Side Conditions on Connection:

ly={x[(O y)xy)26}
Op,={y (9 x)(Xy)26}
Po= ’CE(x,y)ZQ (X:y)

-if 6 = ;, then f@ defined and equal to f
-If f@ defined, then P;, = P;[1,[O,

Side Conditions on Hierarchy:

-f-f
-if f-g and g-h, then f:-h

A block diagram algebra is an interface algebra if
1. if g||h defined and g , f, then f||h defined and g||h , f||h
2. If gfdefined and g , f, then f@ defined and gé& , f6

A block diagram algebra is an interface algebra if
1. if g||h defined and g , f, then f||h defined and g||h , f||h
2. If gfdefined and g , f, then f@ defined and gé& , f6

A block diagram algebra is a process algebra if
1. if f|]|h defined and f - g, then g||h defined and f||h - g||h
2. If fédefined and f - g, then g@édefined and f6- gé&

Stateless Input/Output Processes

f= (I, Of, py)

;L P ... Inputports
O P\l ... output ports

p: ... Input/output relation: predicate on I [O;
such that (8 I)(9 Oy ps

Stateless Input/Output Processes
f= (If1 Of’ pf) g = (|91 Ogi pg)

P =1 [O
fllg definedif P;AP,=;
Then:

leyg = 1 L g

Ofig = Or [Og

Prig = Ps AE Pg

= (I O, py) Ouly£ O,
fé defined If

1.1ILAL=;

2.0,A0,=;

3.(81,)(9 O;) p:y (as defined below)
Then:

ig= (I [19 \ Ogy

O;p= 0[Oy

Pio = Pt £ Py

f= (s Oy, pPy) g = (Ig» Ogs Pg)

f-gif
1. LAl |g abstraction has fewer inputs

2. 0: 10, and fewer outputs
3. Pr) Py

SRR e

Z=X+y A
(u=0) w=x) A

w=x C w=y

(u=0) w=y)

Why is this a process algebra?

1ifl;Al,=;and 1, then |, Al,=;
2.ifO;AO,=;and O; 1O, then O, A O, =;

3. 11.(8 1i)(9 Of,)(pr A Ppy) and pr)pg and g, 1T 1g5 and O, T Oy
then (8 Ig@)(g Og@)(pg'CE pH)

Stateless Input/Output Interfaces

=l O Oy
O 1 O
LA O =;

O* ... set of available output port names
P =1; [O;
P* =1 [O%

Stateless Input/Output Interfaces
f= (If1 O+f’ Of) g= (Ig1 O+gi Og)

fllg defined if P* A P*, =;
Then:
g = ¢ L g
O%yg = O [O%
Opjg = Or [O

f=(l;, O*, Of) Oul,£0,
fo defined if

L1,pn0

2.0,A O =;

3. 1f (X,y),(x",y)20 and x= X', then y=y’
Then:

l,=1\0,

"t9= 0% [Oy
Oy = O;[Oy

f= (I, 0%, O g = (Ig, 0*,, O,)

f-gif
1l refinement has fewer inputs
2. 0% O*g
3. O 1 C)g and more outputs

f= (I, 0%, O g = (Ig, 0*,, O,)

f-gif
1l refinement has fewer inputs
2. 0% O*g
3. O 1 C)g and more outputs

Why is this an interface algebra?

1. if P*; AP*, =;and P*, T P*, then P+ AP+ =
2.1fl,u Oy and Oy p Oy, then I, Oy
3.if O*; A O,=;and O*, 1 O*, then O A O, =;

Stateless Assume/Guarantee Interfaces

f= (I, O*, O In;, outy)

In; ... Input assumption: satisfiable predicate on I;

out; ... output guarantee: satisfiable predicate on O;

Stateless Assume/Guarantee Interfaces
f=(l; O% Oy ing, out) g=(l;, OF, O, Ingy, OUL,)

fllg defined if P* A P*, =;
Then:
NG, = Ing AE N

outy, = out; /E out,

f= (I, O*, O In;, outy) Opnl,EQ,
fo defined if

1-3 as before

4.1n;, satisfiable (as defined below)
Then:

INgy = (8 Ogg)((OUtsy A£ Py)) INy)
outi, = (9 k) (out; A py)

x=0 = y=0 true

Input assumption Output guarantee

0= 1zX)}

x=0 = y=0 true

0= 1zX)}

x=0 = y=0 true

y=0

|

(vx,z) ((true A x=z) = (x=0 = y=0))

true

f = (I, O*, Oy in;, outy) g = (lg; 0%, Oy, Ing, OUL)

f-gif
1-3 as above
4.1ng (I

5. out;) out,

Next Lecture:

We will add state.

What is the Compositionality of your Favorite Model ?

Bottom-up Compositionality:
If f||f’ defined and f-gand f' - g,

then g||g’ defined and f||f’ - g||g’. -

Top-down Compositionality:
If g||g’ definedand g, fand g’ , f,

then f||f’ defined and g||g’ , f||f.

“defined” could be typeable, deadlock-free, etc.

Lesson 1:

Never dogmatically believe in one particular
model / formalism / language.

Always evaluate your choices for your given
special situation.

