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Strategy for proving classes
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What we do with contracts today

Specify, design, implement

Document

Test & debug

Control inheritance, exceptions

Manage
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The next step

Prove that class implementations satisfy the contracts
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Linked lists in EiffelBase

(LINKED_LIST)
first

right right right right

(LINKABLE) (LINKABLE)
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Some of what we must prove

Starting from first and following right links:
No element encountered twice
Eventually reaches a Void

An insertion keeps the previous elements:
Left of insertion, with same index as before
Right of insertion, with previous index plus 1

first
right right right right
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Reversing a list

first

right

right

right

reverse is
local

previous, next: LINKABLE [G]
do

from
next := first ; first := Void

invariant
...

until next = Void loop
previous, first, next := [first, next, next.right]
first.put_right (previous)

end
ensure

...
end

right
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The framework

Like engineers of traditional fields:
We are building a system
We want to guarantee its precise properties
We devise a model and prove it has these properties

Unlike them:
We define and completely control the product:

The system is the model!

(except for dependencies on hardware and other software)
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Principles

Very simple mathematics only, few “rabbits”
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More principles

Work on mathematical representation, not program text

(Avoid “symbol pushing”)

Mix of
Denotational
Axiomatic
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“Proving a class”

Not an abuse of language in Eiffel because classes contain 
their own contracts

How to deal with inheritance: friend or foe?

Can we “prove” a deferred class?

STACK
∗

ARRAYED_
STACK

LINKED_
STACK

Deferred 
class

Effective 
classes
Effective 
classes
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A deferred class with contracts

deferred class
STACK [G] 

feature –- Access

count : INTEGER
-- Number of stack items

item : G is
-- Top element

require
count > 0

deferred
end

empty : BOOLEAN
-- Are there no items?

full : BOOLEAN
-- Is there no more room?

feature -- Element change
put (x : G) is

-- Push x to top of stack.
require

not full
deferred
ensure

item = x
count = old count + 1

end
remove is

-- Pop top of stack.
require

not empty
deferred
ensure

count = old count − 1

end
end



12
Software Engineering

An implementation (effective class)
feature -- Element change

put (x: G) is
-- Push x to top of stack.

do
count := count + 1
item [count] := x

end

deferred class
BOUNDED_STACK [G] 

inherit

STACK [G]

ARRAY [G]

… remove is
-- Pop top of stack.

do
count := count −− 1

end



13
Software Engineering

Stating the problem

What does it mean to “prove”

The deferred class?

The effective class?

STACK
∗

ARRAYED_
STACK

LINKED_
STACK
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Providing a full specification

Contract language: Boolean expressions of Eiffel, plus old keyword in 
postconditions

The postconditions of contracts in EiffelBase are often not complete 

In STACK [G] as shown earlier:

We do not, however, expand the power of the contract language!

put (x : G) is
-- Push x to top of stack.

require
not full

deferred
ensure

item = x
count = old count + 1

end
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Using models

Eiffel Model library   (see similar approach in JML):
Classes

SET
RELATION
FUNCTION, 
TOTAL_FUNCTION
SEQUENCE...

Totally applicative: functions only, no side effects, no assignments

Example:
SEQUENCE [G] denotes finite sequences of items of type G

(Formally: functions from 1..n to G for some integer n)
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Some features in class SEQUENCE [G]

All are queries:

tail : SEQUENCE [G]
-- Same items except first

require
not empty

first : G
-- First element

require
not empty

prepended (x: G): SEQUENCE [G]
-- Same items, plus x added at beginning

ensure
Result.first ~ x
Result.tail ~ Current

first

tail

count1

Object equality
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Mathematically modeling a software notion

Example: model a stack as a sequence

“Body” (what remains 
after a  remove)

Top of 
stack

count1
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A deferred class with contracts

deferred class
STACK [G] 

feature –- Access

count: INTEGER
-- Number of stack items

item: G is
-- Top element

require
count > 0

deferred
end

empty: BOOLEAN
-- Are there no items?

full: BOOLEAN
-- Is there no more room?

feature -- Element change
put (x: G) is

-- Push x to top of stack.
require

not full
deferred
ensure

item = x
count = old count + 1

end
model = old model.prepended (x)

remove is
-- Pop top of stack.

require
not empty

deferred
ensure

count = old count − 1

end
end

model = old model.tail

Abstract contract

Model contract

feature –- Specification
model: SEQUENCE [G]
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Proofs (1)

At the deferred class level:
Prove that the model contracts imply the abstract 

contracts
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An implementation
feature -- Element change

put (x: G) is
-- Push x to top of stack.

do
count := count + 1
item [count] := x

end

deferred class
BOUNDED_STACK [G] 

inherit

STACK [G]

ARRAY [G]

… remove is
-- Pop top of stack.

do
count := count −− 1

end
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Proofs (2)

At the deferred class level:
Prove that the model contracts

imply the abstract contracts

At the effective class level:
Prove that the implementation

satisfies the model contracts
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The Current Calculus

Set of operators to deal with the special nature of object-
oriented programming

Basic operation:

x.f (a)

with x : C  for some class C

“Principle of general relativity”: everything you write 
refers to the current object
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Executing an Eiffel system

Root procedure

obj2

obj3

r1

r2create obj1.r1

create
obj2.r2
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The Current Calculus (CC)

Classical denotational specifications:

some_function : States Some_set

In CC:

some_oo_function : States Objects Some_set
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Summary of lesson 3

“Proving a class” means proving that it satisfies its 
contracts

A simple theoretical framework seems sufficient:
sets, relations, functions (total, possibly partial).

To make proofs convincing we should avoid special notations

We can obtain complete specifications through models

We can express everything — specification and 
implementation  — in a single framework (here Eiffel)

The special nature of O-O programs (“general relativity” ) 
requires appropriate mathematical operators


	Marktoberdorf 2004Towards Trusted ComponentsBertrand MeyerETH, Zürich  &  Eiffel Software, California
	What we do with contracts today
	The next step
	Linked lists in EiffelBase
	Some of what we must prove
	Reversing a list
	The framework
	Principles
	More principles
	“Proving a class”
	A deferred class with contracts
	An implementation (effective class)
	Stating the problem
	Providing a full specification
	Using models
	Some features in class SEQUENCE [G]
	Mathematically modeling a software notion
	A deferred class with contracts
	Proofs (1)
	An implementation
	Proofs (2)
	The Current Calculus
	Executing an Eiffel system
	The Current Calculus (CC)
	Summary of lesson 3

