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Applications

• Multi-processors
• Networks
• W W W

• Hardware
• Communications
• Parallel programs

• Scientific models
in biology, psychology, sociology,…



3

Process Algebra
gives mathematical support for

• Specification
• Development
• Implementation
• Testing

• Design
• Optimisation
• Analysis
• Verification

of computer systems
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Lecture one

• Deterministic Transition Systems
• Traces
• Refinement
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A deterministic transition system

is an edge-labelled graph that has

– nodes representing processes: p,q,…
– labels representing events: e,f,…
– a special node:  *  (not a process)
– a function  after: nodes X labels nodes
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After

• p/e is the state of p after it has done e

– p/e =  *  if p cannot do e
– */e  =  *

• *  makes  /  into a total function
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Traces

• Extend  /  to  sequences of labels:

– p/< > =def p
– p/(<e>s)   =def (p/e)/s

• traces(p)  =def { s | (p/s)  ≠ * }
– traces(*)   =    { }
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Refinement

• p ≥ q   =def traces(q)   C traces(p)
• p ≡ q   =def p ≥ q  &  q ≥ p

– called trace equivalence
– implies equality in automata theory

• refinement is basic to CSP
– supports specification
– and stepwise development
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Relations

• A relation is a set of ordered pairs
e.g., the empty relation

id   =def {(p,q)| p = q }
≥ =def {(p,q)| p ≥ q}

• -e->    =def {(p,q)| p/e = q   &  q  ≠ *  ≠ p}
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Transitions

• p -e-> q means that a process in initial 
state p , on occurrence of event  e,  will 
move to state  q

• p -e-> =def p/e ≠ *  ≠ p 
• p -|e-> =def p/e =   *
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Relational Composition

• If S and  T  are relations,
S ; T  =def {(p,r)| p S q  &  q T r, for some  q }

• S U T  =   their set union
• S n T  =  their intersection
• S C T  means set inclusion

– p in S  implies  p in T,  for all  p
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Relational Algebra
• id ; S    =   S   =   S ; id
• (S ; T) ; R    =    S ; (T ; R)
• S C T    implies    S ; R    C T ; R

and    R ; S    C R ; T
• S ; (T U R)    =    (S ; T) U (S ; R)
• (T U R) ; S    =    (T ; S) U (R ; S)
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Refinement order

• Thm. ≥ is reflexive and transitive, ie,
– id      C ≥
– ≥ ;  ≥ C ≥

• F  is monotonic   =def
p ≥ p’ &  q ≥ q’ & …

implies F(p, q, …)  ≥ F(p’, q’, … )
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Monotonicity

• Thm.  _ /e  is monotonic, ie,
p ≥ q   implies  p/e ≥ q/e

• Thm.    ( ≥ ; -e->)    C (-e-> ; ≥ )
– transitions respect trace refinement
– just restates the previous theorem
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Lecture two

• Simulation
• Unification
• Operational semantics
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A simulation
is any relation S between processes s.t.

S ; -e->    C -e-> ; S
– the empty relation, identity, 

refinement , trace equivalence
• composition of simulations is a simulation

– so is the union of a set of simulations, 
– and the intersection of a non-empty set
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Bisimulation

• A bisimulation is a symmetric simulation
– e.g: empty, identity, trace equivalence

• Bisimulation is basic to CCS 
– justifies automatic model checking
– supports co-inductive proofs
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Simulation implies refinement

• Proof: by induction on the length of traces.  
See lecture notes



19

Similarity

• similarity  =def the union of all simulations

– which is itself a simulation
– the largest one, includes all the others
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Unification

• In a deterministic transition system
similarity and refinement coincide

Proof: similarity is a simulation, and so implies 
refinement. Refinement is a simulation, and 
so implies similarity.
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A process algebra
defines a syntax to name all nodes

• STOP, RUN , e.p , (p |&| q) , (p |v| q)
– where  p  and  q  are  processes

• distinct syntax names distinct nodes
– unless equated by structural equivalence
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Structural Equivalence
defined by axioms like
– (e.*)  =  *
– (p |&| * )   =   *   =    ( * |&| p)
– (p |v| * )      =   p   =   ( * |v| p)

• *   cannot be expressed in the syntax
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An operational semantics
defines  _ /e  by induction on its syntax

• STOP/e  =  *

• RUN/e  =  RUN

• (f.p)/e =   p    if  f = e

=  *   otherwise

• STOP does nothing

• RUN does anything

• f.p does  f , then 
behaves like  p 
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Trace semantics

• Proved from the operational semantics

– not the other way round
– because processes with same traces will 

later be differentiated by non-determinism
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Theorems

• traces(*)  =  {  }

• traces(STOP) = {< >}

• traces(RUN)   = all sequences of labels

• traces(f.p) = {< >} U {<f>t | t in traces(p)}
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Semantics of parallel

• (p |&| q)/e =   (p/e) |&| (q/e)

• (p |v| q)/e =  (p/e) |v| (p/e)

• (p ||| q)/e =   ….
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Traces

• Thm: traces((p|v|q))  = 
traces(p) U traces(q)

• Thm: traces((p|&|q))  =   their intersection
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Boolean Algebra

• RUN |&| p   = p unit law
• STOP |&| p   = STOP zero law
• p |&| p  = p idempotence
• p |&| q  = q |&| p symmetry
• (p |&| q) |&| r   = p |&| (q |&| r) assoc
• (p |v| q) |&| r  = (p |&| r) |v| (q |&| r) 
• dually for   |v|
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External choice

• ((e.p) |v| (f.q))    |&|    (e.r)

= e.( p |&| r ) if  e ≠ f

• ((e.p) |v| (f.q))    |&|    (g.r)    

= STOP if  g ≠ f  and  g ≠ e
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Problem? 

• ((e.p) |v| (e.q))    |&|    (e.r)
= e.((p |v| q) |&| r )

– delayed choice, which is inefficient

• That’s why we introduce

non-determinism



31

Lecture three

• Non-determinism
• Reduction
• Operational Semantics
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Non-determinism

• Let -tau-> be a relation between processes 

• interpreted as
– a ‘silent’ transition
– an internal computation
– an algebraic reduction
– a committed choice
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Healthiness condition

• (-tau-> ; -e->)   C (-e-> ; –tau?->)
– where   -tau?->   =   ( id U -tau->)

– formalises invisibility of  tau
– permits optimisation
– by postponement of  –tau->
– or its elimination
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Reduction ( )

• Define    =def (-tau->)*

• is a reflexive transitive simulation 

• Define  p to be stable   iff p-|tau->
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Weak Transitions

• =e=>    =def ; -e-> ; 
– non-deterministic, as in CCS

• Lemma:  =e=> =     (-e-> ; )  
=  ( ; =e=>)    =     (=e=> ; )

Proof: from simulation and transitivity of 
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A weak simulation

• is a relation W such that
(W ; =e=>)  C (=e=> ; W)

– e.g., { }, id, 
• the composition and union of weak 

simulations is a weak simulation
– not the intersection

• weak similarity is largest weak simulation
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Theorem

• If  W  is a weak simulation then
( ; W)  is a simulation

Proof: ( ;W) ; -e-> 
= ; W ; -e-> ; lemma
= ; W ; =e=> lemma
C -e-> ; ( ;W) weak simulation
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Theorem

• If S is a simulation, (S ; ) is a weak one

Proof:  (S ; ) ; (-e-> ; )   
= S ; -e-> ; lemma
C -e-> ; S ; simulation
C (-e-> ; ) ; (S ; )          reflexive
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Unification

• Thm:   weakly similar  =  similar

• Proof: 
Let W be weak similarity.  So ( ; W) is a 

simulation, and therefore contained in 
similarity.  Similarly, the reverse containment.
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Semantics for  tau

• STOP -|tau-> RUN -|tau->
• (e.p)  -|tau->
• (p |&| q) -tau-> (p’ |&| q’)

iff p -tau-> p’ and q = q’
or     q -tau-> q’ and  p = p’

• similarly for  |v|
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New processes

• CHAOS
– totally non-deterministic

• (p v q)
– internal (demonic) choice

• (p [] q )
– external (environmental) choice
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Non-determinism

• distinguishes processes with the same 
traces, e.g.,  CHAOS  vs.  RUN.

– CHAOS/e  =  CHAOS, for all  e
– CHAOS –tau-> p for all  p

– RUN/e   =   RUN for all  e
– RUN –|tau->
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Internal non-determinism

• (p v q)/e =   (p/e v q/e)
• ( * v p)   =   p   =   (p v * )
• (p v q) –tau-> p  and  (p v q) –tau-> q

– like internal choice in CSP
– implemented in CCS as: (tau.p + tau.q)
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External non-determinism

• (p [] q)/e =  (p or q)/e
– after first step, the choice is internal

• (p [] q) -tau-> (p’ [] q’)  
iff p -tau-> p’ & q = q’
or  q -tau-> q’ & p = p’

– (as in CSP) initial internal reductions cannot 
remove the external choice

– (in CCS)  +  is different
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Problem?

• (p [] q)   ≡ (p v q)  ≡ (p |v| q)

• trace equivalence does not distinguish 
different kinds of choice

• that’s why we introduce

Barbs



46

Lecture four

• Barbed Transition Systems
• Refusals
• Divergences
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Barbs

• serve as labels for the nodes
– appearing only at the end of a trace

• explain why the process has terminated
– either it has finished successfully
– or it has deadlocked (refuses to act)
– or it has entered an infinite loop (diverged)

• eliminate the need for tau



48

Barbs

• Let  # (sharp) be a distinguished process
– such that  traces(#)  =  {< >}

• Let BARB be a distinguished set of labels
appearing only just before  # , so
If p –e-> q     then    ( e in BARB  iff q = # )
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A barbed simulation

is a simulation  S   s.t. for all b in BARB
(S ; -b->)    C -b->

• Thm:  All simulations are barbed 
simulations (and vice versa)
Since a barb is a label, if S is a simulation,
p S q and q-b->r  implies p-b->p’ and p’ S # 
By the property of barbs, r = p’ = #
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Refusals

• Let ref(X) be a barb  
– where X is a set of normal labels
– not including barbs
– indicates deadlock in an environment that 

expects any of the events of  X 
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Healthiness condition

• p –ref(X)-> # iff X  C {e | p/e = * }
– if p is stable

• p –ref(X)-> # iff p ; –ref(X)-> #
– if  p  is unstable

• this is the defining property of refusals
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Theorem

• STOP/ref(X) =  #  for any  X

• RUN/ref(X)   =  *

• CHAOS/ref(X) =  # for any  X

• (f.p)/ref(X) =   #    iff f  is not in  X
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continued

• (p |&| q)/ref(X U Y)  =  #   if  p/ref(Y) = #   
and  q/ref(Z) = #

• (p [] q)/ref(X)  =   #    iff p/ref(X) = #  
and   q/ref(X) = #

• (p v q)/ref(X)  =  #    iff p/ref(X) = #
or   q/ref(X) = #



54

Divergences
• p/div  =  # iff p –tau-> p’ –tau-> …

forever
• CHAOS/div = #

(because  CHAOS -tau-> CHAOS)
• STOP, RUN  and  f.p

have no divergence barb
(because they have no tau transitions)
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continued 

• (p |&| q),  (p |v| q),  (p v q), (p [] q) 
have a divergence barb 

iff one (or both) of their operands has a   
divergence barb.  
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Communicating Sequential 
Processes

• CSP failures are just traces 
– with ref(X) barbs at the end

• CSP divergences are just traces
– with a  div  barb at the end
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Summary

• weak similarity
• failures refinement
• FDR

• similarity
• barbed similarity
• trace refinement

• ... by curious coding tricks…

• … all turn out to be the same.
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