
1

Process Algebra:
a unifying approach

Tony Hoare

Marktoberdorf Summer School
August 2004

2

Applications

• Multi-processors
• Networks
• W W W

• Hardware
• Communications
• Parallel programs

• Scientific models
in biology, psychology, sociology,…

3

Process Algebra
gives mathematical support for

• Specification
• Development
• Implementation
• Testing

• Design
• Optimisation
• Analysis
• Verification

of computer systems

4

Lecture one

• Deterministic Transition Systems
• Traces
• Refinement

5

A deterministic transition system

is an edge-labelled graph that has

– nodes representing processes: p,q,…
– labels representing events: e,f,…
– a special node: * (not a process)
– a function after: nodes X labels nodes

6

After

• p/e is the state of p after it has done e

– p/e = * if p cannot do e
– */e = *

• * makes / into a total function

7

Traces

• Extend / to sequences of labels:

– p/< > =def p
– p/(<e>s) =def (p/e)/s

• traces(p) =def { s | (p/s) ≠ * }
– traces(*) = { }

8

Refinement

• p ≥ q =def traces(q) C traces(p)
• p ≡ q =def p ≥ q & q ≥ p

– called trace equivalence
– implies equality in automata theory

• refinement is basic to CSP
– supports specification
– and stepwise development

9

Relations

• A relation is a set of ordered pairs
e.g., the empty relation

id =def {(p,q)| p = q }
≥ =def {(p,q)| p ≥ q}

• -e-> =def {(p,q)| p/e = q & q ≠ * ≠ p}

10

Transitions

• p -e-> q means that a process in initial
state p , on occurrence of event e, will
move to state q

• p -e-> =def p/e ≠ * ≠ p
• p -|e-> =def p/e = *

11

Relational Composition

• If S and T are relations,
S ; T =def {(p,r)| p S q & q T r, for some q }

• S U T = their set union
• S n T = their intersection
• S C T means set inclusion

– p in S implies p in T, for all p

12

Relational Algebra
• id ; S = S = S ; id
• (S ; T) ; R = S ; (T ; R)
• S C T implies S ; R C T ; R

and R ; S C R ; T
• S ; (T U R) = (S ; T) U (S ; R)
• (T U R) ; S = (T ; S) U (R ; S)

13

Refinement order

• Thm. ≥ is reflexive and transitive, ie,
– id C ≥
– ≥ ; ≥ C ≥

• F is monotonic =def
p ≥ p’ & q ≥ q’ & …

implies F(p, q, …) ≥ F(p’, q’, …)

14

Monotonicity

• Thm. _ /e is monotonic, ie,
p ≥ q implies p/e ≥ q/e

• Thm. (≥ ; -e->) C (-e-> ; ≥)
– transitions respect trace refinement
– just restates the previous theorem

15

Lecture two

• Simulation
• Unification
• Operational semantics

16

A simulation
is any relation S between processes s.t.

S ; -e-> C -e-> ; S
– the empty relation, identity,

refinement , trace equivalence
• composition of simulations is a simulation

– so is the union of a set of simulations,
– and the intersection of a non-empty set

17

Bisimulation

• A bisimulation is a symmetric simulation
– e.g: empty, identity, trace equivalence

• Bisimulation is basic to CCS
– justifies automatic model checking
– supports co-inductive proofs

18

Simulation implies refinement

• Proof: by induction on the length of traces.
See lecture notes

19

Similarity

• similarity =def the union of all simulations

– which is itself a simulation
– the largest one, includes all the others

20

Unification

• In a deterministic transition system
similarity and refinement coincide

Proof: similarity is a simulation, and so implies
refinement. Refinement is a simulation, and
so implies similarity.

21

A process algebra
defines a syntax to name all nodes

• STOP, RUN , e.p , (p |&| q) , (p |v| q)
– where p and q are processes

• distinct syntax names distinct nodes
– unless equated by structural equivalence

22

Structural Equivalence
defined by axioms like
– (e.*) = *
– (p |&| *) = * = (* |&| p)
– (p |v| *) = p = (* |v| p)

• * cannot be expressed in the syntax

23

An operational semantics
defines _ /e by induction on its syntax

• STOP/e = *

• RUN/e = RUN

• (f.p)/e = p if f = e

= * otherwise

• STOP does nothing

• RUN does anything

• f.p does f , then
behaves like p

24

Trace semantics

• Proved from the operational semantics

– not the other way round
– because processes with same traces will

later be differentiated by non-determinism

25

Theorems

• traces(*) = { }

• traces(STOP) = {< >}

• traces(RUN) = all sequences of labels

• traces(f.p) = {< >} U {<f>t | t in traces(p)}

26

Semantics of parallel

• (p |&| q)/e = (p/e) |&| (q/e)

• (p |v| q)/e = (p/e) |v| (p/e)

• (p ||| q)/e = ….

27

Traces

• Thm: traces((p|v|q)) =
traces(p) U traces(q)

• Thm: traces((p|&|q)) = their intersection

28

Boolean Algebra

• RUN |&| p = p unit law
• STOP |&| p = STOP zero law
• p |&| p = p idempotence
• p |&| q = q |&| p symmetry
• (p |&| q) |&| r = p |&| (q |&| r) assoc
• (p |v| q) |&| r = (p |&| r) |v| (q |&| r)
• dually for |v|

29

External choice

• ((e.p) |v| (f.q)) |&| (e.r)

= e.(p |&| r) if e ≠ f

• ((e.p) |v| (f.q)) |&| (g.r)

= STOP if g ≠ f and g ≠ e

30

Problem?

• ((e.p) |v| (e.q)) |&| (e.r)
= e.((p |v| q) |&| r)

– delayed choice, which is inefficient

• That’s why we introduce

non-determinism

31

Lecture three

• Non-determinism
• Reduction
• Operational Semantics

32

Non-determinism

• Let -tau-> be a relation between processes

• interpreted as
– a ‘silent’ transition
– an internal computation
– an algebraic reduction
– a committed choice

33

Healthiness condition

• (-tau-> ; -e->) C (-e-> ; –tau?->)
– where -tau?-> = (id U -tau->)

– formalises invisibility of tau
– permits optimisation
– by postponement of –tau->
– or its elimination

34

Reduction ()

• Define =def (-tau->)*

• is a reflexive transitive simulation

• Define p to be stable iff p-|tau->

35

Weak Transitions

• =e=> =def ; -e-> ;
– non-deterministic, as in CCS

• Lemma: =e=> = (-e-> ;)
= (; =e=>) = (=e=> ;)

Proof: from simulation and transitivity of

36

A weak simulation

• is a relation W such that
(W ; =e=>) C (=e=> ; W)

– e.g., { }, id,
• the composition and union of weak

simulations is a weak simulation
– not the intersection

• weak similarity is largest weak simulation

37

Theorem

• If W is a weak simulation then
(; W) is a simulation

Proof: (;W) ; -e->
= ; W ; -e-> ; lemma
= ; W ; =e=> lemma
C -e-> ; (;W) weak simulation

38

Theorem

• If S is a simulation, (S ;) is a weak one

Proof: (S ;) ; (-e-> ;)
= S ; -e-> ; lemma
C -e-> ; S ; simulation
C (-e-> ;) ; (S ;) reflexive

39

Unification

• Thm: weakly similar = similar

• Proof:
Let W be weak similarity. So (; W) is a

simulation, and therefore contained in
similarity. Similarly, the reverse containment.

40

Semantics for tau

• STOP -|tau-> RUN -|tau->
• (e.p) -|tau->
• (p |&| q) -tau-> (p’ |&| q’)

iff p -tau-> p’ and q = q’
or q -tau-> q’ and p = p’

• similarly for |v|

41

New processes

• CHAOS
– totally non-deterministic

• (p v q)
– internal (demonic) choice

• (p [] q)
– external (environmental) choice

42

Non-determinism

• distinguishes processes with the same
traces, e.g., CHAOS vs. RUN.

– CHAOS/e = CHAOS, for all e
– CHAOS –tau-> p for all p

– RUN/e = RUN for all e
– RUN –|tau->

43

Internal non-determinism

• (p v q)/e = (p/e v q/e)
• (* v p) = p = (p v *)
• (p v q) –tau-> p and (p v q) –tau-> q

– like internal choice in CSP
– implemented in CCS as: (tau.p + tau.q)

44

External non-determinism

• (p [] q)/e = (p or q)/e
– after first step, the choice is internal

• (p [] q) -tau-> (p’ [] q’)
iff p -tau-> p’ & q = q’
or q -tau-> q’ & p = p’

– (as in CSP) initial internal reductions cannot
remove the external choice

– (in CCS) + is different

45

Problem?

• (p [] q) ≡ (p v q) ≡ (p |v| q)

• trace equivalence does not distinguish
different kinds of choice

• that’s why we introduce

Barbs

46

Lecture four

• Barbed Transition Systems
• Refusals
• Divergences

47

Barbs

• serve as labels for the nodes
– appearing only at the end of a trace

• explain why the process has terminated
– either it has finished successfully
– or it has deadlocked (refuses to act)
– or it has entered an infinite loop (diverged)

• eliminate the need for tau

48

Barbs

• Let # (sharp) be a distinguished process
– such that traces(#) = {< >}

• Let BARB be a distinguished set of labels
appearing only just before # , so
If p –e-> q then (e in BARB iff q = #)

49

A barbed simulation

is a simulation S s.t. for all b in BARB
(S ; -b->) C -b->

• Thm: All simulations are barbed
simulations (and vice versa)
Since a barb is a label, if S is a simulation,
p S q and q-b->r implies p-b->p’ and p’ S #
By the property of barbs, r = p’ = #

50

Refusals

• Let ref(X) be a barb
– where X is a set of normal labels
– not including barbs
– indicates deadlock in an environment that

expects any of the events of X

51

Healthiness condition

• p –ref(X)-> # iff X C {e | p/e = * }
– if p is stable

• p –ref(X)-> # iff p ; –ref(X)-> #
– if p is unstable

• this is the defining property of refusals

52

Theorem

• STOP/ref(X) = # for any X

• RUN/ref(X) = *

• CHAOS/ref(X) = # for any X

• (f.p)/ref(X) = # iff f is not in X

53

continued

• (p |&| q)/ref(X U Y) = # if p/ref(Y) = #
and q/ref(Z) = #

• (p [] q)/ref(X) = # iff p/ref(X) = #
and q/ref(X) = #

• (p v q)/ref(X) = # iff p/ref(X) = #
or q/ref(X) = #

54

Divergences
• p/div = # iff p –tau-> p’ –tau-> …

forever
• CHAOS/div = #

(because CHAOS -tau-> CHAOS)
• STOP, RUN and f.p

have no divergence barb
(because they have no tau transitions)

55

continued

• (p |&| q), (p |v| q), (p v q), (p [] q)
have a divergence barb

iff one (or both) of their operands has a
divergence barb.

56

Communicating Sequential
Processes

• CSP failures are just traces
– with ref(X) barbs at the end

• CSP divergences are just traces
– with a div barb at the end

57

Summary

• weak similarity
• failures refinement
• FDR

• similarity
• barbed similarity
• trace refinement

• ... by curious coding tricks…

• … all turn out to be the same.

58

Acknowledgements

• Robin Milner, Bill Roscoe, He Jifeng,
Sriram Rajamani, Jakob Rehof, Cedric
Fournet, Paul Gardiner, Gavin Lowe, Rob
van Glabbeek,…

• and many others.

	Process Algebra:a unifying approach
	Applications
	Process Algebra
	Lecture one
	A deterministic transition system
	After
	Traces
	Refinement
	Relations
	Transitions
	Relational Composition
	Relational Algebra
	Refinement order
	Monotonicity
	Lecture two
	A simulation
	Bisimulation
	Simulation implies refinement
	Similarity
	Unification
	A process algebra
	Structural Equivalence
	An operational semanticsdefines _ /e by induction on its syntax
	Trace semantics
	Theorems
	Semantics of parallel
	Traces
	Boolean Algebra
	External choice
	Problem?
	Lecture three
	Non-determinism
	Healthiness condition
	Reduction ()
	Weak Transitions
	A weak simulation
	Theorem
	Theorem
	Unification
	Semantics for tau
	New processes
	Non-determinism
	Internal non-determinism
	External non-determinism
	Problem?
	Lecture four
	Barbs
	Barbs
	A barbed simulation
	Refusals
	Healthiness condition
	Theorem
	continued
	Divergences
	continued
	Communicating Sequential Processes
	Summary
	Acknowledgements

