Interface-based Design 4

Tom Henzinger
EPFL and UC Berkeley



An interface algebra can be built around any (?)
model of concurrency.

Example:

‘ -Total composition
-A process algebra

‘ /O Automata [Lynch]

same syntax l different semantics

-Partial composition

‘ Interface Automata [deAlfaro,H] ‘ -Compatibility check
-An interface algebra




msg ok fail
J o

aY
okl ack?
ack?
. msg? -~ send nack? ~ sendl
) 4, N\ N e®,
faill ~ hack?

’ ———

send ack nack



msg ok fail

msg ok ia”
e N
okl ack?
ack?
. msg? -~ send nack? ~ sendl
) 4, N\ N e®,
faill hack?
Y

’ ———

send ack nack



~
)

pd
~

ok ack?
ack?
_>O msg ~ Sendl _ nack? ~ send! \/)
L \ "\ >
nack?

@
\

=

send ack nack

The product automaton.



~
)

pd
~

J

ok ack?
ack?
—() msg -~ send nack? —~ sendl
’\/ ,v ’v /\
‘, nack?

+ ERROR state of the product.
fail! ok?



~
)

< N\

ok ack?
ack?
—() msg -~ send nack? —~ sendl
"\ > >() ,\)
‘, nack?

Environment can avoid this state.



send ack nhack

send?

T~ hackl send?
—() Kl @, O ©

gi?iggziii:\\\\-ﬂz/////////////

ackl

\_ J

The most general helpful environment.



Computing the Composite Interface Automaton

1. Construct product automaton.

This procedure computes the most general helpful environment as
the most general strategy of the environment to avoid error states.




Computing the Composite Interface Automaton

1. Construct product automaton.
2. Mark ERROR states as incompatible.

This procedure computes the most general helpful environment as
the most general strategy of the environment to avoid error states.




Computing the Composite Interface Automaton

1. Construct product automaton.
2. Mark ERROR states as incompatible.

3. Until no more incompatible states can be added: mark
state q as incompatible if the environment cannot prevent
an incompatible state to be entered from q.

This procedure computes the most general helpful environment as
the most general strategy of the environment to avoid error states.




Computing the Composite Interface Automaton

1. Construct product automaton.
2. Mark ERROR states as incompatible.

3. Until no more incompatible states can be added: mark
state q as incompatible if there is an internal or output
action from g to an incompatible state.

This procedure computes the most general helpful environment as
the most general strategy of the environment to avoid error states.




Computing the Composite Interface Automaton

1. Construct product automaton.
2. Mark ERROR states as incompatible.

3. Until no more incompatible states can be added: mark
state q as incompatible if there is an internal or output
action from q to an incompatible state.

4. If the initial state is incompatible, then the two interfaces
are incompatible. Otherwise, the composite interface is
the product automaton without the incompatible states.

This procedure computes the most general helpful environment as
the most general strategy of the environment to avoid error states.




Me
ok ack?
ack?
—() msg ~ send nack? ~ sendl
L \ "\ >
nack?

=

send

ack

1R

nack




)

pd
~

ok ack?
ack?
msg _,~ Send _ nack? ~ send!
_>Q \_/ \_/ >/ 5
nack? §
send ack nack

The composite interface automaton.



Stateless Interfaces (types, assertions, etc.)

|

Call-Return Automaton Interfaces (sync, async, etc.)

/|

Resource Automaton Interfaces

Real-Time Automaton Interfaces

Push-down Automaton Interfaces




A Mutex Interface

print I ‘ done




Two Mutex Interfaces

fax I ‘ done print I ‘ done

Q) Q)
fax? done! print? done!
9 9




Mutex Interface Incompatibility

fax I ‘ done print I ‘ done
fax? @ done! print? @ done!




Call-Return Interface Incompatibility



Mutex Interface Incompatibility

Cﬁ+Cﬁ O+



Mutex Interface Product

fax print done

: |




Mutex Interface Composition

fax print done

: |

done!

fax? prlnt’?

\




The Composite Interface

fax print done

i

I

done!

fax?

prlnt’?




A Power Resource Interface

stop slow fast

S

Motor driver.



Resource Interface Composition

Node Limit Resource Interfaces
(e.g. mutex, limited buffer size, limited peak power):

Player Input must achieve objective without visiting states
that exceed threshold.

Path Limit Resource Interfaces
(e.g. limited battery capacity):

Player Input must achieve objective without expending
more energy (power times time) than available.

These games can be solved in polynomial time.



Resource Interface Design

Strategy Synthesis
(e.g. resource scheduler, sensornet routing algorithm):

Given a resource bound, how can the objective be
achieved?

Resource Synthesis
(e.g. necessary buffer size, battery capacity):

What is the minimum resource requirement so that the
objective can be achieved?

Game algorithms can be generalized to answer both.



Interface Algebra

Principle of independent implementability of interfaces.



Stateless Process Refinement

More behaviors. ‘{ }—
More information. 1 i




Stateless Interface Refinement

ing : G }— out,

U Vi fl
Weaker input . Stronger output
assumption.  'MF '{ F ; OUTE  guarantee.




/O Automaton Refinement:
Simulation

1 |s a simulation relation if

flg

iff
for all observable (input and output) actions a, if f -a->f',
then there exists g’ such that g-a->g' and f'1q'.




/O Automaton Refinement:
Simulation

1 |s a simulation relation if

flg

iff
for all observable (input and output) actions a, if f -a->f',
then there exists g’ such that g-a->g' and f'1q'.

If there are internal actions, then replace -a-> by -h*;a->,
where h™ is any sequence of internal actions.




/O Automaton Refinement:
Simulation

1 |s a simulation relation if

flg

iff
for all observable (input and output) actions a, if f -a->f',
then there exists g’ such that g-a->g' and f'1q'.

If there are internal actions, then replace -a-> by -h"a->,
where h™ is any sequence of internal actions.

F - G if there exists a simulation relation * such that q°%: * q%.




Interface Automaton Refinement:
Alternating Simulation

1 is an alternating simulation relation if

fig
iff

for all output actions o, if f -ol->f', then there exists g
such that g-ol->g and f'1g'.




Interface Automaton Refinement:
Alternating Simulation

1 is an alternating simulation relation if

frg
iff
1. for all input actions i, if g-i?->g', then there exists f'
such that f-i?->f andf'1q',
and

2. for all output actions o, if f -ol->f', then there exists g’
such that g-ol->g and f'1qg'.




Interface Automaton Refinement:
Alternating Simulation

1 is an alternating simulation relation if

frg
iff
1. for all input actions i, if g-i?->g', then there exists f'
such that f-i?->f andf'1q',
and

2. for all output actions o, if f -ol->f', then there exists g’
such that g-ol->g and f'1qg'.




Interface Automaton Refinement:
Alternating Simulation

1 is an alternating simulation relation if

frg

iff
1. for all input actions i, if g-i?->g', then there exists f'
such that f-i?->f andf'1q',

and

2. for all output actions o, if f -ol->f', then there exists g’
such that g-ol->g and f'1qg'.

If there are internal actions, then replace -0?-> by -h";0?->.




Interface Automaton Refinement:
Alternating Simulation

1 is an alternating simulation relation if

frg
iff
1. for all input actions i, if g-i?->g', then there exists f'
such that f-i?->f andf'1q',
and

2. for all output actions o, if f -ol->f', then there exists g’
such that g-ol->g and f'1qg'.

If there are internal actions, then replace -0?-> by -h";0?->.

F - G if there is an alternating simulation * such that g° * q°%;.



msg

ok fail

”(f

/\/
?
l ack? ack?
rn597 send! hack? send!
g g “\S
fail! —~ nack?
S
send ack  nack




msg

ok fail

(e
l Iack, ack?
‘) | ? I
msg: send. A nack? __ send e
NS NS NS
‘ fail! —~ nack?
<€ )
send ack  nack
Oénce 259 ok fail
<\ MN\e
ack? ~ okl ok ack? ack?
L send! _once? v msg? _ send I nack? _ send! |
- ~ kAJ >/ U/ >/ >
nack? _  faill faill —~ nack?
> <
send ack  nack




Alternating Simulation

1 is an alternating simulation relation if

flg
iff
1. for all input actions i, if g-i?->g', then there exists f'
such that f-i?->f andf'1q',
and

2. for all output actions o, if f -ol->f', then there exists g’
such that g-ol->g and f'1qg'.

If there Is a winning environment strategy at g, then there is a
winning environment strategy at f [Alur,Kupferman,H,Vardi].



Alternating Simulation

As In the case of simulation, the greatest alternating simulation
relation can be computed by successive approximation:

1= Qr £ Qg
fhag if
0. flkg,

1. for all input actions i, if g-i?->g', then there
exists f' such that f -i?->f" andf' %, g,

2. for all output actions o, if f -ol->f', then there
exists g’ such that g-ol->g and f'%, g .

This can be implemented in time quadratic in |F|+|G| .



Lesson 4.

Proofs are good.
Algorithms are better.




Interface A

Interface B




Interface A

VI

Interface B

Interface A’

VI

Interface B’




Interface A

VI

Interface B

Interface A’

VI

VI

Interface B’

Code a

VI

Code b




Interface A > Interface B

VI VI
Interface A’ Interface B’
VI VI
Code a Code b

1. Interface compatibility checking:
solving safety/Buechi games (linear/quadratic)



1.

Interface A

VI

Interface B

Interface A’

VI

VI

Interface B’

Code a

VI

Code b

Interface compatibility checking:

solving safety/Buechi games (linear/quadratic)

CHIC
[Chakrabarti]




Interface A D Interface B

2. VI VI
Interface A’ Interface B’
VI VI
Code a Code b

Interface compatibility checking:
solving safety/Buechi games (linear/quadratic)

Interface refinement checking:
alternating simulation (quadratic)

CHIC
[Chakrabarti]




Interface A D Interface B

2. VI VI
Interface A’ Interface B’
3. VI VI
Code a Code b

Interface compatibility checking:
solving safety/Buechi games (linear/quadratic)

Interface refinement checking:
alternating simulation (quadratic)

CHIC
[Chakrabarti]

Conformance checking of code against interface:

undecidable




Interface A D Interface B

2. VI VI 2.
Interface A’ Interface B’
3. VI Vi 3.
Code a Code b
Interface compatibility checking: CHIC

solving safety/Buechi games (linear/quadratic) [Chakrabarti]

Interface refinement checking:
alternating simulation (quadratic)

Conformance checking of code against interface:
undecidable | BLAST [Jhala,Majumdar,Sutre] |




CHIC BLAST

Berkeley

CHecking Lazy Abstraction
Interface . :
o Software verification
Compatibility

Tool

www.eecs.berkeley.edu/~tah/chic
www.eecs.berkeley.edu/~tah/blast

Try them out!


http://www.eecs.berkeley.edu/~tah/blast

CHIC

(.} JBuilder 5 - C:;/myopentools;/ opentool2/src/opentoolZ /MyFilelUser.java

File Edit Search Yiew Project Bun Wizards Tools Window Help

DESE-QET G o ~B@E L Mk h

Ly &z
{CJ 0] Il

Wb -l [@- e

@ Q @ opentool? jpr

- Dpentnnl2| oy cnmmentreader2| classes.upentnnlsl o MyFile % MyFilelUser

JBuilder
plugin for
defining

and o
* interface MyFilelser
h k' * inputs readbata writeData owver
C eC Ing * outputs wylpen wyClose nyFead myWrite
% gstate amReading inputs readData over
automaton E@ Imparts * outputs myRead myClose
. E'@ MVF”EU_SH * gtate amWriting inputs writeData over
Inte rfaces T MyflleUserO * outputs wyWrite myClose
ol rain{Strinal args) * ztate Idle inputs readData writeData
Of Java * outputas nylpen
* in amPeading over -> Idle
Classes- * in awlriting owver -> Idle
% in TIdle readData -> amReading ; writeData -> anlriting

I opentool? jpr
clagses.opentools

& commentreader? java
- MyFile java

i

kS

{

package opentooll;

import com.borland.primetime.®;
import com.borland.primetime.vis.*;
import com.borland.jbuilder.jot.*;
import Java.io.®;

import Jjavax.swing.¥:

public class MyFilelUser

public MyFilelUszer()

1 —

MyFilelser java |

244

l Source |

Designl Eleanl Du:u:I Histnnrl

ISaved 1 modified files.



BLAST

-model checker for (multi-threaded) C programs



BLAST

-model checker for (multi-threaded) C programs
-can handle programs with 100K+ lines of code

-supports incremental (“extreme”) model checking



BLAST

-model checker for (multi-threaded) C programs

-can handle programs with 100K+ lines of code

-supports incremental (“extreme”) model checking
-counterexample-guided predicate abstraction refinement

-inspired by SLAM [Ball,Rajamani] (see next week)



Ain exception 06 has occured at 0028:C11B3ADC in VXD DiskTSD{03) +
00001660, This was called from 0028:C11B40C8 in WxD voltrack(04) +
00000000, It may be possible to continue normally,

* Press any key to attempt to continue.

* Press CTRL+ALT+RESET to restart your computer. You will
lose any unsaved information in all applications,

Press any key to continue



BLAST

-model checker for (multi-threaded) C programs

-can handle programs with 100K+ lines of code

-supports incremental (“extreme”) model checking
-counterexample-guided predicate abstraction refinement
-inspired by SLAM [Ball,Rajamani] (see next week)

-for interface conformance checking and interface synthesis



	BLAST

