Interface-based Design 5

Tom Henzinger
EPFL and UC Berkeley

Interface A

VI

Interface B

Interface A’

VI

VI

Interface B’

Code a

VI

Code b

Interface A D

2. VI

Interface A’

VI

Code a

Interface B

VI

Interface B’

VI

Code b

Interface compatibility checking:

solving graph games

Interface refinement checking:

alternating simulation relations

CHIC
[Chakrabarti]

Interface A D Interface B

2. VI VI 2.
Interface A’ Interface B’
3. VI VI 3.
Code a Code b

Interface compatibility checking:
solving graph games

Interface refinement checking:
alternating simulation relations

Conformance checking of code against interface
| BLAST [Jhala,Majumdar,Sutre] |

Interface Conformance Checking with BLAST

example () {
1: do({
lock () lock!
old = new;
2- if (%) { unlock
3: unlock ();
new ++: Interface Automaton.
}

4: } while (new != old);
5. unlock ();
?: return;

}

Interface Conformance Checking with BLAST

example () {
1: do({
lock ();
old = new;
2: if (*){
3: unlock ();
new ++;
}
4: } while (new != old);
5: unlock ();
2
}

unlock ()

. return; .
Monitor Automaton.

Control Flow Graph

lock ();
old = new

[T]

[new != old]

unlock ();
example () { new-++
1: do{
I(;)ng:()r;ew; [new == old]
2: if (*) {
3: unlock ();
} new unlock ()

} while (new != old); unlock ()

4:

5: unlock ();
?: return; unlock ()
}

Abstract Reachabillity

unlock ()

of

unlock ()

unlock ()

Abstract Reachabillity

unlock ()

lock ();
old = new

unlock ()

unlock ()

Abstract Reachabillity

unlock ()

lock ();
old = new

unlock ();
new-++ e U

unlock ()

unlock ()

Abstract Reachabillity

lock ();
old = new

unlock ();
new-++ e U

unlock ()

[new == old] unlock ()

unlock ()

Abstract Reachabillity

lock ();
old = new

unlock ();
new-++ e U

lock ();
old = new U
(2) e
‘ unlock ()
[new !=old]

unlock (); °
new++
[new == old] a E unlock ()

unlock ()

unlock ()

Concretize Error

race

unlock ()

lock ();
old = new

unlock ();
new-++ e U

unlock ()

unlock ()

unlock ()

Concretize Error

race

unlock ()

lock ();
old = new

unlock ();
new-++ ° U

unlock ()

unlock ()

unlock ()

Concretize Error

race

unlock ()

lock ();
old = new

ﬁgmto; @ U new = old
[new == old]
e U true
unlock ()
Q E true

unlock ()

unlock ()

Concretize Error Trace

unlock ()

lock ();
old = new

[T
e L new+1=old

unlock ();
new++ a U new = old

unlock () o
unioc

a E true unlock ()

Concretize Error Trace

unlock ()

lock ();
old = new

[T
e L new+1=old

unlock ();
new++ a U new = old

unlock () o
unioc

a E true unlock ()

Concretize Error Trace

unlock ()

U new+1 = new
lock ();
old = new

[T
e L new+1=old

unlock ();
new++ a U new = old

unlock ()
unlock ()

a E true unlock ()

Concretize Error Trace

U new+1 = new

Spurious!
lock ();
old = new

[T
e L new+1=old

unlock ();
new++ a U new = old

0 G U true
‘ unlock ()
[new !=old]

unlock
new++ () ° E |

unlock ()

unlock ()

Concretize Error

race

Spurious!

unlock ()

lock ();
old = new

[T

U new+1 = new

new = old
IS a relevant
predicate

unlock ()

unlock ()

ﬂZ'JJﬁEO: @ U new = old
[new == old]
e U true
unlock ()
Q E true

Refined Abstract Reachabillity

lock ();
old = new

L, new = old

unlock ()

unlock ()

Refined Abstract Reachabillity

unlock ()

lock ();
old = new

new++

unlock ()

unlock ()

Refined Abstract Reachabillity

unlock ()

lock ();
old = new

new++

unlock ()

unlock ()

Refined Abstract Reachabillity

unlock ()

lock ();
old = new

unlock ();
new++
U, new = old °
[new == old] [new != old]
U, new = old

unlock ()

unlock ()

Refined Abstract Reachabillity

unlock ()

I

I
/

P
O
<
@
D
Q

lock ();
old = new

new++

U, new = old

unlock ()

unlock ()

Refined Abstract Reachabillity

unlock ()

lock ();
old = new

L, new = 0ld ((3) jyow - L, new = old
unlock ();
new++

[new == old] [new != old]
U, new = old

unlock ()

unlock ()

Refined Abstract Reachabillity

lock ();
old = new

L, new = old e [new != L, new = old
unlock (); [new == old]
new++

[new == old] [new != old]
lock ();
old = new @ @
a [new !=old] U’ new # Old

unlock ()

unlock ()
unlock ()

Abstract Reachabillity Tree

lock ();
old = new

L, new = old e [new != L, new = old
unlock (); [new == old]
new++

= ol
U, new = old ° @ L, new = old

unlock ()

[new == old] [new != old]
lock ();
old = new } @ @ U’ new = Old
‘ ezl U, new = old

unlock ()
unlock ()

unlock ()

Abstract Reachabillity Tree = Proof

Inductive invariant:
(pc=2'! L A new=old) A
U (pc=3!L A new=old) /£

lock ();
old = new

L, new = old e [new != L, new = old
unlock (); [new == old]
new++

U, new = old ° @ L, new = old

unlock ()

[new == old] [new != old]
lock ();
old = new } @ @ U’ new = Old
‘ ezl U, new = old

unlock ()

unlock ()
unlock ()

Lesson b:

Automatic Program Verification

Abstract + Search

|dentify relevant facts. Track relevant facts.

A Brief History (and Future?) of Model Checking

1980s: Theory of finite-state model checking
[Clarke/Emerson, Sifakis, et al.]

1990s: Techniques to combat state explosion

Finite-state model checking penetrates the hardware
iIndustry [Fujitsu, Intel, Motorola, Siemens, etc.]

Theory of infinite-state model checking
2000s: Techniges for automatic abstraction

Infinite-state model checking penetrates the software
iIndustry ?!

