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Code a Code b

1. Interface compatibility checking:                    
solving graph games 

2. Interface refinement checking:                     
alternating simulation relations

3. Conformance checking of code against interface
BLAST [Jhala,Majumdar,Sutre]



Interface Conformance Checking with BLAST

example () {
1: do {

lock (); 
old = new;

2: if (*) {
3: unlock ();

new ++;
}

4: } while (new != old);
5: unlock ();
?: return;
}

U L
lock!

unlock!

Interface Automaton.



Interface Conformance Checking with BLAST

example () {
1: do {

lock (); 
old = new;

2: if (*) {
3: unlock ();

new ++;
}

4: } while (new != old);
5: unlock ();
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}
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Control Flow Graph
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Concretize Error Trace
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Concretize Error Trace
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Concretize Error Trace
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Abstract Reachability Tree
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Abstract Reachability Tree = Proof
Inductive invariant:
(pc=2 ! L Æ new=old) Æ
(pc=3 ! L Æ new=old) Æ
…
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Lesson 5:

Automatic Program Verification 

=

Abstract + Search
Identify relevant facts. Track relevant facts.



A Brief History (and Future?) of Model Checking

1980s: Theory of finite-state model checking
[Clarke/Emerson, Sifakis, et al.]

1990s: Techniques to combat state explosion 

Finite-state model checking penetrates the hardware 
industry [Fujitsu, Intel, Motorola, Siemens, etc.] 

Theory of infinite-state model checking

2000s: Techniqes for automatic abstraction 

Infinite-state model checking penetrates the software 
industry ?!


