
Interface-based Design 5

Tom Henzinger
EPFL and UC Berkeley

Interface A Interface B

Interface A’ Interface B’

≤
≤≤

≤
Code a Code b

1.
Interface A Interface B

2.2. ≤ ≤

Interface A’ Interface B’

≤ ≤

Code a Code b

1. Interface compatibility checking:
solving graph games

2. Interface refinement checking:
alternating simulation relations

CHIC
[Chakrabarti]

1.
Interface A Interface B

2.2. ≤ ≤

Interface A’ Interface B’

3.3. ≤ ≤

Code a Code b

1. Interface compatibility checking:
solving graph games

2. Interface refinement checking:
alternating simulation relations

3. Conformance checking of code against interface
BLAST [Jhala,Majumdar,Sutre]

Interface Conformance Checking with BLAST

example () {
1: do {

lock ();
old = new;

2: if (*) {
3: unlock ();

new ++;
}

4: } while (new != old);
5: unlock ();
?: return;
}

U L
lock!

unlock!

Interface Automaton.

Interface Conformance Checking with BLAST

example () {
1: do {

lock ();
old = new;

2: if (*) {
3: unlock ();

new ++;
}

4: } while (new != old);
5: unlock ();
?: return;
}

U L

E

lock ()

unlock ()

lock ()unlock ()

Monitor Automaton.

Control Flow Graph

1

?

3

2

4

5

lock ();
old = new

[T]

[T]

[new != old]

[new == old]

unlock ();
new++

unlock ()

example () {
1: do {

lock ();
old = new;

2: if (*) {
3: unlock ();

new ++;
}

4: } while (new != old);
5: unlock ();
?: return;
}

U L

E

lock ()

unlock ()

lock ()unlock ()

Abstract Reachability

1 U

1

?

3

2

4

5

lock ();
old = new

[T]
[T]

[new != old]

[new == old]

unlock ();
new++

unlock ()

U L

E

lock ()

unlock ()

lock ()unlock ()

Abstract Reachability

1 U
lock ();
old = new

2 L

1

?

3

2

4

5

lock ();
old = new

[T]
[T]

[new != old]

[new == old]

unlock ();
new++

unlock ()

U L

E

lock ()

unlock ()

lock ()unlock ()

Abstract Reachability

1

3

2

4

U
lock ();
old = new

L
[T]

unlock ();
new++

L

U

1

?

3

2

4

5

lock ();
old = new

[T]
[T]

[new != old]

[new == old]

unlock ();
new++

unlock ()

U L

E

lock ()

unlock ()

lock ()unlock ()

Abstract Reachability

1

3

2

4

5

U
lock ();
old = new

L
[T]

unlock ();
new++

L

U

[new == old]
1

?

3

2

4

5

lock ();
old = new

[T]
[T]

[new != old]

[new == old]

unlock ();
new++

unlock ()

U
U L

E

lock ()

unlock ()

lock ()unlock ()

Abstract Reachability

1

?

3

2

4

5

U
lock ();
old = new

L
[T]

unlock ();
new++

L

U

[new == old]
1

?

3

2

4

5

lock ();
old = new

[T]
[T]

[new != old]

[new == old]

unlock ();
new++

unlock ()

U
U L

E

lock ()

unlock ()

lock ()unlock ()

unlock ()

E

Concretize Error Trace

1

?

3

2

4

5

U
lock ();
old = new

L
[T]

unlock ();
new++

L

U

[new == old]
1

?

3

2

4

5

lock ();
old = new

[T]
[T]

[new != old]

[new == old]

unlock ();
new++

unlock ()

U
U L

E

lock ()

unlock ()

lock ()unlock ()

unlock ()

E true

Concretize Error Trace

1

?

3

2

4

5

U
lock ();
old = new

L
[T]

unlock ();
new++

L

U

[new == old]
1

?

3

2

4

5

lock ();
old = new

[T]
[T]

[new != old]

[new == old]

unlock ();
new++

unlock ()

U true
U L

E

lock ()

unlock ()

lock ()unlock ()

unlock ()

E true

Concretize Error Trace

1

?

3

2

4

5

U
lock ();
old = new

L
[T]

unlock ();
new++

L

U new = old

[new == old]
1

?

3

2

4

5

lock ();
old = new

[T]
[T]

[new != old]

[new == old]

unlock ();
new++

unlock ()

U true
U L

E

lock ()

unlock ()

lock ()unlock ()

unlock ()

E true

Concretize Error Trace

1

?

3

2

4

5

U
lock ();
old = new

L
[T]

unlock ();
new++

L new+1 = old

U new = old

[new == old]
1

?

3

2

4

5

lock ();
old = new

[T]
[T]

[new != old]

[new == old]

unlock ();
new++

unlock ()

U true
U L

E

lock ()

unlock ()

lock ()unlock ()

unlock ()

E true

Concretize Error Trace

1

?

3

2

4

5

U
lock ();
old = new

new+1 = oldL
[T]

unlock ();
new++

L new+1 = old

U new = old

[new == old]
1

?

3

2

4

5

lock ();
old = new

[T]
[T]

[new != old]

[new == old]

unlock ();
new++

unlock ()

U true
U L

E

lock ()

unlock ()

lock ()unlock ()

unlock ()

E true

Concretize Error Trace

1

?

3

2

4

5

new+1 = newU
lock ();
old = new

new+1 = oldL
[T]

unlock ();
new++

L new+1 = old

U new = old

[new == old]
1

?

3

2

4

5

lock ();
old = new

[T]
[T]

[new != old]

[new == old]

unlock ();
new++

unlock ()

U true
U L

E

lock ()

unlock ()

lock ()unlock ()

unlock ()

E true

Concretize Error Trace

Spurious! 1

?

3

2

4

5

new+1 = newU
lock ();
old = new

new+1 = oldL
[T]

unlock ();
new++

L new+1 = old

U new = old

[new == old]
1

?

3

2

4

5

lock ();
old = new

[T]
[T]

[new != old]

[new == old]

unlock ();
new++

unlock ()

U true
U L

E

lock ()

unlock ()

lock ()unlock ()

unlock ()

E true

Concretize Error Trace

new = old
is a relevant

predicate
Spurious! 1

?

3

2

4

5

new+1 = newU
lock ();
old = new

new+1 = oldL
[T]

unlock ();
new++

L new+1 = old

U new = old

[new == old]
1

?

3

2

4

5

lock ();
old = new

[T]
[T]

[new != old]

[new == old]

unlock ();
new++

unlock ()

U true
U L

E

lock ()

unlock ()

lock ()unlock ()

unlock ()

E true

Refined Abstract Reachability

1 U
lock ();
old = new

2 L, new = old

1

?

3

2

4

5

lock ();
old = new

[T]
[T]

[new != old]

[new == old]

unlock ();
new++

unlock ()

U L

E

lock ()

unlock ()

lock ()unlock ()

Refined Abstract Reachability

1

3

2

4

lock ();
old = new

[T]

U

L, new = old

L, new = old
unlock ();
new++

U, new ≠ old
1

?

3

2

4

5

lock ();
old = new

[T]
[T]

[new != old]

[new == old]

unlock ();
new++

unlock ()

U L

E

lock ()

unlock ()

lock ()unlock ()

Refined Abstract Reachability

1

3

2

4

5

lock ();
old = new

[T]

[new == old]

U, new ≠ old

unlock ();
new++

U

L, new = old

L, new = old

1

?

3

2

4

5

lock ();
old = new

[T]
[T]

[new != old]

[new == old]

unlock ();
new++

unlock ()

U L

E

lock ()

unlock ()

lock ()unlock ()

Refined Abstract Reachability

1

3

2

4

5

lock ();
old = new

[T]

[new == old]

U, new ≠ old

unlock ();
new++

U

L, new = old

1

L, new = old

1

?

3

2

4

5

lock ();
old = new

[T]
[T]

[new != old]

[new == old]

unlock ();
new++

unlock ()

[new != old]

U L

E

lock ()

unlock ()

lock ()unlock ()

U, new ≠ old

Refined Abstract Reachability

1

3

2

4

5

lock ();
old = new

[T]

[new == old]

U

U, new ≠ old

L, new = old

unlock ();
new++

L, new = old

1

[new != old]

U, new ≠ old U L

E

lock ()

unlock ()

lock ()unlock ()

1

?

3

2

4

5

lock ();
old = new

[T]
[T]

[new != old]

[new == old]

unlock ();
new++

unlock ()

covered

Refined Abstract Reachability

1

3

2

4

5

lock ();
old = new

[T]

[new == old]

U, new ≠ old

L, new = old

unlock ();
new++

U

L, new = old

1

4

[T]

L, new = old

[new != old]

U, new ≠ old

1

[new !=
old]

U L

E

lock ()

unlock ()

lock ()unlock ()

1

?

3

2

4

5

lock ();
old = new

[T]
[T]

[new != old]

[new == old]

unlock ();
new++

unlock ()

Refined Abstract Reachability

1

3

2

4

5

lock ();
old = new

[T]

[new == old]

U, new ≠ old

L, new = old

unlock ();
new++

U

L, new = old

1

[new != old]

U, new ≠ old

4

[T]

L, new = old

1

[new !=
old]

5

[new == old]

U L

E

lock ()

unlock ()

lock ()unlock ()

1

?

3

2

4

5

lock ();
old = new

[T]
[T]

[new != old]

[new == old]

unlock ();
new++

unlock ()

L, new = old

Abstract Reachability Tree

1

3

2

4

5

lock ();
old = new

[T]

[new == old]

U, new ≠ old

L, new = old

unlock ();
new++

U

L, new = old

1

4

[T]

L, new = old

1

[new !=
old]

5

[new == old]

L, new = old

?

unlock ()[new != old]

U, new = old

U, new ≠ old U L

E

lock ()

unlock ()

lock ()unlock ()

1

?

3

2

4

5

lock ();
old = new

[T]
[T]

[new != old]

[new == old]

unlock ();
new++

unlock ()

Abstract Reachability Tree = Proof
Inductive invariant:
(pc=2 ! L Æ new=old) Æ
(pc=3 ! L Æ new=old) Æ
…

1

3

2

4

5

lock ();
old = new

[T]

[new == old]

U, new ≠ old

L, new = old

unlock ();
new++

U

L, new = old

1

4

[T]

L, new = old

1

[new !=
old]

5

[new == old]

L, new = old

?

unlock ()[new != old]

U, new = old

U, new ≠ old U L

E

lock ()

unlock ()

lock ()unlock ()

1

?

3

2

4

5

lock ();
old = new

[T]
[T]

[new != old]

[new == old]

unlock ();
new++

unlock ()

Lesson 5:

Automatic Program Verification

=

Abstract + Search
Identify relevant facts. Track relevant facts.

A Brief History (and Future?) of Model Checking

1980s: Theory of finite-state model checking
[Clarke/Emerson, Sifakis, et al.]

1990s: Techniques to combat state explosion

Finite-state model checking penetrates the hardware
industry [Fujitsu, Intel, Motorola, Siemens, etc.]

Theory of infinite-state model checking

2000s: Techniqes for automatic abstraction

Infinite-state model checking penetrates the software
industry ?!

