Marktoberdorf 2004
Towards Trusted Components

Bertrand Meyer
ETH, Zdrich & Eiffel Software, California

Lesson 3:
Strategy for proving classes

What we do with contracts today ©

> Specify, design, implement

> Document
> Test & debug
» Control inheritance, exceptions

» Manage

Software Engineering

The next step ©

Prove that class implementations satisfy the contracts

3 ETH <]

Software Engineering

Linked lists In EiffelBase

first

—N-

(LINKED_LIST)

(LINKABLE) (LINKABLE)

=)

7

Software Engineering

Some of what we must prove O

» Starting from firstand following right links:
= No element encountered twice
= Eventually reaches a Void
> An insertion keeps the previous elements:
= Left of insertion, with same index as before
= Right of insertion, with previous index plus 1

——

first

right right right right
—i—i—i—i—

ALY

5 ETH [

Software Engineering

Reversing a list ©

reverse is !

local
first
previous, next: LINKABLE [G] i’.

do right
fl“Oﬂ’\ . Y
next = first, first:= Void

invariant right
g

until next = Void'loop right

previous, first, next = [first, next, next.right] .
first.put_right (previous)
right
end
ensure .
oo 7,
end

6 ETH <]

Software Engineering

The framework @

Like engineers of traditional fields:
» We are building a system
» We want to guarantee its precise properties
» We devise a model and prove it has these properties

Unlike them:
> We define and completely control the product:

The system /s the modell

(except for dependencies on hardware and other software)

. ETH [

Software Engineering

Principles ©

Very simple mathematics only, few "rabbits”

o ETH [

Software Engineering

More principles ©

Work on mathematical representation, not program text

(Avoid "symbol pushing")

Mix of
> Denotational
» Axiomatic

9 ETH <]

Software Engineering

e

“Proving a class” ©

Not an abuse of language in Eiffel because classes contain
How to deal with inheritance: friend or foe?
Can we “prove” a deferred class?

their own contracts
Deferred
class
*
- STACK)

/\

ARRAYED_ \ LINKED

STACK _ STACK
N classes ETH 5

Software Engineering

A deferred class with contracts

©

deferred class
STACK [G]

feature -- Access

count: INTEGER
-- Number of stack items

/tem: Gis
-- Top element
require
count >0
deferred
end

empty . BOOLEAN
-- Are there no items?

full . BOOLEAN
-- Is there no more room?

11

feature -- Element change
put(x: 6) is
-- Push x to top of stack.
require
not full
deferred
ensure
tem = x
count = old count + 1

end

remove is
-- Pop top of stack.
require
not empty
deferred
ensure
count = old count -1

end
end ETH <]

Software Engineering

An implementation (effective class) ©

deferred class feature -- Element change

put (x. 6) is
BOUNDED_STACK [6] -- Push x to top of stack.

inherit
STACK [&] do
count = count + 1
ARRAY [&] /tem [count] = x
end
remove is
-- Pop top of stack.
do

count .= count— 1
end

" ETH [

Software Engineering

VBl

Stating the problem ©

4

What does it mean to "prove”
» The deferred class?

> The effective class?

" ARRAYED_ \ ~ LINKED_ \

STACK STACK

1 ETH [

Software Engineering

e

Providing a full specification ©

Contract language: Boolean expressions of Eiffel, plus old keyword in
postconditions

The postconditions of contracts in EiffelBase are often not complete

In STACK[&] as shown earlier: put(x: 6) is
-- Push x to top of stack.

require
not ful/
deferred
ensure
/item = x
count = old count + 1
end

We do not, however, expand the power of the contract language!

14 ETH <]

Software Engineering

Using models ©

Eiffel Model library (see similar approach in JML):
Classes

SET

RELATION
FUNCTION,
TOTAL_FUNCTION
SEQUENLCE...

Totally applicative: functions only, no side effects, no assignments

Example:
SEQUENCE [&] denotes finite sequences of items of type &

(Formally: functions from 1..n7to & for some integer /)

ETH [

15 Software Engineering

r

Some features in class SEQUENCE [G] ©

4

All are queries:

> tarl. SEQUENCE [5]
-- Same items except first

require
not empty
tairl
> first: & — & ~—
-- First element ZS’I
require
not empty 1 count

> prepended (x. 6). SEQUENCE 6]
-- Same items, plus x added at beginning

ensure Object e ualit:|
Result. first ~ x) quatty

Result.tail ~ Current
16 ETH B

Software Engineering

VB

Mathematically modeling a software notion ©

4

Example: model a stack as a sequence

Top of
stack

"Body"” (what r'emairi

after a remove)

1 count

17 ETH <]

Software Engineering

r

A deferred class with contracts O

deferred class
STACK [6]

feature -- Specification
model. SEQUENCE [&]
feature -- Access

feature -- Element change
put (x. G) is

require

count. INTEGER

@odel contract

-- Number of stack items

item. Gis
-- Top element
require
count> 0
deferred
end

empty.: BOOLEAN
-- Are there no items?

full BOOLEAN
-- Is there no more room?

18

-- Push x to top of stack.

not fu// | Abstract contract |
deferred
ensure

|

item = x J
count = old count+ 1

mode/ = old model.prepended (x)

end
remove is

-- Pop top of stack.

require

not empty

deferred
ensure

end

end

count = old count -1
mode/ = old model. tar/

ETH [

Software Engineering

Proofs (1) ©

At the deferred class level:

» Prove that the model contracts imply the abstract
contracts

1 ETH [

Software Engineering

An implementation

©

deferred class
BOUNDED_STACK[6&]

inherit
STACK [&]
ARRAY [6]

20

feature -- Element change

put (x. 6) is
-- Push x to top of stack.

do
count = count + 1
rtem [count] := x

end
remove is
-- Pop top of stack.
do

count .= count— 1
end

ETH [

Software Engineering

Proofs (2)

At the deferred class level:

> Prove that the model contracts
imply the abstract contracts

At the effective class level:

» Prove that the implementation
satisfies the model contracts

21

ETH [

Software Engineering

The Current Calculus @

Set of operators to deal with the special nature of object-
oriented programming

Basic operation:

x.f(a)

with X : € for some class €

"Principle of general relativity": everything you write
refers to the current object

- ETH [

Software Engineering

Executing an Eiffel system ©

=== ROOt procedure

— obj3

— | obj2

=== create objl.rl r2
— \ — —
— rl — —
— m—/create —
— m— 0bj2.r2 —

- ETH [

Software Engineering

The Current Calculus (CC) ©

Classical denotational specifications:

some_function:. States —> Some_set

In CC:

some_oo_function: States —> Objects = Some_set

24 ETH <]

Software Engineering

Summary of lesson 3 ©

"Proving a class” means proving that it satisfies its
contracts

A simple theoretical framework seems sufficient:
sets, relations, functions (total, possibly partial).

To make proofs convincing we should avoid special notations
We can obtain complete specifications through models

We can express everything — specification and
implementation — in a single framework (here Eiffel)

The special nature of O-O programs (“general relativity”)
requires appropriate mathematical operators

- ETH [

Software Engineering

	Marktoberdorf 2004Towards Trusted ComponentsBertrand MeyerETH, Zürich & Eiffel Software, California
	What we do with contracts today
	The next step
	Linked lists in EiffelBase
	Some of what we must prove
	Reversing a list
	The framework
	Principles
	More principles
	“Proving a class”
	A deferred class with contracts
	An implementation (effective class)
	Stating the problem
	Providing a full specification
	Using models
	Some features in class SEQUENCE [G]
	Mathematically modeling a software notion
	A deferred class with contracts
	Proofs (1)
	An implementation
	Proofs (2)
	The Current Calculus
	Executing an Eiffel system
	The Current Calculus (CC)
	Summary of lesson 3

