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Conformance checking of code against interface
| BLAST [Jhala,Majumdar,Sutre] |




Interface Conformance Checking with BLAST

example () {
1: do({
lock () lock!
old = new;
2- if (%) { unlock
3: unlock ();
new ++: Interface Automaton.
}

4: } while (new != old);
5. unlock ();
?: return;

}




Interface Conformance Checking with BLAST

example () {
1: do({
lock ();
old = new;
2: if (*){
3: unlock ();
new ++;
}
4: } while (new != old);
5: unlock ();
2
}

unlock ()

. return; .
Monitor Automaton.




Control Flow Graph

lock ();
old = new

[T]

[new != old]

unlock ();
example () { new-++
1: do{
I(;)ng:()r;ew; [new == old]
2: if (*) {
3: unlock ();
} new unlock ()

} while (new != old); unlock ()

4:

5: unlock ();
?: return; unlock ()
}
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Concretize Error
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Concretize Error Trace
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Concretize Error Trace
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Concretize Error Trace

U new+1 = new

Spurious!
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Concretize Error
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Refined Abstract Reachabillity
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Refined Abstract Reachabillity

lock ();
old = new

L, new = old e [new != L, new = old
unlock (); [new == old]
new++
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Abstract Reachabillity Tree

lock ();
old = new

L, new = old e [new != L, new = old
unlock (); [new == old]
new++
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Abstract Reachabillity Tree = Proof

Inductive invariant:
(pc=2'! L A new=old) A
U (pc=3!L A new=old) /£

lock ();
old = new

L, new = old e [new != L, new = old
unlock (); [new == old]
new++

U, new = old ° @ L, new = old

unlock ()
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Lesson b:

Automatic Program Verification

Abstract + Search

|dentify relevant facts. Track relevant facts.



A Brief History (and Future?) of Model Checking

1980s: Theory of finite-state model checking
[Clarke/Emerson, Sifakis, et al.]

1990s: Techniques to combat state explosion

Finite-state model checking penetrates the hardware
iIndustry [Fujitsu, Intel, Motorola, Siemens, etc.]

Theory of infinite-state model checking
2000s: Techniges for automatic abstraction

Infinite-state model checking penetrates the software
iIndustry ?!



