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Contracts in Eiffel

At the routine level:
Preconditions
Postconditions

At the class level:
Class invariant

Other assertion constructs:
“check” instruction
Loop invariant and variant
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(From lesson 1) Component Quality Model

A: Acceptance

B: Behavior

C: Constraints

D: Design

E: Extension

B.1   Examples
B.2   Usage documentation
B.3   Preconditioned
B.4   Some postconditions
B.5   Full postconditions
B.6   Observable invariants
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(From lesson  1) Style rules

No routine without header comments

Preconditions always fully expressed

Postconditions and invariants: the more the better

Redundancy OK in class invariants (axioms and theorems)

Standardized layout

Queries never use verbs! 

Systematic naming conventions

No exceptions; rules strictly enforced

Class ACCOUNT:
balance, not get_balance

Counter-example!
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A list with its cursor

"Spain"

before after

Cursor

item

forthback

finishstart

1 count

index
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Lists with cursor

before after

count+1

Valid cursor positions

item

0 count1
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From the invariant of class LIST

Valid cursor 
positions
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Moving the cursor forward

before after

"Spain"

1 countCursor

forth

index
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Specifying a command: forth
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What we do with contracts today

Specify, design, implement
“Methodology” : the opposite of
Defensive Programming

Document

Test & debug

Control inheritance, exceptions

Manage

Demo
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Contracts and inheritance

r is
require
γ

ensure

δ

r is
require
α

ensure
β

a1: A

a1.r (…)
…

Correct call in C:
if a1.α then

a1.r (...)
-- Here a1.β hold

end

r ++

C A

D B

++ Redefinition
InheritanceClient
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Assertion redeclaration rule

When redeclaring a routine, we may only:

Keep or weaken the precondition

Keep or strengthen the postcondition
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Assertion redeclaration rule in Eiffel

A simple language rule does the trick!

Redefined version may have nothing (assertions kept by 
default), or

require else new_pre
ensure then new_post

Resulting assertions are (approximately):
original_precondition or new_pre

original_postcondition and new_post
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The next step

Prove that class implementations satisfy the contracts
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Principles

Very simple mathematics only
Logic
Set theory
Explainable to a first-year student

Have as few instances of “Deus ex machina” (also known as 
“pulling a rabbit out of a hat”) as possible

[Physicists: constants
Mathematicians: axioms]
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Target and scope

This work applies to Eiffel components

No claim of applicability to any other environment

“Eiffel” may mean either
Eiffel
Whatever we need it to be

Computer science is not a natural science
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Challenges

Dealing with a full-fledged, useful, used language
Loops
Pointer (reference) structure, dynamic aliasing
Genericity
Inheritance, single and multiple
Polymorphism
Dynamic binding
Exception handling
Agents (routine objects)

Rest of today
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Some assets

Contract mechanism is built-in
No in-class overloading
Simple language (e.g. just one form of loops)
Strict command-query distinction
Good libraries, extensively reused, contract-rich
Every loop is characterized by an invariant and a variant 
(no need for fixpoints etc.)
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Some of our friends

Binary relations A ↔ B
Set of pairs [a, b] with a ∈ A, b ∈ B
A is source set and B is target set

Functions (possibly partial) A B     
(finite) A B     
(total) A       B

For any relation r : domain r , range r
Function application: r (a), where r is a function and a ∈ domain r

Even if r :             is not a function, we may use image
r {X } where X ⊆ A           (then r {X } ⊆ B )

||

|

A ↔ B

⊆ A B|

⊆ A B|
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A desirable mode of reasoning

-- SOME_PROPERTY holds of a

“Apply SOME_OPERATION to b”

-- SOME_PROPERTY still holds of a

Applicable to “expanded values”, e.g. integers:

-- P (a)

b := b + 1

-- P (a)
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Reasoning in the presence of aliasing

-- a makes less than 50 K

b.raise_salary (1)

-- What about a ?

b

49,999

a

salary
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This is not just a programming problem

-- I heard that one of the CEO’s in-laws makes less than 50K

Memo to personnel: Raise Jill’s salary by one euro

-- ?
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Metaphors cause dynamic aliasing

“The beautiful daughter of Leda”

“Menelas’s spouse”

“Paris’s lover”

“Your driver or your cook?” (Harpagon, in The Miser)

driver

cook
(Jacques)

(Harpagon)
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Handling pointers

landlord

loved

landlord

loved

"Almaviva"

spouse

"Rosina"

"Figaro" "Susanna"

spouse

loved

landlord

spouse

loved

landlord

spouse
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Basic sets

Addresses
-- (Abstract) addresses of potential objects

States
-- Possible computation states

Convention: the name of a set always starts with an upper-
case letter. It is either:

A noun in the plural, suggesting the set’s elements
Example: States .

A noun in the singular, or an adjective, suggesting the 
set as a whole

Examples:  Heap, Live
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The objects in a state

allocated : States      c (Addresses)
-- Set of addresses allocated to objects

Powerset
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The static picture

In the next part of the discussion we focus on one specific 
state s, and define

Objects         allocated (s)=

“Is defined as”
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Modeling attributes

landlord : States Objects Objects|

landlord

loved

landlord

loved

"Almaviva"

spouse

"Rosina"

"Figaro" "Susanna"

spouse

loved

landlord

spouse

loved

landlord

spouse
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Using partial functions

landlord : States Objects Objects|

An undefined value for landlord  (s) (obj) may signal:

That the function is
not applicable to obj

(wrong type)

That the reference
exists but is void

landlord

loved

"Almaviva"

spouse
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The overall reference relation

attached =      ∪ a
a ∈ attributes

landlord

loved

landlord

loved

"Almaviva"

spouse

"Rosina"

"Figaro" "Susanna"

spouse

loved

landlord
spouse

loved

landlord

spouse
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Parts of the object store

Stack

Garbage

Live − Stack

Heap

Live

attached
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Modeling the pointer relation

attached : Addresses ↔ Addresses

Invariant (Basic Object Constraint):

attached   ⊆ Objects ↔ Objects

Theorems (immediate consequences of [BOC]):

range attached      ⊆ Objects -- No zombies

domain attached   ⊆ Objects         -- No big brother

[BOC]
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The stack: source of all references

Stack : c (Addresses)

Invariant:
[IS] Stack   ⊆ Objects − range attached

Would not hold in e.g. C++

Stack Heap
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Live objects, garbage

Heap Objects − Stack

Live attached* {Stack}

Garbage Objects − Live

=

=

=

Objects

Stack

Garbage

Live − Stack

Heap

Live
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Some theorems

Stack ⊆ Objects − range attached
Stack ⊆ Live
Heap ∩ Stack = ∅
Objects   = Stack  ⊕ Heap
Attached {Objects}     ⊆ Heap
Attached + {Objects}   ⊆ Heap
Attached {Live}     ⊆ Live
Attached ∗ {Live}   ⊆ Live
range attached ⊆ Heap
Objects   = Stack  ⊕ (Live − Stack) ⊕ Garbage  

Objects

Stack

Garbage

Live − Stack

Heap

Live
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Example events

Object creation
Incremental garbage collection
Full garbage collection

All must preserve invariants!
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Convention for state transformers (“events”)

t : State × V State

Queries such as q, r : State Some_type

Notation:
t (v : V ) is

require
some_property (s, v)

do
q := …
r := …

ensure
rel (q, old q)

end

|

Specifies 
domain

Effect (in parallel) 
on specific queries; 
others unchanged!

∀ s, v :
rel (q (s), q (t (s, v))
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Equality

We use = throughout, but mean object equality: ~

same x, in a postcondition, means
x ~ old x
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Example event: object creation (1, spot mistake!)

existing
new

In Eiffel:
create new

allocate (existing, new : Addresses) is
-- Allocate new object at new, linked from existing.

require
old_exists: existing ∉ Live
new_unused: new ∈Live

do
Objects  := Objects ∪ {new}
attached := attached ∪ {[existing, new]}

ensure
possibly_one_more: Objects = old Objects ⊕ {new}
new_reachable: Live = old Live {new }
other_garbage_remains: same (Garbage − {new})
no_change_to_stack: same Stack
rest_unchanged: same (attached {Objects − {new}})

end
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Example event: object creation (1, spot mistake!)

allocate (existing, new : Addresses) is
-- Allocate new object at new, linked from existing.

require
old_exists: existing ∉ Live
new_unused: new ∈Live

do
Objects  := Objects ∪ {new}
attached := attached ∪ {[existing, new]}

ensure
possibly_one_more: Objects = old Objects ⊕ {new}
new_reachable: Live = old Live ∪ {new }
garbage_remains: same (Garbage − {new})
no_change_to_stack: same Stack
rest_unchanged: same (attached {Objects − {new}})

end

existing
new



41
Software Engineering

Object structure

Stack

Garbage

Live − Stack

Heap

Live

attached
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Example event: object creation (2, correct!)

new_virginal: new ∉ domain attached

allocate (existing, new : Addresses) is
-- Allocate new object at new, linked from existing.

require
old_exists: existing ∉ Live
new_unused: new ∈ Live

do
Objects  := Objects ∪ {new}
attached := attached ∪ {[existing, new]}

ensure
possibly_one_more: Objects = old Objects ⊕ {new}
new_reachable: Live = old Live {new }
garbage_remains: same (Garbage − {new})
no_change_to_stack: same Stack
rest_unchanged: same (attached {Objects − {new}})

end
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Garbage collection, full

collect_all is
-- Get rid of all garbage objects.

do
Objects := Live 
attached := attached \ Live

ensure
live_only:                    Objects = old Live
restricted_to_live:     attached = old (attached \ Live)
restricted_to_kept:   attached = (old attached) \ Objects
no_change_to_stack:  same Stack
no_loss_of_life:          same Live
all_from_live:              domain attached ⊆ Live
all_to_live:                   range attached  ⊆ Live
all_live:                        Objects = Live
garbage_removed:       Garbage = ∅

end

Objects

Stack

Garbage

Live − Stack

Heap

LiveRestriction
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Garbage collection, incremental
collect_some (Rejects: (Objects)) is

-- Get rid of all the objects in Rejects.
require

recyclable: Rejects ⊆ Garbage
do

Free := Free ∪ Rejects
attached := attached \ Rejects

ensure
restricted_to_kept: attached = (old attached) \ (Objects – Free)
no_change_to_stack: same Stack
no_loss_of_life:                       same Live
from_live_or_garbage: domain attached ⊆ Live ∪ (Garbage – Rejects)
all_live_or_free_or_garbage: Objects = Live ∪ Free ∪ (Garbage – Rejects)
no_change_to_garbage:           Garbage = old Garbage
no_change_to_objects:            Objects = old Objects
possibly_more_free:                 old Free ⊆ Free

end
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Garbage collection, incremental
collect_some (Rejects: (Objects)) is

-- Get rid of all the objects in Rejects.
require

recyclable: Rejects ⊆ Garbage
do

Free := Free ∪ Rejects
attached := attached \ Rejects

ensure
restricted_to_kept: attached = (old attached) \ (Objects – Free)
no_change_to_stack: same Stack
no_loss_of_life:                       same Live
from_live_or_garbage: domain attached ⊆ Live ∪ (Garbage – Rejects)
all_live_or_free_or_garbage: Objects = Live ∪ Free ∪ (Garbage – Rejects)
no_change_to_garbage:           Garbage = old Garbage
no_change_to_objects:            Objects = old Objects
possibly_more_free:                 old Free ⊆ Free

end
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Summary of lesson 2

“Proving a class” means proving that it satisfies its contracts

A simple theoretical framework seems sufficient: sets, 
relations, total and possibly partial functions.

To make proofs convincing we should avoid special notations

We can express complete specifications through models

Reference attributes can be modeled through functions

The overall pointer structure can be modeled through a 
relation, the union of these functions

We can effectively model the object store and events such 
as garbage collection
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