
Interface-based Design 3

Tom Henzinger
EPFL and UC Berkeley

An Assertional Interface

divide_by
x: intThis interface

constrains the
client’s data.

y: int; y ≠ 0

real

An Automaton Interface

open?

read? data!

close?

fileopen

This interface
constrains the
client’s control.

close

read

data

Two Compatible Automaton Interfaces

open

open?

read? data!

close?

file

data

close

read

open!

data?

read!close!

Client

Two Incompatible Automaton Interfaces

open

open?

read? data!

close?

file

data

close

read

open!

open!

Client

Today’s Lecture:

How do we check the compatibility of
automaton interfaces ?

What is the composition of two compatible
automaton interfaces ?

Free Inputs:
Interface Composition propagates Environment Constraints.

f

x
z

y

x=0 ⇒ y=0 true

Free Inputs:
Interface Composition propagates Environment Constraints.

f

x
z

y

truex=0 ⇒ y=0

Free Inputs:
Interface Composition propagates Environment Constraints.

f

x
z

y

y=0 true

The environment is helpful !

Automaton Interface Composition

a ab b

x

y

a,b?

x?

a,b?

y?

a? b?

y!x!

a? b?

x! y!

Automaton Interface Composition

a ab b

x

y

a,b?

x?

a,b?

y?

a? b?

y!x!

a? b?

x! y!

Automaton Interface Composition

a ab b

x

y

a,b?

x?

a,b?

y?

a? b?

y!x!

a? b?

x! y!

The Composite Interface

a b

a?

b?

x

y

Automaton Interface Composition

a ab b

x

y

a?

x,y?

a,b?

y?

a? b?

x! y!

a? b?

y! x!

a?

x! y!

Automaton Interface Composition

a ab b

x

y

a?

x,y?

a,b?

y?

a? b?

x! y!

a? b?

y! x!

a?

x! y!

Automaton Interface Composition

a ab b

x

y

a?

x,y?

a,b?

y?

a? b?

x! y!

a? b?

y! x!

a?

x! y!

The Composite Interface

a b

a?

x! y!

b? a?

y! y!

x y

Lesson 3:

Stateful Interfaces are Games!

-Player Input vs. player Internal.

-The composite interface is the product restricted
to those states from which player Input has a
strategy to avoid incompatibilities.

Graph Games

AND-OR Graph:

OR Nodes
AND Nodes

Graph Games

AND-OR Graph:

OR Player
AND Player

Graph Games

AND-OR Graph:

OR Player
AND Player

Graph Games

AND-OR Graph:

OR Player
AND Player

Graph Games

AND-OR Graph:

OR Player
AND Player

Safety Games

AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

Safety Games

AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

Safety Games

AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

Safety Games

AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

Safety Games

AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

Safety Games

AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

Safety Games

AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

Complexity?

Safety Games

2 AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

3

2

Safety Games

2 AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

3

2

a ba b

Safety Games

2 AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

3

1

ba b

Safety Games

2

c

AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

3

0

b c
b

Safety Games

2

c

AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

3

b c
b

Safety Games

2

c

AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

3

c
b

Safety Games

2

c

AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

3

d

c d

Safety Games

2

c

AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

2

d

d

Safety Games

2

c

AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

2

d

d

Safety Games

2 AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

1

d

d

Safety Games

2 AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

1

d

Safety Games

2 AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

1 e

e

Safety Games

2 AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

1 e

e

Safety Games

2 AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

0 e

e

Safety Games

2 AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

f e

e f

Safety Games

1 AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

f

f

Safety Games

0 AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

f

Safety Games

AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

Linear Time (P-Complete)

Safety Games

AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

Safety Games

AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

Safety Games

AND-OR Graph:

OR Player
AND Player

From which nodes does the
OR Player have a strategy
to avoid ERROR Nodes ?

Most general memoryless
pure strategy exists.

From Interfaces to Games

a ab b

x

y

a?

x,y?

a,b?

y?

a? b?

x! y!

a? b?

y! x!

a?

x! y!

From Interfaces to Games

a? b?

a?

a? b?

y y

x y

+ +
x!x! y? y?

ERROR states of product automaton.

From Interfaces to Games

a? b?

a?

a? b?

y y

x y

OR Player ... External choices made by the environment
AND Player ... Internal choices made by the interface product

From Interfaces to Games

a? b?

a?

a? b?

y y

x y

Does the Environment have a strategy to avoid the ERROR states?

From Interfaces to Games

a? b?

a?

y

a? b?

y

x y

Yes

Does the Environment have a strategy to avoid the ERROR states?

From Interfaces to Games

b?

a?

a?

y y

x y

The most general environment strategy.

The Composite Interface

a b

a?

x! y!

b? a?

y! y!

x y

So far, we have used a simple lock-step model of
concurrency.

An interface formalism can be built around any model
of concurrency.

So far, we have used a simple lock-step model of
concurrency.

An interface formalism can be built around any model
of concurrency.

Example:

I/O Automata [Lynch]

Interface Automata [deAlfaro,H]

So far, we have used a simple lock-step model of
concurrency.

An interface formalism can be built around any model
of concurrency.

Example:

-Total composition
-A process modelI/O Automata [Lynch]

same syntax different semantics
-Partial composition
-Compatibility check
-An interface model

Interface Automata [deAlfaro,H]

An Interface Automaton

F = (QF, Q0
F, AI

F, AO
F, AH

F, TF)

QF ... set of states

Q0
F µ QF ... set of initial states

AI
F ... input actions

AO
F ... output actions

AH
F ... internal (hidden) actions

TF µ QF £ AF £ QF ... set of transitions

mutually disjoint
AF = AI

F [AO
F [AH

F

msg? send! send!nack?

nack?fail!

ok! ack?

ack nacksend

msg failok

ack?

msg? send! send!nack?

nack?fail!

ok! ack?

ack nacksend

msg failok

msg!

ok?

msg ok fail

ack?

The Product of Interface Automata

F and G are composable if

AH
F Å AG = ; AH

G Å AF = ; AI
F Å AI

G = ; AO
F Å AO

G = ;

If F and G are composable, then

QF £ G = QF £ QG

Q0
F £ G = Q0

F £ Q0
G

AI
F £ G = (AI

F [AI
G) \ shared(F,G)

AO
F £ G = (AO

F [AO
G) \ shared(F,G)

AH
F £ G = AH

F [AH
G [shared(F,G)

shared(F,G) = AF Å AG

The Product of Interface Automata, continued

TF £ G =

{ ((f,g), a, (f’,g)) : (f,a,f’) 2 TF Æ a ∉ shared(F,G) } [

{ ((f,g), b, (f,g’)) : (g,b,g’) 2 TG Æ b ∉ shared(F,G) } [

{ ((f,g), c, (f’,g’)) : (f,c,f’) 2 TF Æ (g,c,g’) 2 TG Æ c 2 shared(F,G) }

msg send! send!nack?

nack?

ok ack?

ack nacksend

ack?

The product automaton.

The Error States of the Product Automaton

Error(F,G) = { (f,g) : (9 a 2 shared(F,G))

(a 2 AO
F(f) Æ a ∉ AI

G(g)) Ç

(a 2 AO
G(g) Æ a ∉ AI

F(f)) }

where A(q) = { a 2 A : (9 q’) (q,a,q’) 2 T }

Note: I/O automata are input enabling (AI(q) = AI for all q)
and therefore have no error states.

msg send! send!nack?

nack?

ok ack?

ack nacksend

ack?

ERROR state of the product. +
fail! ok?

The Compatibility of Interface Automata

An environment for an interface automaton F is an interface automaton E
such that

1. F is composable with E

2. AI
F = AO

E

3. Error(F,E) = ;

A helpful environment for two composable interface automata F and G is
an environment E for the product F £ G such that

4. no state in Error(F,G) £ QE is reachable in (F £ G) £ E

Two interface automata F and G are compatible if they are composable
and there exists a helpful environment.

msg send! send!nack?

nack?

ok ack?

ack nacksend

Environment can avoid this state.

ack?

send?

ack!

send ack nack

send?

ack!

send ack nack

send?nack!

ack!

The most general helpful environment.

Computing the Composite Interface Automaton

1. Construct product automaton.

2. Mark deadlock states as incompatible.

3. Until no more incompatible states can be added: mark
state q as incompatible if the environment cannot prevent
an incompatible state to be entered from q.

4. If the initial state is incompatible, then the two interfaces
are incompatible. Otherwise, the composite interface is
the product automaton without the incompatible states.

Computing the Composite Interface Automaton

1. Construct product automaton.

2. Mark error states as incompatible.

3. Until no more incompatible states can be added: mark
state q as incompatible if the environment cannot prevent
an incompatible state to be entered from q.

4. If the initial state is incompatible, then the two interfaces
are incompatible. Otherwise, the composite interface is
the product automaton without the incompatible states.

Computing the Composite Interface Automaton

1. Construct product automaton.

2. Mark error states as incompatible.

3. Until no more incompatible states can be added: mark
state q as incompatible if the environment cannot prevent
an incompatible state to be entered from q.

4. If the initial state is incompatible, then the two interfaces
are incompatible. Otherwise, the composite interface is
the product automaton without the incompatible states.

Computing the Composite Interface Automaton

1. Construct product automaton.

2. Mark error states as incompatible.

3. Until no more incompatible states can be added: mark
state q as incompatible if the environment cannot prevent
an incompatible state to be entered from q.

4. If the initial state is incompatible, then the two interfaces
are incompatible. Otherwise, the composite interface is
the product automaton without the incompatible states.

Computing the Composite Interface Automaton

1. Construct product automaton.

2. Mark error states as incompatible.

3. Until no more incompatible states can be added: mark
state q as incompatible if the environment cannot prevent
an incompatible state to be entered from q.

4. If the initial state is incompatible, then the two interfaces
are incompatible. Otherwise, the composite interface is
the product automaton without the incompatible states.

This procedure computes the most general helpful environment as
the most general strategy of the environment to avoid error states.

msg send! send!nack?

nack?

ok ack?

ack nacksend

ack?

The composite interface automaton.

