
Applications of obfuscation to
software

and hardware systems

Victor P. Ivannikov

Institute for System Programming
Russian Academy of Sciences

(ISP RAS)
www.ispras.ru

Program obfuscation

is an efficient transformation O of a program
P into an equivalent program P' such that P'
is far less understandable than P (i.e. P'
protects any secrets that may be built into
and used by P).

A perfectly obfuscated program P' should
complies with a “virtual black box” property:
any information that can be extracted from
the text of P' can be also extracted from the
input-output behavior of P'.

Total obfuscation is a transformation of a
program P into an equivalent program P'
such that one can’t understand what P' is
doing (i.e. one can’t learn the functionality
of P from the text of P’).

This guarantees a designer of the program
P against its usage by an adversary in any
applications as well as reverse
engineering.

Weak obfuscation is a transformation of a
program P into an equivalent program P' such
that anyone even knowing the functionality of
P' can’t understand how P' operates. This means
that one can’t extract any useful information
about data structures, algorithm, constants, etc.
used in P from the text of P' and its input-output
behavior specification.

In this case P' may be used in applications but
any purposeful modification of its code (reverse
engineering, inserting malicious fragments,
breaking watermarks, etc.) is impossible.

The source paper:
W.Diffie, M.Hellman, New Directions in

Cryptography (1976).
«A more practical approach to finding a pair of
easily computed inverse algorithms E and D, such
that D is hard to infer from E, makes use of the
difficulty of analyzing programs in low level
languages. Anyone who has tried to determine
what operation is accomplished by someone else’s
machine language program knows that E itself (i.e.
what E does) can be hard to infer from an algorithm
for E. If the program were to be made purposefully
confusing through the addition of unneed variables
and statements, then determining an inverse
algorithm could be made very difficult.

Of course, E must be complicated enough to
prevent its identification from input-output pairs.

Essentially what is required is a one-way compiler:
one which takes an easily understood program
written in a high level language and translates it into
an incomprehensible program in some machine
language. The compiler is one-way because it must
be feasible to do the compilation, but infeasible to
reverse the process.»

Cryptography and Obfuscation

Cryptography: C=E(M)
C is a ciphertext of a plaintext M .

Obfuscation: P'=O(P)

P' is a “ciphertext” of a source code P.

The main difference:

An obfuscated program (“ciphertext”) P' has
to be an executable program equivalent to P.
Thus, obfuscation may be viewed as a
semantic-preserving encryption of programs.

Applications of obfuscation
• To protect programs against reverse

engineering and illegal modifications
• To protect software from illegal usage at the

stage of distribution (with the help of
watermarks)

• To provide security of mobile agents in the
hostile environment

• To provide secret computation on the
encrypted data (homomorphic encryption)

• To transform symmetric-key encryption
algorithms into public-key ones

Theoretical Foundations of
Program Obfuscation

The hardness of formal program analysis:
undecidability of Halting Problem, Equivalence
Problem, etc.

Theorem (Rice, 1953, Uspensky, 1954). Any
non-trivial semanical property of computer
programs is undecidable.

Obfuscation techniques
• C. Collberg, C. Thomborson, D. Low [1997]

(taxonomy of obfuscating transformations)
• Wang C., Hill J., Knight J. Davidson J. [2000]

(obfuscation as static analysis obstruction)
• Chow S., Gu Y., Johnson H., Zakharov V.

[2001] (obfuscation via implantation of hard
problems into a program)

• C. Linn, S. Debray [2003] (obfuscation via
disrupting static disassembly process)

• X. Zhuang, R. Gupta [2003] (obfuscation with
the help of program slicing techniques).

Formal definition of a perfect obfuscator
(B.Barak et al [2001])

A perfect obfuscator is a probabilistic algorithm OO
which satisfies the following three conditions:
(functionality): For every program ππ the string O(O(ππ)) is
a program that computes the same function as ππ.
(polynomial slowdown) : The size and running time of
O(O(ππ)) are at most polynomially larger than that of ππ.

(virtual black box): any probabilistic polynomial time
(PPT) algorithm AA (adversary), which has an access to
the text of O(O(π)) could achieve no better results than
some PPT algorithm SS which has oracle access to π
(i.e. SS uses π as a black box).

On the impossibility
of “black-box” perfect obfuscators

Theorem. ”Virtual black box” perfect
obfuscators do not exist.

Barak B., Goldreich O., Impagliazzo R.,
Rudich S., Sahai A., Vedhan S, Yang K.,
On the (Im)possibility of obfuscating
programs. CRYPTO'01 - Advances in
Cryptology, LNCS, 2001, v.2139, p. 1-18.

On the impossibility of ““gray boxgray box””
perfect obfuscators

An obfuscator OO is called weakly perfect if for any
program π an obfuscated program O(O(ππ)) has virtual
gray box property, i.e. any PPT AA which has an
access to the text of O(O(ππ)) could achieve no better
results than some PPT algorithm SS which has access
to the set TrTr((ππ)) of execution traces of program ππ.

Theorem.Theorem. Weakly perfect obfuscators do not Weakly perfect obfuscators do not
exist.exist.
N.Varnovsky A note on the concept of
obfuscation, Tech. Report of the Institute for
System Programming, v. 6, 2004.

On the possibility of provably
secure obfuscating programs

Theorem. Password checking scheme can be
obfuscated securely.

N. Varnovsky, V. Zakharov, On the possibility
of provably secure obfuscating programs.
2003, LNCS, v. 2890, p. 91-102 (ISP RAS)

B. Lynn, M. Prabhakaran, A. Sahai, Positive
results and techniques for obfuscation.
2004, LNCS, v. 3027, p. 20-39

Computation on encrypted data
Given a program A choose a pair (E,D) of encoding
and decoding algorithms and transform A into a
program B such that

A(x) = D (B (E(x)))
holds for any input x

Source
program A

Encryption
E Program B Decryption

D≈

Data encryption Data encryption EE

Data decryption Data decryption DD
Program Program BB

Secure computations on encrypted data

Theorem. For any algebraic circuit AA there exists
an algebraic circuit B such that
1. Size(B) ≤ 2⋅Size(A)
2. there are efficient encoding E of inputs and

decoding D of outputs such that
A= D(B(E)) (∗)

3. given a circuit B one can suggest exponentially
many different circuits A, encodings E and
decodings D satisfying (∗).

A.V.Shokurov, An approach to quantitative analysis of
resistance of data encodings in tamper-resistant
software, Tech. Report of the Institute for System
Programming v.6, 2004.

Directions for further theoretical researchDirections for further theoretical research
1. Developing refined definitions of

secure obfuscation (obfuscation
functionality, algorithms, constants).

2. Open Problem:
Is it possible to obfuscate securely
finite state machines (automata)?

3. Challenge: to develop a formal concept of
“semantic complexity” of programs (for
measuring the complexity of program
understanding).

Analogy: Kolmogorov complexity

Implementations

• There are more than 20 Java byte-code
obfuscators, including commercial. The
most advanced – Zelix KlassMaster
(www.zelix.com). It performs the following
transformations:
– Removal of debugging information.
– Identifier renaming in the whole program.
– Character string encoding.
– Insertion of redundant JVM GOTO

instructions to make reverse translation to Java
source harder.

Taxonomy of Obfuscating
Transformations

• Lexical obfuscation (comment removal,
identifier renaming, structured construction
removal, debugging info removal).

• Program control obfuscation.
• Program data obfuscation (string

scrambling, array restructuring, etc).

C. Colberg at al. A Taxonomy of
Obfuscating Transformations, 1997.

Program Control Obfuscation
• Restructuring of the whole program:

– Function inlining,
– Function outlining,
– Function interleaving,
– Function cloning,
– Library calls elimination.

• Transformation of a single function:
– «opaque» predicates, redundant code, «dead» code, use of identities,
– Destructurization,
– Basic block cloning,
– Loop unrolling,
– Loop fusion, loop fission, loop interleaving,
– Creation of «dispatcher»,
– Variable localization, variable globalization, variable reuse,
– Increasing indirect level.

Example of lexical obfuscation
int f1(int r0) {

int r1, r2, r3;
r1 = 1;
r2 = 1;
if (r0 > 1) goto L22;
return 1;
L22: if (r0 <= 1)
goto L23;
r3 = (r1 + r2);
r1 = r2;
r2 = r3;
r0--;
goto L22;
L23: return r3;
}

int fib(int n) {
int a, b, c;
a = 1;
b = 1;
if (n <= 1) return
1;
for (; n > 1; n--) {

c = a + b;
a = b;
b = c;

}
return c;
}

How to measure the effect of
transformation?

• Security of practical obfuscation techniques is
in most cases cannot be proved.

• To estimate the effect of transformation Code
Complexity metrics are used (Code Length,
Cyclomatic Complexity, Fan In/Out
Complexity, etc).

• An adequate theoretical basis currently does
not exist.

Practical obfuscation study at
ISP RAS

• The research is empiric, thus a programming
environment to study analysis and transformation
of programs is needed.
Requirements for an Integrated Research
Environment (IRE)

• Support for all the primary program analysys and
optimization methods.

• Support for all primary program obfuscation
methods.

• Open interface: possibility to add a new analysis
or obfuscation method.

Uses of the IRE

• Research of program optimization
methods (parallelizing, profile-based
optimizations, etc).

• Study of program obfuscation and
analysis of obfuscated programs.

• As a tool for detection of security
vulnerabilities and malicious code (in
perspective).

IRE User Interface

Analyzing/optimization tools

• Inter/intra-procedural alias and range
analysis.

• Program dependency analysis.
• Constant/copy propagation, dead code

elimination, common subexpression
elimination, invariant code motion.

• Basic block node/edge profiling, tracing,
control-flow graph recovery.

Obfuscation tools

• Identifier renaming, structure elimination.
• Dispatcher construction.
• Static and tracing-resistant obfuscation

based on control-flow transformation
(PhD thesis, 2003, A. Chernov).

• Obfuscation using cryptography
primitives (MSc thesis, ISP RAS 2004,
A. Lokhmotov).

Dispatcher transformation

Dispatcher table encoding

• A method is developed, which uses one-way
functions and pseudo-random generators.

• The method has provable cryptographic
resistance against program static analysis.

• One-way function and pseudorandom functions
are based on knapsack problem:

fa(x) = ∑i xiai mod 2m,
x = (x1x2…xn), xi ∈ {0,1}; a = (a1, a2,…, an), ai∈ {0,1}m

MSc thesis, ISP RAS 2004, A. Lokhmotov

Resistance against profile-based
analysis

• Increase the complexity of the CFG by adding
new edges. The added edges are not “dead”.

• Increase the data complexity by generating
dummy code and its environment.

• Stop data-flow analysis methods by adding
“false” data dependencies between the dummy
and the original code.

A. Chernov. A New Program Obfuscation Method. In Proceedings
of the Adrei Ershov Fifth International Conference “Perspectives of
Systems Informatics”. International Workshop on Program
Understanding, Novosibirsk, July 14-16, 2003.

Basic block cloning

Obfuscating functions in
hardware

• The goal of hardware obfuscation is
to protect secret information in circuit
design.

• Financial/military applications.

	Applications of obfuscation to softwareand hardware systems
	Cryptography and Obfuscation
	Applications of obfuscation
	Theoretical Foundations of Program Obfuscation
	Obfuscation techniques
	Formal definition of a perfect obfuscator (B.Barak et al [2001])
	On the impossibility of “black-box” perfect obfuscators
	On the impossibility of “gray box” perfect obfuscators
	On the possibility of provably secure obfuscating programs
	Implementations
	Taxonomy of Obfuscating Transformations
	Program Control Obfuscation
	Example of lexical obfuscation
	How to measure the effect of transformation?
	Practical obfuscation study at ISP RAS
	Uses of the IRE
	IRE User Interface
	Analyzing/optimization tools
	Obfuscation tools
	Dispatcher transformation
	Dispatcher table encoding
	Resistance against profile-based analysis
	Basic block cloning
	Obfuscating functions in hardware

