
Software Engineering

Marktoberdorf 2004

Towards Trusted Components

Bertrand Meyer
ETH, Zürich & Eiffel Software, California

Lesson 3:
Strategy for proving classes

2
Software Engineering

What we do with contracts today

Specify, design, implement

Document

Test & debug

Control inheritance, exceptions

Manage

3
Software Engineering

The next step

Prove that class implementations satisfy the contracts

4
Software Engineering

Linked lists in EiffelBase

(LINKED_LIST)
first

right right right right

(LINKABLE) (LINKABLE)

5
Software Engineering

Some of what we must prove

Starting from first and following right links:
No element encountered twice
Eventually reaches a Void

An insertion keeps the previous elements:
Left of insertion, with same index as before
Right of insertion, with previous index plus 1

first
right right right right

6
Software Engineering

Reversing a list

first

right

right

right

reverse is
local

previous, next: LINKABLE [G]
do

from
next := first ; first := Void

invariant
...

until next = Void loop
previous, first, next := [first, next, next.right]
first.put_right (previous)

end
ensure

...
end

right

7
Software Engineering

The framework

Like engineers of traditional fields:
We are building a system
We want to guarantee its precise properties
We devise a model and prove it has these properties

Unlike them:
We define and completely control the product:

The system is the model!

(except for dependencies on hardware and other software)

8
Software Engineering

Principles

Very simple mathematics only, few “rabbits”

9
Software Engineering

More principles

Work on mathematical representation, not program text

(Avoid “symbol pushing”)

Mix of
Denotational
Axiomatic

10
Software Engineering

“Proving a class”

Not an abuse of language in Eiffel because classes contain
their own contracts

How to deal with inheritance: friend or foe?

Can we “prove” a deferred class?

STACK
∗

ARRAYED_
STACK

LINKED_
STACK

Deferred
class

Effective
classes
Effective
classes

11
Software Engineering

A deferred class with contracts

deferred class
STACK [G]

feature –- Access

count : INTEGER
-- Number of stack items

item : G is
-- Top element

require
count > 0

deferred
end

empty : BOOLEAN
-- Are there no items?

full : BOOLEAN
-- Is there no more room?

feature -- Element change
put (x : G) is

-- Push x to top of stack.
require

not full
deferred
ensure

item = x
count = old count + 1

end
remove is

-- Pop top of stack.
require

not empty
deferred
ensure

count = old count − 1

end
end

12
Software Engineering

An implementation (effective class)
feature -- Element change

put (x: G) is
-- Push x to top of stack.

do
count := count + 1
item [count] := x

end

deferred class
BOUNDED_STACK [G]

inherit

STACK [G]

ARRAY [G]

… remove is
-- Pop top of stack.

do
count := count −− 1

end

13
Software Engineering

Stating the problem

What does it mean to “prove”

The deferred class?

The effective class?

STACK
∗

ARRAYED_
STACK

LINKED_
STACK

14
Software Engineering

Providing a full specification

Contract language: Boolean expressions of Eiffel, plus old keyword in
postconditions

The postconditions of contracts in EiffelBase are often not complete

In STACK [G] as shown earlier:

We do not, however, expand the power of the contract language!

put (x : G) is
-- Push x to top of stack.

require
not full

deferred
ensure

item = x
count = old count + 1

end

15
Software Engineering

Using models

Eiffel Model library (see similar approach in JML):
Classes

SET
RELATION
FUNCTION,
TOTAL_FUNCTION
SEQUENCE...

Totally applicative: functions only, no side effects, no assignments

Example:
SEQUENCE [G] denotes finite sequences of items of type G

(Formally: functions from 1..n to G for some integer n)

16
Software Engineering

Some features in class SEQUENCE [G]

All are queries:

tail : SEQUENCE [G]
-- Same items except first

require
not empty

first : G
-- First element

require
not empty

prepended (x: G): SEQUENCE [G]
-- Same items, plus x added at beginning

ensure
Result.first ~ x
Result.tail ~ Current

first

tail

count1

Object equality

17
Software Engineering

Mathematically modeling a software notion

Example: model a stack as a sequence

“Body” (what remains
after a remove)

Top of
stack

count1

18
Software Engineering

A deferred class with contracts

deferred class
STACK [G]

feature –- Access

count: INTEGER
-- Number of stack items

item: G is
-- Top element

require
count > 0

deferred
end

empty: BOOLEAN
-- Are there no items?

full: BOOLEAN
-- Is there no more room?

feature -- Element change
put (x: G) is

-- Push x to top of stack.
require

not full
deferred
ensure

item = x
count = old count + 1

end
model = old model.prepended (x)

remove is
-- Pop top of stack.

require
not empty

deferred
ensure

count = old count − 1

end
end

model = old model.tail

Abstract contract

Model contract

feature –- Specification
model: SEQUENCE [G]

19
Software Engineering

Proofs (1)

At the deferred class level:
Prove that the model contracts imply the abstract

contracts

20
Software Engineering

An implementation
feature -- Element change

put (x: G) is
-- Push x to top of stack.

do
count := count + 1
item [count] := x

end

deferred class
BOUNDED_STACK [G]

inherit

STACK [G]

ARRAY [G]

… remove is
-- Pop top of stack.

do
count := count −− 1

end

21
Software Engineering

Proofs (2)

At the deferred class level:
Prove that the model contracts

imply the abstract contracts

At the effective class level:
Prove that the implementation

satisfies the model contracts

22
Software Engineering

The Current Calculus

Set of operators to deal with the special nature of object-
oriented programming

Basic operation:

x.f (a)

with x : C for some class C

“Principle of general relativity”: everything you write
refers to the current object

23
Software Engineering

Executing an Eiffel system

Root procedure

obj2

obj3

r1

r2create obj1.r1

create
obj2.r2

24
Software Engineering

The Current Calculus (CC)

Classical denotational specifications:

some_function : States Some_set

In CC:

some_oo_function : States Objects Some_set

25
Software Engineering

Summary of lesson 3

“Proving a class” means proving that it satisfies its
contracts

A simple theoretical framework seems sufficient:
sets, relations, functions (total, possibly partial).

To make proofs convincing we should avoid special notations

We can obtain complete specifications through models

We can express everything — specification and
implementation — in a single framework (here Eiffel)

The special nature of O-O programs (“general relativity”)
requires appropriate mathematical operators

	Marktoberdorf 2004Towards Trusted ComponentsBertrand MeyerETH, Zürich & Eiffel Software, California
	What we do with contracts today
	The next step
	Linked lists in EiffelBase
	Some of what we must prove
	Reversing a list
	The framework
	Principles
	More principles
	“Proving a class”
	A deferred class with contracts
	An implementation (effective class)
	Stating the problem
	Providing a full specification
	Using models
	Some features in class SEQUENCE [G]
	Mathematically modeling a software notion
	A deferred class with contracts
	Proofs (1)
	An implementation
	Proofs (2)
	The Current Calculus
	Executing an Eiffel system
	The Current Calculus (CC)
	Summary of lesson 3

