
Interface-based Design 4

Tom Henzinger
EPFL and UC Berkeley

An interface algebra can be built around any (?)
model of concurrency.

Example:

-Total composition
-A process algebraI/O Automata [Lynch]

same syntax different semantics
-Partial composition
-Compatibility check
-An interface algebra

Interface Automata [deAlfaro,H]

msg? send! send!nack?

nack?fail!

ok! ack?

ack nacksend

msg failok

ack?

msg? send! send!nack?

nack?fail!

ok! ack?

ack nacksend

msg failok

msg!

ok?

msg ok fail

ack?

msg send! send!nack?

nack?

ok ack?

ack nacksend

ack?

The product automaton.

msg send! send!nack?

nack?

ok ack?

ack nacksend

ack?

ERROR state of the product. +
fail! ok?

msg send! send!nack?

nack?

ok ack?

ack nack

ack?

send

Environment can avoid this state.

send?

ack!

send ack nack

send?nack!

ack!

The most general helpful environment.

Computing the Composite Interface Automaton

1. Construct product automaton.

2. Mark deadlock states as incompatible.

3. Until no more incompatible states can be added: mark
state q as incompatible if the environment cannot prevent
an incompatible state to be entered from q.

4. If the initial state is incompatible, then the two interfaces
are incompatible. Otherwise, the composite interface is
the product automaton without the incompatible states.

This procedure computes the most general helpful environment as
the most general strategy of the environment to avoid error states.

Computing the Composite Interface Automaton

1. Construct product automaton.

2. Mark ERROR states as incompatible.

3. Until no more incompatible states can be added: mark
state q as incompatible if the environment cannot prevent
an incompatible state to be entered from q.

4. If the initial state is incompatible, then the two interfaces
are incompatible. Otherwise, the composite interface is
the product automaton without the incompatible states.

This procedure computes the most general helpful environment as
the most general strategy of the environment to avoid error states.

Computing the Composite Interface Automaton

1. Construct product automaton.

2. Mark ERROR states as incompatible.

3. Until no more incompatible states can be added: mark
state q as incompatible if the environment cannot prevent
an incompatible state to be entered from q.

4. If the initial state is incompatible, then the two interfaces
are incompatible. Otherwise, the composite interface is
the product automaton without the incompatible states.

This procedure computes the most general helpful environment as
the most general strategy of the environment to avoid error states.

Computing the Composite Interface Automaton

1. Construct product automaton.

2. Mark ERROR states as incompatible.

3. Until no more incompatible states can be added: mark
state q as incompatible if there is an internal or output
action from q to an incompatible state.

4. If the initial state is incompatible, then the two interfaces
are incompatible. Otherwise, the composite interface is
the product automaton without the incompatible states.

This procedure computes the most general helpful environment as
the most general strategy of the environment to avoid error states.

Computing the Composite Interface Automaton

1. Construct product automaton.

2. Mark ERROR states as incompatible.

3. Until no more incompatible states can be added: mark
state q as incompatible if there is an internal or output
action from q to an incompatible state.

4. If the initial state is incompatible, then the two interfaces
are incompatible. Otherwise, the composite interface is
the product automaton without the incompatible states.

This procedure computes the most general helpful environment as
the most general strategy of the environment to avoid error states.

msg send! send!nack?

nack?

ok ack?

ack nack

ack?

send

msg send! send!nack?

nack?

ok ack?

ack nacksend

ack?

The composite interface automaton.

Stateless Interfaces (types, assertions, etc.)

Call-Return Automaton Interfaces (sync, async, etc.)

Real-Time Automaton Interfaces

Resource Automaton Interfaces

Push-down Automaton Interfaces

A Mutex Interface

print done

0

1

print? done!

Two Mutex Interfaces

fax done print done

0

1

print? done!
0

1

fax? done!

Mutex Interface Incompatibility

fax done print done

0

1

print? done!
0

1

fax? done!

Call-Return Interface Incompatibility

+
a! b?

Mutex Interface Incompatibility

1 1+ +
a! b?

Mutex Interface Product

fax print done

1 0 1

done!

print?fax?

done!

2
fax?print?

Mutex Interface Composition

fax print done

1 0 1

done!

print?fax?

done!

2

The Composite Interface

fax print done

1 0 1

done!

print?fax?

done!

A Power Resource Interface

stop slow fast

0 1 2

fast?

slow?stop?

slow?

fast?

stop?

stop? slow?

fast?

Motor driver.

Resource Interface Composition

Node Limit Resource Interfaces
(e.g. mutex, limited buffer size, limited peak power):

Player Input must achieve objective without visiting states
that exceed threshold.

Path Limit Resource Interfaces
(e.g. limited battery capacity):

Player Input must achieve objective without expending
more energy (power times time) than available.

These games can be solved in polynomial time.

Resource Interface Design

Strategy Synthesis
(e.g. resource scheduler, sensornet routing algorithm):

Given a resource bound, how can the objective be
achieved?

Resource Synthesis
(e.g. necessary buffer size, battery capacity):

What is the minimum resource requirement so that the
objective can be achieved?

Game algorithms can be generalized to answer both.

Interface Algebra

If G and G’ compatible and G ¸ F and G’ ¸ F’,
then F and F’ compatible and G||G’ ¸ F||F’.

Principle of independent implementability of interfaces.

Stateless Process Refinement

pF

≤ ⇒

pGMore behaviors.

More information.

Stateless Interface Refinement

GinG outG

≤ ⇒
⇒

F
Stronger output
guarantee.

Weaker input
assumption.

outFinF

I/O Automaton Refinement:
Simulation

¹ is a simulation relation if

f ¹ g

iff

for all observable (input and output) actions a, if f –a-> f’ ,
then there exists g’ such that g –a-> g’ and f’ ¹ g’ .

I/O Automaton Refinement:
Simulation

¹ is a simulation relation if

f ¹ g

iff

for all observable (input and output) actions a, if f –a-> f’ ,
then there exists g’ such that g –a-> g’ and f’ ¹ g’ .

If there are internal actions, then replace -a-> by –h*;a-> ,
where h* is any sequence of internal actions.

I/O Automaton Refinement:
Simulation

¹ is a simulation relation if

f ¹ g

iff

for all observable (input and output) actions a, if f –a-> f’ ,
then there exists g’ such that g –a-> g’ and f’ ¹ g’ .

If there are internal actions, then replace -a-> by –h*a-> ,
where h* is any sequence of internal actions.

F · G if there exists a simulation relation ¹ such that q0
F ¹ q0

G.

Interface Automaton Refinement:
Alternating Simulation

¹ is an alternating simulation relation if

f ¹ g

iff

1. for all input actions i, if g –i?-> g’ , then there exists f’
such that f –i?-> f’ and f’ ≤ g’ ,

and

2. for all output actions o, if f –o!-> f’ , then there exists g’
such that g –o!-> g’ and f’ ¹ g’ .

Interface Automaton Refinement:
Alternating Simulation

¹ is an alternating simulation relation if

f ¹ g

iff

1. for all input actions i, if g –i?-> g’ , then there exists f’
such that f –i?-> f’ and f’ ¹ g’ ,

and

2. for all output actions o, if f –o!-> f’ , then there exists g’
such that g –o!-> g’ and f’ ¹ g’ .

Interface Automaton Refinement:
Alternating Simulation

¹ is an alternating simulation relation if

f ¹ g

iff

1. for all input actions i, if g –i?-> g’ , then there exists f’
such that f –i?-> f’ and f’ ¹ g’ ,

and

2. for all output actions o, if f –o!-> f’ , then there exists g’
such that g –o!-> g’ and f’ ¹ g’ .

Interface Automaton Refinement:
Alternating Simulation

¹ is an alternating simulation relation if

f ¹ g

iff

1. for all input actions i, if g –i?-> g’ , then there exists f’
such that f –i?-> f’ and f’ ¹ g’ ,

and

2. for all output actions o, if f –o!-> f’ , then there exists g’
such that g –o!-> g’ and f’ ¹ g’ .

If there are internal actions, then replace -o?-> by –h*;o?->.

Interface Automaton Refinement:
Alternating Simulation

¹ is an alternating simulation relation if

f ¹ g

iff

1. for all input actions i, if g –i?-> g’ , then there exists f’
such that f –i?-> f’ and f’ ¹ g’ ,

and

2. for all output actions o, if f –o!-> f’ , then there exists g’
such that g –o!-> g’ and f’ ¹ g’ .

If there are internal actions, then replace -o?-> by –h*;o?->.

F · G if there is an alternating simulation ¹ such that q0
F ¹ q0

G.

msg? send! send!nack?

nack?fail!

ok! ack?

ack nacksend

msg failok

ack?

msg? send! send!nack?

nack?fail!

ok! ack?

ack nacksend

msg failok

ack?

≤
msg? send! send!nack?

nack?fail!

ok! ack?

ack nacksend

msg failok

send! once?

fail!

ok!

nack?

ack?

once

ack?

Alternating Simulation

¹ is an alternating simulation relation if

f ¹ g

iff

1. for all input actions i, if g –i?-> g’ , then there exists f’
such that f –i?-> f’ and f’ ¹ g’ ,

and

2. for all output actions o, if f –o!-> f’ , then there exists g’
such that g –o!-> g’ and f’ ¹ g’ .

If there is a winning environment strategy at g, then there is a
winning environment strategy at f [Alur,Kupferman,H,Vardi].

Alternating Simulation

As in the case of simulation, the greatest alternating simulation
relation can be computed by successive approximation:

¹0 = QF £ QG

f ¹k+1 g if

0. f ¹k g ,

1. for all input actions i, if g –i?-> g’ , then there
exists f’ such that f –i?-> f’ and f’ ¹k g’ ,

2. for all output actions o, if f –o!-> f’ , then there
exists g’ such that g –o!-> g’ and f’ ¹k g’ .

This can be implemented in time quadratic in |F|+|G| .

Lesson 4:

Proofs are good.
Algorithms are better.

Interface A Interface B

Interface A Interface B

≤ ≤

Interface A’ Interface B’

Interface A Interface B

Interface A’ Interface B’

≤
≤≤

≤
Code a Code b

1.

1. Interface compatibility checking:
solving safety/Buechi games (linear/quadratic)

Interface A Interface B

Interface A’ Interface B’

≤
≤≤

≤
Code a Code b

1.

1. Interface compatibility checking:
solving safety/Buechi games (linear/quadratic)

Interface A Interface B

Interface A’ Interface B’

≤
≤≤

≤
Code a Code b

CHIC
[Chakrabarti]

1.
Interface A Interface B

2.2. ≤ ≤

Interface A’ Interface B’

≤ ≤

Code a Code b

1. Interface compatibility checking:
solving safety/Buechi games (linear/quadratic)

2. Interface refinement checking:
alternating simulation (quadratic)

CHIC
[Chakrabarti]

1.
Interface A Interface B

2.2. ≤ ≤

Interface A’ Interface B’

3.3. ≤ ≤

Code a Code b

1. Interface compatibility checking:
solving safety/Buechi games (linear/quadratic)

2. Interface refinement checking:
alternating simulation (quadratic)

3. Conformance checking of code against interface:
undecidable

CHIC
[Chakrabarti]

1.
Interface A Interface B

2.2. ≤ ≤

Interface A’ Interface B’

3.3. ≤ ≤

Code a Code b

1. Interface compatibility checking:
solving safety/Buechi games (linear/quadratic)

2. Interface refinement checking:
alternating simulation (quadratic)

3. Conformance checking of code against interface:
undecidable

CHIC
[Chakrabarti]

BLAST [Jhala,Majumdar,Sutre]

BLASTBLASTCHICCHIC
Berkeley

Lazy Abstraction
Software verification

Tool

CHecking
Interface

Compatibility

www.eecs.berkeley.edu/~tah/chic
www.eecs.berkeley.edu/~tah/blast

Try them out!

http://www.eecs.berkeley.edu/~tah/blast

CHIC

JBuilder
plugin for
defining
and
checking
automaton
interfaces
of Java
classes.

BLAST

-model checker for (multi-threaded) C programs

BLAST

-model checker for (multi-threaded) C programs

-can handle programs with 100K+ lines of code

-supports incremental (“extreme”) model checking

BLAST

-model checker for (multi-threaded) C programs

-can handle programs with 100K+ lines of code

-supports incremental (“extreme”) model checking

-counterexample-guided predicate abstraction refinement

-inspired by SLAM [Ball,Rajamani] (see next week)

BLAST

-model checker for (multi-threaded) C programs

-can handle programs with 100K+ lines of code

-supports incremental (“extreme”) model checking

-counterexample-guided predicate abstraction refinement

-inspired by SLAM [Ball,Rajamani] (see next week)

-for interface conformance checking and interface synthesis

	BLAST

