Process Algebra:
a unifying approach

Tony Hoare

Marktoberdorf Summer School
August 2004

Applications

* Hardware * Multi-processors
« Communications * Networks
« Parallel programs <« WWW

« Scientific models
In biology, psychology, sociology,...

Process Algebra

gives mathematical support for

» Specification » Design
 Development « Optimisation
* Implementation Analysis

* Testing * Verification

of computer systems

| ecture one

» Deterministic Transition Systems
* Traces
» Refinement

A deterministic transition system

IS an edge-labelled graph that has

— nodes representing processes: p,q,...

— labels representing events: e f,...

— a special node: * (not a process)

— a function after: nodes X labels = nodes

After

* p/e is the state of p after it has done e

— ple = * if p cannot do e
— *le = *

e * makes / into a total function

Traces

 Extend / to sequences of labels:

— p/<> =def p
— p/(<e>s) =def (p/e)ls

« traces(p) =def {s|(p/s) # *}

—traces(*) = {}

Refinement

* p2Qq =def traces(q) C traces(p)
*P=Q =def p2q & q2p

— called trace equivalence

— Implies equality in automata theory
* refinement is basic to CSP

— supports specification

— and stepwise development

Relations

* A relation is a set of ordered pairs
e.g., the empty relation

id =4t {(P,Q)IP=9}
2 =4 {(P,Q) P20}

» -e-> =def {(p,q)|p/le=q & q # * # p}

Transitions

* p -e-> g means that a process in initial
state p , on occurrence of event e, will
move to state g

* p-e-> =def ple F T Fp
* p-le-> =def ple = *

10

Relational Composition

If S and T are relations,
S;T =4 {(P.N)PSq & qTr, forsome q}
SUT = their set union

SN T = their intersection

S C T means set inclusion
— pinS implies pin T, forall p

11

id: S

(S;T);

SCT

Relational Algebra

= S = S:id

R = S;(T;R)

implies S;R C T;
and R;S C R

R
,T
UR) = (S;T)U(S;R)

(T
(UR);S = (T;5)U (R;S)

12

Refinement order

« Thm. = is reflexive and transitive, ie,
- id C
-2,;2 C

v IV

* F is monotonic =,
p2p & gq2q &...
implies F(p,q,...) 2 F(p,q,...)

13

Monotonicity

« Thm. /e is monotonic, ie,
p2q implies p/e2 qgle

 Thm. (2;-e>) C (-e>;2)

— transitions respect trace refinement
— just restates the previous theorem

14

Lecture two

« Simulation
» Unification
* Operational semantics

15

A simulation

Is any relation S between processes s.t.
S;-e> €C -e>;S

— the empty relation, identity,
refinement , trace equivalence
« composition of simulations is a simulation
— so is the union of a set of simulations,

— and the intersection of a non-empty set

16

Bisimulation

* A bisimulation is a symmetric simulation
— e.g:. empty, identity, trace equivalence

* Bisimulation is basic to CCS
— justifies automatic model checking
— supports co-inductive proofs

17

Simulation implies refinement

* Proof: by induction on the length of traces.
See lecture notes

18

Similarity
* similarity =def the union of all simulations

— which is itself a simulation
— the largest one, includes all the others

19

Unification

* In a deterministic transition system
similarity and refinement coincide

Proof: similarity is a simulation, and so implies
refinement. Refinement is a simulation, and
so implies similarity.

20

A process algebra

defines a syntax to name all nodes

* STOP,RUN, e.p, (p|&| q), (p V| q)

—where p and g are processes

* distinct syntax names distinct nodes
— unless equated by structural equivalence

21

Structural Equivalence

defined by axioms like

_ () = *
-pl& ") = 7 = ("[&p)
- PIvl*) = p = ("|vlp)

 * cannot be expressed in the syntax

22

An operational semantics
defines /e by induction on its syntax

« STOP/e = * STOP does nothing

- RUN/e = RUN » RUN does anything

 (f.p)le = p ff=e
 f.p does f, then
= * otherwise behaves like p

23

Trace semantics

* Proved from the operational semantics

— not the other way round

— because processes with same traces will
later be differentiated by non-determinism

24

Theorems

traces(*) = { }
traces(STOP) = {< >}

traces(RUN) = all sequences of labels

traces(f.p) = {< >} U {<f>t| tin traces(p)}

25

Semantics of parallel
- (p|&la)e = (ple)|&| (ale)

* (p|vla)e = (p/e)|v| (p/e)

* (pllla)e

Traces

« Thm: traces((p|v|q)) =
traces(p) U traces(q)

 Thm: traces((p|&|q)) = their intersection

27

Boolean Algebra

* RUN [&|p = p
« STOP |&|p = STOP

*pl&lp = p
*pl&l g = ql&p
* (Pl&qg)l&r = pl&| (g

* (PIviag)|&lr =(p|&]r)|v
 dually for |v]

unit law

zero law
idempotence
symmetry
&l r) assoc

(9 [&] r)

28

External choice

* ((e.p) Iv[(f.q)) [& (e.r)

= e.(pl&|r) if e #f

* ((e.p) Iv[(f.q)) [& (g.r)

= STOP if g#f and g#e

29

Problem?

* ((e.p)Ivl(e.q)) [& (e.r)
= e.(plvlq)l&lr)

— delayed choice, which is inefficient

* That's why we introduce
non-determinism

30

Lecture three

* Non-determinism
* Reduction
» Operational Semantics

31

Non-determinism

* Let -tau-> be a relation between processes

* Interpreted as
— a ‘silent’ transition
— an internal computation
— an algebraic reduction
— a committed choice

32

Healthiness condition

(-tau->; -e->) C (-e->; —tau?->)

—where -tau?-> = (id U -tau->)

— formalises invisibility of tau
— permits optimisation

— by postponement of —tau->
— or its elimination

33

Reduction (=)

* Define > =def (-tau->)*
e = |s a reflexive transitive simulation

» Define p to be stable iff p-|[tau->

34

Weak Transitions

e« =e=> =def =2 ;-e->;-2>
— non-deterministic, as in CCS

* Lemma: =e=> = (-e->:)
= (2 :=e=>) = (=e=>;)

Proof: from simulation and transitivity of -2

35

A weak simulation

e |s a relation W such that
(W; =e=>) C (me=>; W)
- e.g.,{}, id,

» the composition and union of weak
simulations Is a weak simulation

— not the intersection
« weak similarity is largest weak simulation

36

Theorem

e If W is a weak simulation then
(= ; W) is a simulation

Proof: (=;W) ; -e->

O

> W:-e>:>
2>, W, =e=>
-e->; (=2 ;W)

lemma
lemma
weak simulation

37

Theorem

 If Sis a simulation, (S ; =) is a weak one

Proof. (S; -2); (-e->; =)

S:-e->:-> lemma
-e->:S 2 simulation
(-e->;2);(S;2) -> reflexive

IO 1O 1

38

Unification

 Thm: weakly similar = similar

* Proof:

Let W be weak similarity. So (= ; W) is a
simulation, and therefore contained in
similarity. Similarly, the reverse containment.

39

Semantics for tau

« STOP -|tau-> RUN -|tau->
¢ (e.p) -|tau->
* (p|&] q) -tau-> (p" |&] O')
iff p-tau->p’andg=q'
or g-tau->qg and p=p’
* similarly for |v|

40

New processes

« CHAOS

— totally non-deterministic

* (pvQ)

— internal (demonic) choice

* (pl1a)

— external (environmental) choice

41

Non-determinism

 distinguishes processes with the same
traces, e.g., CHAOS vs. RUN.

— CHAOS/e = CHAOS, forall e
— CHAQOS —tau->p for all p
— RUN/e = RUN forall e

— RUN —|tau->

42

Internal non-determinism

* (pvqg)e = (plevale)

*(vp) = p = (pv7)

* (pvq)—-tau->p and (pvq)—-tau->q
— like internal choice in CSP
— implemented in CCS as: (tau.p + tau.q)

43

External non-determinism

(p[1a)e = (porqg)e

after first step, the choice is internal

(p[lqg)-tau->(p' [19)

iff p-tau->p ' &q=q
or g-tau->q &p=p

(as in CSP) initial internal reductions cannot
remove the external choice

(in CCS) + is different

44

Problem?

* (p[la) (pva) = (plv]q)

* trace equivalence does not distinguish
different kinds of choice

 that's why we introduce

Barbs

45

Lecture four

» Barbed Transition Systems
» Refusals
* Divergences

46

Barbs

» serve as labels for the nodes
— appearing only at the end of a trace

 explain why the process has terminated
— either it has finished successfully
— or it has deadlocked (refuses to act)
— or it has entered an infinite loop (diverged)

* eliminate the need for tau

47

Barbs

* Let # (sharp) be a distinguished process
— such that traces(#) = {< >}

* Let BARB be a distinguished set of labels
appearing only just before # , so
fp—-e->q then (einBARB iff g=#)

48

A barbed simulation

IS a simulation S s.t. forall b in BARB
(S;-b->) C -b->

 Thm: All simulations are barbed
simulations (and vice versa)

Since a barb is a label, if S is a simulation,
p S g and g-b->r implies p-b->p’and p’ S #
By the property of barbs, r=p" = #

49

Refusals

 Let ref(X) be a barb

— where X is a set of normal labels
— not including barbs

— Indicates deadlock in an environment that
expects any of the events of X

50

Healthiness condition

o p —ref(X)-># iff X C {e|ple="}
— if p is stable

o p—ref(X)-># iff p—>;-ref(X)->#
—if p is unstable

* this is the defining property of refusals

51

Theorem

STOP/ref(X) = #

RUN/ref(X) = *

CHAQOS/ref(X) = #

(f.p)/ref(X) = #

forany X

forany X

iff f isnotin X

52

* (p|& g)ref(XUY) = # if plref(Y)=

* (p [Q)ref(X) =

* (P Vv q)/ref(X)

continued

)
iff p/ref(X)
and q/ref(X) =

= # iff p/ref(X) =
or q/ref(X) =

53

Divergences
e p/div = # Iff p—tau->p —tau-> ...
forever

« CHAOS/div =#

(because CHAQOS -tau-> CHAOQOS)
« STOP, RUN and f.p

have no divergence barb
(because they have no tau transitions)

54

continued

* (P& q), (plvla), (Pva) (plla)
have a divergence barb

iff one (or both) of their operands has a
divergence barb.

95

Communicating Sequential
Processes

« CSP failures are just traces
— with ref(X) barbs at the end

« CSP divergences are just traces
—with a div barb at the end

56

Summary

similarity « weak similarity
barbed similarity « failures refinement
trace refinement e FDR

- ... by curious coding tricks...

... all turn out to be the same.

o7

Acknowledgements

* Robin Milner, Bill Roscoe, He Jifeng,
Sriram Rajamani, Jakob Rehof, Cedric
Fournet, Paul Gardiner, Gavin Lowe, Rob
van Glabbeek,...

* and many others.

58

	Process Algebra:a unifying approach
	Applications
	Process Algebra
	Lecture one
	A deterministic transition system
	After
	Traces
	Refinement
	Relations
	Transitions
	Relational Composition
	Relational Algebra
	Refinement order
	Monotonicity
	Lecture two
	A simulation
	Bisimulation
	Simulation implies refinement
	Similarity
	Unification
	A process algebra
	Structural Equivalence
	An operational semanticsdefines _ /e by induction on its syntax
	Trace semantics
	Theorems
	Semantics of parallel
	Traces
	Boolean Algebra
	External choice
	Problem?
	Lecture three
	Non-determinism
	Healthiness condition
	Reduction ()
	Weak Transitions
	A weak simulation
	Theorem
	Theorem
	Unification
	Semantics for tau
	New processes
	Non-determinism
	Internal non-determinism
	External non-determinism
	Problem?
	Lecture four
	Barbs
	Barbs
	A barbed simulation
	Refusals
	Healthiness condition
	Theorem
	continued
	Divergences
	continued
	Communicating Sequential Processes
	Summary
	Acknowledgements

