
Software Engineering

Marktoberdorf 2004

Towards Trusted Components

Bertrand Meyer
ETH, Zürich & Eiffel Software, California

Lesson 2:
Contracts &

the overall pointer structure

2
Software Engineering

Contracts in Eiffel

At the routine level:
Preconditions
Postconditions

At the class level:
Class invariant

Other assertion constructs:
“check” instruction
Loop invariant and variant

3
Software Engineering

(From lesson 1) Component Quality Model

A: Acceptance

B: Behavior

C: Constraints

D: Design

E: Extension

B.1 Examples
B.2 Usage documentation
B.3 Preconditioned
B.4 Some postconditions
B.5 Full postconditions
B.6 Observable invariants

4
Software Engineering

(From lesson 1) Style rules

No routine without header comments

Preconditions always fully expressed

Postconditions and invariants: the more the better

Redundancy OK in class invariants (axioms and theorems)

Standardized layout

Queries never use verbs!

Systematic naming conventions

No exceptions; rules strictly enforced

Class ACCOUNT:
balance, not get_balance

Counter-example!

5
Software Engineering

A list with its cursor

"Spain"

before after

Cursor

item

forthback

finishstart

1 count

index

6
Software Engineering

Lists with cursor

before after

count+1

Valid cursor positions

item

0 count1

7
Software Engineering

From the invariant of class LIST

Valid cursor
positions

8
Software Engineering

Moving the cursor forward

before after

"Spain"

1 countCursor

forth

index

9
Software Engineering

Specifying a command: forth

10
Software Engineering

What we do with contracts today

Specify, design, implement
“Methodology” : the opposite of
Defensive Programming

Document

Test & debug

Control inheritance, exceptions

Manage

Demo

11
Software Engineering

Contracts and inheritance

r is
require
γ

ensure

δ

r is
require
α

ensure
β

a1: A

a1.r (…)
…

Correct call in C:
if a1.α then

a1.r (...)
-- Here a1.β hold

end

r ++

C A

D B

++ Redefinition
InheritanceClient

12
Software Engineering

Assertion redeclaration rule

When redeclaring a routine, we may only:

Keep or weaken the precondition

Keep or strengthen the postcondition

13
Software Engineering

Assertion redeclaration rule in Eiffel

A simple language rule does the trick!

Redefined version may have nothing (assertions kept by
default), or

require else new_pre
ensure then new_post

Resulting assertions are (approximately):
original_precondition or new_pre

original_postcondition and new_post

14
Software Engineering

The next step

Prove that class implementations satisfy the contracts

15
Software Engineering

Principles

Very simple mathematics only
Logic
Set theory
Explainable to a first-year student

Have as few instances of “Deus ex machina” (also known as
“pulling a rabbit out of a hat”) as possible

[Physicists: constants
Mathematicians: axioms]

16
Software Engineering

Target and scope

This work applies to Eiffel components

No claim of applicability to any other environment

“Eiffel” may mean either
Eiffel
Whatever we need it to be

Computer science is not a natural science

17
Software Engineering

Challenges

Dealing with a full-fledged, useful, used language
Loops
Pointer (reference) structure, dynamic aliasing
Genericity
Inheritance, single and multiple
Polymorphism
Dynamic binding
Exception handling
Agents (routine objects)

Rest of today

18
Software Engineering

Some assets

Contract mechanism is built-in
No in-class overloading
Simple language (e.g. just one form of loops)
Strict command-query distinction
Good libraries, extensively reused, contract-rich
Every loop is characterized by an invariant and a variant
(no need for fixpoints etc.)

19
Software Engineering

Some of our friends

Binary relations A ↔ B
Set of pairs [a, b] with a ∈ A, b ∈ B
A is source set and B is target set

Functions (possibly partial) A B
(finite) A B
(total) A B

For any relation r : domain r , range r
Function application: r (a), where r is a function and a ∈ domain r

Even if r : is not a function, we may use image
r {X } where X ⊆ A (then r {X } ⊆ B)

||

|

A ↔ B

⊆ A B|

⊆ A B|

20
Software Engineering

A desirable mode of reasoning

-- SOME_PROPERTY holds of a

“Apply SOME_OPERATION to b”

-- SOME_PROPERTY still holds of a

Applicable to “expanded values”, e.g. integers:

-- P (a)

b := b + 1

-- P (a)

21
Software Engineering

Reasoning in the presence of aliasing

-- a makes less than 50 K

b.raise_salary (1)

-- What about a ?

b

49,999

a

salary

22
Software Engineering

This is not just a programming problem

-- I heard that one of the CEO’s in-laws makes less than 50K

Memo to personnel: Raise Jill’s salary by one euro

-- ?

23
Software Engineering

Metaphors cause dynamic aliasing

“The beautiful daughter of Leda”

“Menelas’s spouse”

“Paris’s lover”

“Your driver or your cook?” (Harpagon, in The Miser)

driver

cook
(Jacques)

(Harpagon)

24
Software Engineering

Handling pointers

landlord

loved

landlord

loved

"Almaviva"

spouse

"Rosina"

"Figaro" "Susanna"

spouse

loved

landlord

spouse

loved

landlord

spouse

25
Software Engineering

Basic sets

Addresses
-- (Abstract) addresses of potential objects

States
-- Possible computation states

Convention: the name of a set always starts with an upper-
case letter. It is either:

A noun in the plural, suggesting the set’s elements
Example: States .

A noun in the singular, or an adjective, suggesting the
set as a whole

Examples: Heap, Live

26
Software Engineering

The objects in a state

allocated : States c (Addresses)
-- Set of addresses allocated to objects

Powerset

27
Software Engineering

The static picture

In the next part of the discussion we focus on one specific
state s, and define

Objects allocated (s)=

“Is defined as”

28
Software Engineering

Modeling attributes

landlord : States Objects Objects|

landlord

loved

landlord

loved

"Almaviva"

spouse

"Rosina"

"Figaro" "Susanna"

spouse

loved

landlord

spouse

loved

landlord

spouse

29
Software Engineering

Using partial functions

landlord : States Objects Objects|

An undefined value for landlord (s) (obj) may signal:

That the function is
not applicable to obj

(wrong type)

That the reference
exists but is void

landlord

loved

"Almaviva"

spouse

30
Software Engineering

The overall reference relation

attached = ∪ a
a ∈ attributes

landlord

loved

landlord

loved

"Almaviva"

spouse

"Rosina"

"Figaro" "Susanna"

spouse

loved

landlord
spouse

loved

landlord

spouse

31
Software Engineering

Parts of the object store

Stack

Garbage

Live − Stack

Heap

Live

attached

32
Software Engineering

Modeling the pointer relation

attached : Addresses ↔ Addresses

Invariant (Basic Object Constraint):

attached ⊆ Objects ↔ Objects

Theorems (immediate consequences of [BOC]):

range attached ⊆ Objects -- No zombies

domain attached ⊆ Objects -- No big brother

[BOC]

33
Software Engineering

The stack: source of all references

Stack : c (Addresses)

Invariant:
[IS] Stack ⊆ Objects − range attached

Would not hold in e.g. C++

Stack Heap

34
Software Engineering

Live objects, garbage

Heap Objects − Stack

Live attached* {Stack}

Garbage Objects − Live

=

=

=

Objects

Stack

Garbage

Live − Stack

Heap

Live

35
Software Engineering

Some theorems

Stack ⊆ Objects − range attached
Stack ⊆ Live
Heap ∩ Stack = ∅
Objects = Stack ⊕ Heap
Attached {Objects} ⊆ Heap
Attached + {Objects} ⊆ Heap
Attached {Live} ⊆ Live
Attached ∗ {Live} ⊆ Live
range attached ⊆ Heap
Objects = Stack ⊕ (Live − Stack) ⊕ Garbage

Objects

Stack

Garbage

Live − Stack

Heap

Live

36
Software Engineering

Example events

Object creation
Incremental garbage collection
Full garbage collection

All must preserve invariants!

37
Software Engineering

Convention for state transformers (“events”)

t : State × V State

Queries such as q, r : State Some_type

Notation:
t (v : V) is

require
some_property (s, v)

do
q := …
r := …

ensure
rel (q, old q)

end

|

Specifies
domain

Effect (in parallel)
on specific queries;
others unchanged!

∀ s, v :
rel (q (s), q (t (s, v))

38
Software Engineering

Equality

We use = throughout, but mean object equality: ~

same x, in a postcondition, means
x ~ old x

39
Software Engineering

Example event: object creation (1, spot mistake!)

existing
new

In Eiffel:
create new

allocate (existing, new : Addresses) is
-- Allocate new object at new, linked from existing.

require
old_exists: existing ∉ Live
new_unused: new ∈Live

do
Objects := Objects ∪ {new}
attached := attached ∪ {[existing, new]}

ensure
possibly_one_more: Objects = old Objects ⊕ {new}
new_reachable: Live = old Live {new }
other_garbage_remains: same (Garbage − {new})
no_change_to_stack: same Stack
rest_unchanged: same (attached {Objects − {new}})

end

40
Software Engineering

Example event: object creation (1, spot mistake!)

allocate (existing, new : Addresses) is
-- Allocate new object at new, linked from existing.

require
old_exists: existing ∉ Live
new_unused: new ∈Live

do
Objects := Objects ∪ {new}
attached := attached ∪ {[existing, new]}

ensure
possibly_one_more: Objects = old Objects ⊕ {new}
new_reachable: Live = old Live ∪ {new }
garbage_remains: same (Garbage − {new})
no_change_to_stack: same Stack
rest_unchanged: same (attached {Objects − {new}})

end

existing
new

41
Software Engineering

Object structure

Stack

Garbage

Live − Stack

Heap

Live

attached

42
Software Engineering

Example event: object creation (2, correct!)

new_virginal: new ∉ domain attached

allocate (existing, new : Addresses) is
-- Allocate new object at new, linked from existing.

require
old_exists: existing ∉ Live
new_unused: new ∈ Live

do
Objects := Objects ∪ {new}
attached := attached ∪ {[existing, new]}

ensure
possibly_one_more: Objects = old Objects ⊕ {new}
new_reachable: Live = old Live {new }
garbage_remains: same (Garbage − {new})
no_change_to_stack: same Stack
rest_unchanged: same (attached {Objects − {new}})

end

43
Software Engineering

Garbage collection, full

collect_all is
-- Get rid of all garbage objects.

do
Objects := Live
attached := attached \ Live

ensure
live_only: Objects = old Live
restricted_to_live: attached = old (attached \ Live)
restricted_to_kept: attached = (old attached) \ Objects
no_change_to_stack: same Stack
no_loss_of_life: same Live
all_from_live: domain attached ⊆ Live
all_to_live: range attached ⊆ Live
all_live: Objects = Live
garbage_removed: Garbage = ∅

end

Objects

Stack

Garbage

Live − Stack

Heap

LiveRestriction

44
Software Engineering

Garbage collection, incremental
collect_some (Rejects: (Objects)) is

-- Get rid of all the objects in Rejects.
require

recyclable: Rejects ⊆ Garbage
do

Free := Free ∪ Rejects
attached := attached \ Rejects

ensure
restricted_to_kept: attached = (old attached) \ (Objects – Free)
no_change_to_stack: same Stack
no_loss_of_life: same Live
from_live_or_garbage: domain attached ⊆ Live ∪ (Garbage – Rejects)
all_live_or_free_or_garbage: Objects = Live ∪ Free ∪ (Garbage – Rejects)
no_change_to_garbage: Garbage = old Garbage
no_change_to_objects: Objects = old Objects
possibly_more_free: old Free ⊆ Free

end

45
Software Engineering

Garbage collection, incremental
collect_some (Rejects: (Objects)) is

-- Get rid of all the objects in Rejects.
require

recyclable: Rejects ⊆ Garbage
do

Free := Free ∪ Rejects
attached := attached \ Rejects

ensure
restricted_to_kept: attached = (old attached) \ (Objects – Free)
no_change_to_stack: same Stack
no_loss_of_life: same Live
from_live_or_garbage: domain attached ⊆ Live ∪ (Garbage – Rejects)
all_live_or_free_or_garbage: Objects = Live ∪ Free ∪ (Garbage – Rejects)
no_change_to_garbage: Garbage = old Garbage
no_change_to_objects: Objects = old Objects
possibly_more_free: old Free ⊆ Free

end

46
Software Engineering

Summary of lesson 2

“Proving a class” means proving that it satisfies its contracts

A simple theoretical framework seems sufficient: sets,
relations, total and possibly partial functions.

To make proofs convincing we should avoid special notations

We can express complete specifications through models

Reference attributes can be modeled through functions

The overall pointer structure can be modeled through a
relation, the union of these functions

We can effectively model the object store and events such
as garbage collection

	Marktoberdorf 2004Towards Trusted ComponentsBertrand MeyerETH, Zürich & Eiffel Software, California
	Contracts in Eiffel
	(From lesson 1) Component Quality Model
	(From lesson 1) Style rules
	A list with its cursor
	Lists with cursor
	From the invariant of class LIST
	Moving the cursor forward
	Specifying a command: forth
	What we do with contracts today
	Contracts and inheritance
	Assertion redeclaration rule
	Assertion redeclaration rule in Eiffel
	The next step
	Principles
	Target and scope
	Challenges
	Some assets
	Some of our friends
	A desirable mode of reasoning
	Reasoning in the presence of aliasing
	This is not just a programming problem
	Metaphors cause dynamic aliasing
	Handling pointers
	Basic sets
	The objects in a state
	The static picture
	Modeling attributes
	Using partial functions
	The overall reference relation
	Parts of the object store
	Modeling the pointer relation
	The stack: source of all references
	Live objects, garbage
	Some theorems
	Example events
	Convention for state transformers (“events”)
	Equality
	Example event: object creation (1, spot mistake!)
	Example event: object creation (1, spot mistake!)
	Object structure
	Example event: object creation (2, correct!)
	Garbage collection, full
	Garbage collection, incremental
	Garbage collection, incremental
	Summary of lesson 2

