
Software Engineering

Marktoberdorf 2004

Towards Trusted Components

Bertrand Meyer
ETH, Zürich &  Eiffel Software, California

Lesson 1:
Focusing on reuse



2
Software Engineering

Working hypothesis

For progress in software, focus on

high-quality components



3
Software Engineering

A definition

Trusted component

A reusable software element
accompanied by a guarantee of quality



4
Software Engineering

Four lessons

Lesson 1: Focusing on reuse

Lesson 2: Proving classes: the overall pointer structure

Lesson 3: The Current Calculus

Lesson 4: Doing proofs



5
Software Engineering

Working hypothesis

Where to focus effort for progress in software?

Tools?
A priori, a posteriori

Languages?

Methods, education?

High quality components



6
Software Engineering

Levels involved

End-user applications

Compilers & operating systems

General-purpose 
components

Specialized components



7
Software Engineering

What is a software component?

Program element with the following properties:

Can be used by other program elements (“clients”)

Has an official description sufficient for client 
authors to use it

(information hiding)

Component authors do not need to know who are the 
client authors



8
Software Engineering

The two aspects of reuse and their benefits

The consumer view
Less software to develop: gain productivity
Facilitate maintenance
Gain on quality (?): Reliability, efficiency…
Learn from models, standardize practices

The producer view
Improve interoperability
Turn know-how into capital



9
Software Engineering

Today’s software is often good enough

Overall:
Works most of the time
Doesn’t kill too many people
Negative effects, esp. financial, are diffuse

Significant improvements since early years:
Better languages
Better tools
Better practices



10
Software Engineering

Beyond good enough?

Stable economic system:
Sum of individual optima = Global optimum

Traditional, non-component-based development:
Individual optimum:  Good Enough
To make software better: consumer is responsible!

Component-based development:
Consumer & producer both want better components
Improvements: Producer does the job



11
Software Engineering

From “good enough” to good?

Beyond “good enough”, quality is economically bad
He who perfects, dies

Actual

Quality Choose to release?

Ideal

Time

1 2 3 4



12
Software Engineering

Components and quality

The good news:

Reuse scales up everything



13
Software Engineering

Components and quality

The good news:

Reuse scales up everything

The bad news:

Reuse scales up everything



14
Software Engineering

The opportunity to do things right?

In ordinary development (the construction of applications), 
programmer perfectionism is often considered a nuisance 

In component development, perfectionism is good

“Formula-1 racing” of software engineering



15
Software Engineering

Eiffel library experience

EiffelBase (collection classes), EiffelVision (portable graphics), 
EiffelNet, EiffelStore, EiffelMath, EiffelLex, EiffelParse

Strong consistency principles, strict interface & design rules

Systematic use of Eiffel techniques (genericity, multiple 
inheritance, inheritance machinery)

Design by Contract throughout

Strict design discipline: command-query separation, operand-
option separation, taxonomy, uniform access...

Extensively reused in practice



16
Software Engineering

Trusted Components: how to get there

High road:
Proofs of correctness
Assumes source code
In fact, assumes we write the components ourselves

Low road:
Focused on commercial components
Component Certification
Component Quality Model



17
Software Engineering

The following lessons…

… will focus on the “high road” (building proven classes)

So let’s talk a bit about the low road for the rest of today.



18
Software Engineering

Towards a Component Quality Model

A: Acceptance

B: Behavior

C: Constraints

D: Design

E: Extension



19
Software Engineering

Towards a Component Quality Model

A: Acceptance

B: Behavior

C: Constraints

D: Design

E: Extension

A.1   Some reuse attested
A.2   Producer reputation
A.3   Published evaluations



20
Software Engineering

Towards a Component Quality Model

A: Acceptance

B: Behavior

C: Constraints

D: Design

E: Extension

B.1   Examples
B.2   Usage documentation
B.3   Preconditioned
B.4   Some postconditions
B.5   Full postconditions
B.6   Observable invariants



21
Software Engineering

Towards a Component Quality Model

A: Acceptance

B: Behavior

C: Constraints

D: Design

E: Extension

C.1   Platform spec
C.2   Ease of use
C.3   Response time
C.4   Memory occupation
C.5   Bandwidth
C.6   Availability
C.7   Security



22
Software Engineering

Towards a Component Quality Model

A: Acceptance

B: Behavior

C: Constraints

D: Design

E: Extension

D.1   Precise dependency doc
D.2   Consistent API rules
D.3   Strict design rules
D.4   Extensive test cases
D.5 Some proved properties
D.6   Proofs of preconditions,

postconditions & invariants



23
Software Engineering

Towards a Component Quality Model

A: Acceptance

B: Behavior

C: Constraints

D: Design

E: Extension

E.1   Portable across platforms
E.2   Mechanisms for addition
E.3   Mechanisms for redefinition
E.4   User action pluggability



24
Software Engineering

The culture of reuse

From consumer to producer

Management support is essential, including financial

The key step: generalization



25
Software Engineering

A reuse policy

The two principal elements:
Focus on producer side
Build policy around a library

Library team, funded by Reuse Tax
Library may include both external and internal components
Define and enforce strict admission criteria



26
Software Engineering

The context

Seamless, reversible development as supported in the 
Eiffel method



27
Software Engineering

The traditional model

Separate tools:
Programming environment
Analysis & design tools,
e.g. UML

Consequences:
Hard to keep model,
implementation, documentation
consistent 
Constantly reconciling views
Inflexible, hard to maintain systems
Hard to accommodate bouts of late 
wisdom
Wastes  efforts
Damages quality

Feasibility
study

Requirements

Specification

Global
design

Detailed
design

Implemen-
tation

V & V

Distribution



28
Software Engineering

The Eiffel model

Example classes:Seamless development:
Single notation, tools, 
concepts, principles 
throughout 
Eiffel is as much for analysis 
& design as implementation & 
maintenance
Continuous, incremental 
development
Keep model, implementation 
and documentation consistent

Reversibility: go back and forth
Saves money: invest in single 
set of tools
Boosts quality

Analysis

Design

Implemen-
tation

V&V

Generali-
zation

PLANE, ACCOUNT, 
TRANSACTION…

STATE, COMMAND…

HASH_TABLE…

TEST_DRIVER…

TABLE…



29
Software Engineering

The cluster model

A

D

I

V

G

A

D

I

V

G

Mix of sequential and 
concurrent engineering

A

D

I

V

G

A

D

I

V

G

A

D

I

V

G

A

D

I

V

GPermits dynamic 
reconfiguration



30
Software Engineering

Levels of reusability for a software element

0 - Usable in some program

1 - Usable by programs written by the same author

2 - Usable within a group or company

3 - Usable within a community

4 - Usable by anyone



31
Software Engineering

Nature or nurture?

Two modes:
Build and distribute libraries of reusable components
(business model is not clear)

Generalize out of program elements

(Basic distinction:

Program element   --- Software component)

A D I V G



32
Software Engineering

A D I V GGeneralization

B

A*Prepare for reuse. For example:
Remove built-in limits
Remove dependencies on        
specifics of project
Improve documentation, 
contracts...
Abstract 
Extract commonalities and 
revamp inheritance hierarchy

Few companies have the guts to 
provide the budget for this Y

X

Z



33
Software Engineering

Two keys to component development success

Substance: Rely on a theory of the application domain

Form: Obsess over consistency
High-level: design principles
Low-level: style



34
Software Engineering

Eiffelbase hierarchy

CONTAINER

BOX

FINITE INFINITE

BOUNDED UNBOUNDED

FIXED RESIZABLE

COLLECTION

BAG SET

TABLE ACTIVE SUBSET

DISPENSERINDEXABLE CURSOR_
STRUCTURE SEQUENCE

TRAVERSABLE

HIERAR_
CHICAL LINEAR

BILINEAR

*

* * *

*

*

*

*

* *

* * * * * *

* * * * * *

COUNTABLE
*

Representation
Access

Iteration



35
Software Engineering

enter

push

add

insert

Original

Class

ARRAY

STACK

QUEUE

HASH_TABLE

entry

top

oldest

value

pop

remove_oldest

delete

Features

names for EiffelBase classes

put

put

put

put

item

item

item

item

remove

remove

remove

Final

enter

push

add

insert

Class

ARRAY

STACK

QUEUE

HASH_TABLE

remove_oldest

delete

Features

put

put

put

item

item

item

item

remove

remove

remove

entry

top

oldest

value
put

Old and old names for EiffelBase classes



36
Software Engineering

Design principles in the Eiffel method

Object technology: Module  ≡ Type

Design by Contract

Command-Query Separation

Uniform Access

Operand-Option Separation

Inheritance for subtyping, reuse, many variants

Bottom-Up Development

Design for reuse and extension

Style matters



37
Software Engineering

Typical API in a traditional library (NAG)

nonlinear_ode
(equation_count: in INTEGER
epsilon: in out DOUBLE
func: procedure

(eq_count: INTEGER; a: DOUBLE
eps: DOUBLE; b: ARRAY [DOUBLE]
cm: pointer Libtype);

left_count, coupled_count: INTEGER …)

[And so on. Altogether 19 arguments, including:
4 in out values;
3 arrays, used both as input and output;
6 functions, each with 6 or 7 arguments, of which 2 or 3 arrays!]



38
Software Engineering

The EiffelMath approach

e: ORDINARY_DIFFERENTIAL_EQUATION

create e.make (“…values ...”)

e.solve

-- Answer available in e.x and e.status ...



39
Software Engineering

Style rules

No routine without header comments

Preconditions always fully expressed

Postconditions and invariants: the more the better

Redundancy OK in class invariants (axioms and theorems)

Standardized layout

Queries never use verbs! 

Systematic naming conventions

No exceptions; rules strictly enforced

Counter-example!

Class ACCOUNT:
balance, not get_balance



40
Software Engineering

Feature categories: keeping a class in order

class
C

inherit

…

feature -- Category 1

… Feature declarations …

feature -- Category 2

… Feature declarations …

feature -- Category n

… Feature declarations …

invariant
…

end



41
Software Engineering

Feature categories

Standard categories (the only ones in EiffelBase):
Initialization

Creation 
Status setting
Cursor movement
Element change
Removal
Resizing
Transformation

Basic commands

Access
Measurement
Comparison
Status report

Basic queries

Conversion
Duplication
Basic operations

Transformations

Inapplicable
Implementation
Miscellaneous

Internal



42
Software Engineering

Summary of lesson 1

My conjecture: reuse-based development holds the key to 
substantial progress in software engineering

Reuse is a culture, and requires management commitment
(“buy in”)

The process model can support reuse

Generalization turns program elements into software 
components

A good reusable library proceeds from systematic design 
principles and an obsession with consistency


	Marktoberdorf 2004Towards Trusted ComponentsBertrand MeyerETH, Zürich  &  Eiffel Software, California
	Working hypothesis
	A definition
	Four lessons
	Working hypothesis
	Levels involved
	What is a software component?
	The two aspects of reuse and their benefits
	Today’s software is often good enough
	Beyond good enough?
	From “good enough” to good?
	Components and quality
	Components and quality
	The opportunity to do things right?
	Eiffel library experience
	Trusted Components: how to get there
	The following lessons…
	Towards a Component Quality Model
	Towards a Component Quality Model
	Towards a Component Quality Model
	Towards a Component Quality Model
	Towards a Component Quality Model
	Towards a Component Quality Model
	The culture of reuse
	A reuse policy
	The context
	The traditional model
	The Eiffel model
	The cluster model
	Levels of reusability for a software element
	Nature or nurture?
	Generalization
	Two keys to component development success
	Eiffelbase hierarchy
	Original
	Design principles in the Eiffel method
	Typical API in a traditional library (NAG)
	The EiffelMath approach
	Style rules
	Feature categories: keeping a class in order
	Feature categories
	Summary of lesson 1

