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An interface algebra can be built around any (?) 
model of concurrency.

Example:

-Total composition 
-A process algebraI/O Automata [Lynch]

same syntax different semantics
-Partial  composition   
-Compatibility check  
-An interface algebra

Interface Automata [deAlfaro,H]
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Environment can avoid this state.



send?

ack!

send ack nack

send?nack!

ack!
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Computing the Composite Interface Automaton

1. Construct product automaton.

2. Mark deadlock states as incompatible.

3. Until no more incompatible states can be added:  mark 
state q as incompatible if the environment cannot prevent 
an incompatible state to be entered from q.

4. If the initial state is incompatible, then the two interfaces 
are incompatible.  Otherwise, the composite interface is 
the product automaton without the incompatible states.

This procedure computes the most general helpful environment as 
the most general strategy of the environment to avoid error states.
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The composite interface automaton.



Stateless Interfaces (types, assertions, etc.)

Call-Return Automaton Interfaces (sync, async, etc.)

Real-Time Automaton Interfaces

Resource Automaton Interfaces

Push-down Automaton Interfaces



A Mutex Interface

print done

0

1

print? done!



Two Mutex Interfaces

fax done print done
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fax? done!



Mutex Interface Incompatibility
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Call-Return Interface Incompatibility

+
a! b?



Mutex Interface Incompatibility

1 1+ +
a! b?



Mutex Interface Product

fax print done

1 0 1

done!

print?fax?

done!

2
fax?print?



Mutex Interface Composition

fax print done

1 0 1

done!

print?fax?

done!

2



The Composite Interface

fax print done

1 0 1

done!

print?fax?

done!



A Power Resource Interface

stop slow fast

0 1 2

fast?

slow?stop?

slow?

fast?

stop?

stop? slow?

fast?

Motor driver.



Resource Interface Composition

Node Limit Resource Interfaces                                  
(e.g. mutex, limited buffer size, limited peak power):

Player Input must achieve objective without visiting states 
that exceed threshold.

Path Limit Resource Interfaces 
(e.g. limited battery capacity):

Player Input must achieve objective without expending       
more energy (power times time) than available.

These games can be solved in polynomial time.



Resource Interface Design

Strategy Synthesis 
(e.g. resource scheduler, sensornet routing algorithm):

Given a resource bound, how can the objective be 
achieved?

Resource Synthesis                  
(e.g. necessary buffer size, battery capacity):

What is the minimum resource requirement so that the 
objective can be achieved?

Game algorithms can be generalized to answer both.



Interface Algebra

If G and G’ compatible and G ¸ F and G’ ¸ F’,                    
then F and F’ compatible and G||G’ ¸ F||F’.

Principle of independent implementability of interfaces.



Stateless Process Refinement

pF

≤ ⇒

pGMore behaviors.

More information.



Stateless Interface Refinement

GinG outG

≤ ⇒
⇒

F
Stronger output 
guarantee.

Weaker input 
assumption.

outFinF



I/O Automaton Refinement:                      
Simulation

¹ is a simulation relation if

f ¹ g

iff

for all observable (input and output) actions a,  if  f –a-> f’ , 
then there exists g’ such that  g –a-> g’ and f’ ¹ g’ .
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Interface Automaton Refinement:                   
Alternating Simulation

¹ is an alternating simulation relation if

f ¹ g

iff

1. for all input actions i,  if  g –i?-> g’ , then there exists f’
such that  f –i?-> f’ and f’ ≤ g’ ,

and

2. for all output actions o,  if  f –o!-> f’ , then there exists g’
such that  g –o!-> g’ and f’ ¹ g’ .
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msg? send! send!nack?

nack?fail!

ok! ack?

ack nacksend

msg failok
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Alternating Simulation

¹ is an alternating simulation relation if

f ¹ g

iff

1. for all input actions i,  if  g –i?-> g’ , then there exists f’
such that  f –i?-> f’ and f’ ¹ g’ ,

and

2. for all output actions o,  if  f –o!-> f’ , then there exists g’
such that  g –o!-> g’ and f’ ¹ g’ .

If there is a winning environment strategy at g, then there is a 
winning environment strategy at f [Alur,Kupferman,H,Vardi].                 



Alternating Simulation

As in the case of simulation, the greatest alternating simulation 
relation can be computed by successive approximation:

¹0 = QF £ QG

f ¹k+1 g  if

0.  f ¹k g ,

1. for all input actions i,  if  g –i?-> g’ , then there 
exists f’ such that  f –i?-> f’ and f’ ¹k g’ ,

2. for all output actions o,  if  f –o!-> f’ , then there 
exists g’ such that  g –o!-> g’ and f’ ¹k g’ .

This can be implemented in time quadratic in |F|+|G| .



Lesson 4:

Proofs are good.                              
Algorithms are better.
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1. Interface compatibility checking:                    
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3. Conformance checking of code against interface: 
undecidable

CHIC 
[Chakrabarti]

BLAST [Jhala,Majumdar,Sutre]



BLASTBLASTCHICCHIC
Berkeley              

Lazy Abstraction        
Software verification 

Tool

CHecking
Interface           

Compatibility

www.eecs.berkeley.edu/~tah/chic
www.eecs.berkeley.edu/~tah/blast

Try them out!

http://www.eecs.berkeley.edu/~tah/blast


CHIC

JBuilder
plugin for 
defining 
and 
checking 
automaton 
interfaces 
of Java 
classes. 
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-model checker for (multi-threaded) C programs

-can handle programs with 100K+ lines of code

-supports incremental (“extreme”) model checking

-counterexample-guided predicate abstraction refinement

-inspired by SLAM [Ball,Rajamani] (see next week)

-for interface conformance checking and interface synthesis


	BLAST

