Interface-based Design 1

Tom Henzinger EPFL and UC Berkeley

A Complex System is built from Components.

What does "Compositionality" mean?

Bottom-up Compositionality: A collection of components is again a component.

Bottom-up Compositionality: Supports some form of abstraction (hiding).

Bottom-up Compositionality:

"Properties" are also abstractions.

Bottom-up Compositionality: Abstractions/properties can again be composed.

Bottom-up Compositionality: Stepwise composition and abstraction (hierarchy).

Bottom-up Compositionality: If $f \cdot g$ and $f' \cdot g'$, then $f||f' \cdot g||g'$.

Bottom-up Compositionality: Supports Compositional Verification.

$$f_{1}||f_{2}\cdot g_{1}$$
 $f_{3}||f_{4}\cdot g_{2}$
 $f_{5}||f_{6}\cdot g_{3}$
 $g_{1}||g_{2}||g_{3}\cdot h$

 $f_1 || f_2 || f_3 || f_4 || f_5 || f_6 \cdot h$

The Reverse Process

The Reverse Process: Stepwise decomposition and refinement.

The Reverse Process: Independent Implementability.

The Reverse Process: Independent Implementability.

Top-down Compositionality: If $g \ f$ and $g' \ f'$, then $g||g' \ f||f'$.

Top-down Compositionality: Supports Compositional Design.

$$f_{1}$$
, g_{1} g_{2} g_{3} g_{1} , f_{1} g_{2} g_{3} , f_{5} g_{6}

 $h_{s} f_{1} || f_{2} || f_{3} || f_{4} || f_{5} || f_{6}$

Bottom-up Compositionality: If $f \cdot g$ and $f' \cdot g'$, then $f||f' \cdot g||g'$.

Top-down Compositionality: If $g \ f$ and $g' \ f'$, then $g/|g' \ f|/|f'$.

What's the Difference?

Bottom-up Compositionality: If $f \cdot g$ and $f' \cdot g'$, then $f||f' \cdot g||g'$.

Top-down Compositionality: If $g \ f$ and $g' \ f'$, then $g||g' \ f||f'$.

What's the Difference?

If composition is a total function, then there is none.

However, Composition is often Partial.

Compatible.

Incompatible.

However, Composition is often Partial.

Compatible.

Incompatible.

Partial Composition

Bottom-up Compositionality:

If f||f'| defined and $f \cdot g$ and $f' \cdot g'$, then g||g'| defined and $f||f' \cdot g||g'|$.

Top-down Compositionality:

If g||g'| defined and $g \in f$ and $g' \in f$, then f||f'| defined and $g||g' \in f||f'|$.

Partial Composition

Bottom-up Compositionality:

If f||f'| defined and $f \cdot g$ and $f' \cdot g'$, then g||g'| defined and $f||f' \cdot g||g'|$.

Top-down Compositionality:

If g||g'| defined and $g \in f$ and $g' \in f$, then f||f'| defined and $g||g' \in f||f'|$.

Block Diagram Algebra

- -A set *P* of (typed) variables.
- -A set F of blocks.
- -For each block f2F, a set $P_{\#}P$ of ports.
- -A partial binary function // on blocks, called composition.

Block Diagram Algebra

- -A set *P* of (typed) variables.
- -A set F of blocks.
- -For each block f2F, a set $P_{f} \mu P$ of ports.
- -A partial binary function // on blocks, called composition.
- -A partial function mapping a block f2F and an interconnect $\theta 2P \Sigma P$ to a block $P\theta$.

$$\theta = \{ (x,y), (x,z) \}$$

Block Diagram Algebra

- -A set *P* of (typed) variables.
- -A set F of blocks.
- -For each block f2F, a set $P_{f} \mu P$ of ports.
- -A partial binary function // on blocks, called *composition*.
- -A partial function mapping a block f2F and an interconnect $\theta 2P \mathfrak{L}P$ to a block $P\theta$.
- -A binary relation · on blocks, called *hierarchy*.

Side Conditions on Composition:

- -if f||g defined, then g||f defined and equal
- -if (f||g)||h defined, then f||(g||h) defined and equal
- -if f/g defined, then $P_{f/g} = P_f [P_g]$

Side Conditions on Connection:

$$I_{\theta} = \{ x \mid (9 y)(x,y)2\theta \}$$

$$O_{\theta} = \{ y \mid (9 x)(x,y)2\theta \}$$

$$p_{\theta} = \mathcal{E}_{(x,y)2\theta} (x=y)$$

-if θ = ;, then $f\theta$ defined and equal to f

-if $f\theta$ defined, then $P_{f\theta} = P_f [I_{\theta} [O_{\theta}]]$

Side Conditions on Hierarchy:

-f - f

-if f-g and g-h, then f-h

A block diagram algebra is an interface algebra if

- 1. if g/h defined and g f, then f/h defined and g/h f/h
- 2. if $g\theta$ defined and g, f, then $f\theta$ defined and $g\theta$, $f\theta$

- A block diagram algebra is an interface algebra if
- 1. if g/h defined and g f, then f/h defined and g/h f/h
- 2. if $g\theta$ defined and g, f, then $f\theta$ defined and $g\theta$, $f\theta$

- A block diagram algebra is a process algebra if
- 1. if f|/h defined and $f \cdot g$, then g|/h defined and $f|/h \cdot g|/h$
- 2. if $f\theta$ defined and $f \cdot g$, then $g\theta$ defined and $f\theta \cdot g\theta$

Stateless Input/Output Processes

$$f = (I_f, O_f, p_f)$$

 $I_f \mu P \dots input ports$

 $O_f \mu P \setminus I_f$... output ports

 p_f ... input/output relation: predicate on $I_f[O_f]$ such that $(8 I_f)(9 O_f) p_f$

Stateless Input/Output Processes

$$f = (I_f, O_f, p_f)$$
 $g = (I_g, O_g, p_g)$

$$P_f = I_f [O_f]$$

 $f||g|$ defined if $P_f Å P_g = ;$

Then:

$$I_{f||g} = I_f [I_g]$$
 $O_{f||g} = O_f [O_g]$
 $p_{f||g} = p_f \not = p_g$

$$f = (I_f, O_f, p_f)$$

 $\theta \mu I_{\theta} \mathfrak{L} O_{\theta}$

 $f\theta$ defined if

1.
$$I_f \text{ Å } I_\theta = ;$$

2.
$$O_f Å O_\theta = ;$$

3.
$$(8 I_{f\theta})(9 O_{f\theta}) p_{f\theta}$$
 (as defined below)

Then:

$$I_{f\theta} = (I_f [I_{\theta}) \setminus O_{f\theta})$$

$$O_{f\theta} = O_f [O_{\theta}]$$

$$p_{f\theta} = p_f \not = p_\theta$$

$$f = (I_f, O_f, p_f)$$

$$g = (I_g, O_g, p_g)$$

f - *g* if

- 1. $I_f \P I_g$
- 2. $O_f \P O_g$
- 3. p_f) p_g

abstraction has fewer inputs and fewer outputs

$$z = x + y Æ$$

 $(u=0) w=x) Æ$
 $(u \neq 0) w=y)$

$$w=x \ Q \ w=y$$

Why is this a process algebra?

- 1. if $I_f Å I_\theta =$; and $I_f \P I_g$, then $I_g Å I_\theta =$;
- 2. if $O_f Å O_\theta =$; and $O_f \P O_g$, then $O_g Å O_\theta =$;
- 3. if $(8 I_{f\theta})(9 O_{f\theta})(p_f \not \to p_\theta)$ and $p_f)p_g$ and $I_{f\theta} \P I_{g\theta}$ and $O_{f\theta} \P O_{g\theta}$, then $(8 I_{g\theta})(9 O_{g\theta})(p_g \not \to p_\theta)$

Stateless Input/Output Interfaces

$$f = (I_f, O_f^+, O_f^-)$$
 $O_f \mu O_f^+$
 $I_f Å O_f^+ = ;$

O+_f ... set of available output port names

$$P_f = I_f [O_f]$$

$$P^{+}_{f} = I_{f} [O^{+}_{f}]$$

Stateless Input/Output Interfaces

$$f = (I_f, O_f^+, O_f)$$
 $g = (I_g, O_g^+, O_g)$

f||g| defined if $P_f^+ A P_g^+ = ;$

$$I_{f||g} = I_f [I_g$$

$$O^+_{f||g} = O^+_f [O^+_g]$$

$$O_{f||g} = O_f [O_g]$$

$$f = (I_f, O^+_f, O_f)$$

 $\theta \mu I_{\theta} \mathfrak{L} O_{\theta}$

 $f\theta$ defined if

1.
$$I_{\theta} \mu O_f$$

2.
$$O_{\theta} \text{ Å } O^{+}_{f} = ;$$

3. if $(x,y),(x',y')2\theta$ and $x\neq x'$, then $y\neq y'$

$$I_{f\theta} = I_f \setminus O_{\theta}$$

$$O^+_{f\theta} = O^+_f [O_\theta]$$

$$O_{f\theta} = O_f [O_{\theta}]$$

$$f = (I_f, O_f^+, O_f)$$

$$g = (I_g, O^+_g, O_g)$$

f - *g* if

- 1. $I_f \mu I_g$
- 2. $O_f^+ \mu O_g^+$
- 3. $O_f \P O_g$

refinement has **fewer** inputs

and **more** outputs

$$f = (I_f, O_f^+, O_f)$$

$$g = (I_g, O_g^+, O_g)$$

f - *g* if

- 1. $I_f \mu I_g$
- 2. $O_f^+ \mu O_g^+$
- 3. $O_f \P O_g$

refinement has **fewer** inputs

and **more** outputs

$$y \rightarrow y \rightarrow w$$

Why is this an interface algebra?

- 1. if $P_g^+ Å P_h^+ =$; and $P_g^+ \P P_f^+$, then $P_f^+ Å P_h^+ =$;
- 2. if $I_{\theta} \mu O_g$ and $O_g \mu O_f$, then $I_{\theta} \mu O_f$
- 3. if $O_q^+ \mathring{A} O_\theta = 0$; and $O_q^+ \P O_f^+$, then $O_f^+ \mathring{A} O_\theta = 0$;

Stateless Assume/Guarantee Interfaces

$$f = (I_f, O_f^+, O_f, in_f, out_f)$$

 in_f ... input assumption: satisfiable predicate on I_f out_f ... output guarantee: satisfiable predicate on O_f

Stateless Assume/Guarantee Interfaces

$$f = (I_f, O_f^+, O_f, in_f, out_f)$$
 $g = (I_g, O_g^+, O_g, in_g, out_g)$

f||g| defined if $P_f^+ A P_g^+ = ;$

$$in_{f||g} = in_f \cancel{\text{AE}} in_g$$
 $out_{f||g} = out_f \cancel{\text{AE}} out_g$

$$f = (I_f, O_f^+, O_f, in_f, out_f)$$
 $\theta \mu I_\theta \pounds O_\theta$

 $f\theta$ defined if

1-3 as before

4. $in_{f\theta}$ satisfiable (as defined below)

$$in_{f\theta} = (8 \ O_{f\theta})((out_{f\theta} \times p_{\theta})) \ in_{f})$$
$$out_{f\theta} = (9 \ I_{f\theta})(out_{f} \times p_{\theta})$$

Input assumption

Output guarantee

$$\theta = \{(\mathbf{Z}, \mathbf{X})\}$$

true

 $x=0 \Rightarrow y=0$

$$\theta = \{(\mathbf{Z}, \mathbf{X})\}$$

$$f = (I_f, O_f^+, O_f, in_f, out_f)$$
 $g = (I_g, O_g^+, O_g, in_g, out_g)$

 $f \cdot g$ if 1-3 as above 4. in_f (in_g 5. out_f) out_a

Next Lecture:

We will add state.

What is the Compositionality of your Favorite Model?

Bottom-up Compositionality:

If f||f'| defined and $f \cdot g$ and $f' \cdot g'$, then g||g'| defined and $f||f' \cdot g||g'|$.

Top-down Compositionality:

If g||g'| defined and g = f and g' = f, then f||f'| defined and g||g' = f||f'|.

"defined" could be typeable, deadlock-free, etc.

Lesson 1:

Never dogmatically believe in one particular model / formalism / language.

Always evaluate your choices for your given special situation.