
DEPARTMENT OF COMPUTER SCIENCES

Computation Orchestration

Jayadev Misra

Department of Computer Science
University of Texas at Austin

Email: misra@cs.utexas.edu
web: http://www.cs.utexas.edu/users/psp

Lectures for NATO Summer School, Marktoberdorf
August, 2004

UNIVERSITY OF TEXAS AT AUSTIN 0

DEPARTMENT OF COMPUTER SCIENCES

Computation Orchestration

Given are basic computing elements. How to compose them?

• Computing elements are logic gates: ∧ , ∨ , ¬
Composition is a circuit.

• Computing elements are functions.

Composition is through higher-order functions.

• Computing elements are processes.

Composition is through CCS or CSP operators.

UNIVERSITY OF TEXAS AT AUSTIN 1

DEPARTMENT OF COMPUTER SCIENCES

Orc

Computing elements are Sites, such as

• function: Compress MPEG file

• method of an object: LogOn procedure at a bank

• monitor procedure: read from a buffer

• web service: get a stock quote

• transaction: check account balance

• distributed transaction: move money from one bank to another

UNIVERSITY OF TEXAS AT AUSTIN 2

DEPARTMENT OF COMPUTER SCIENCES

Structure of the Lectures

• Programming Notation: the composition operators, their usage

• Programming Methodology: Parallelism, Synchronization, Interrupt

• Semantics, Implementation

• Site Specification, Commitment, Revocation

Other Possible Topics:

• Program Structuring

• Concurrency

UNIVERSITY OF TEXAS AT AUSTIN 3

DEPARTMENT OF COMPUTER SCIENCES

Lecture Material

Computation Orchestration: A Basis for Wide-Area Computing

http://www.cs.utexas.edu/users/psp/Wide-area.pdf

Exercises in your Handouts

I will give additional exercises during the lecture.

UNIVERSITY OF TEXAS AT AUSTIN 4

DEPARTMENT OF COMPUTER SCIENCES

Example: Airline

• Contact two airlines simultaneously for price quotes.

• Buy ticket from either airline if its quote is at most $300.

• Buy the cheapest ticket if both quotes are above $300.

• Buy any ticket if the other airline does not provide a timely quote.

• Notify client if neither airline provides a timely quote.

UNIVERSITY OF TEXAS AT AUSTIN 5

DEPARTMENT OF COMPUTER SCIENCES

Example: workflow

• An office assistant contacts a potential visitor.

• The visitor responds, sends the date of her visit.

• The assistant books an airline ticket and
contacts two hotels for reservation.

• After hearing from the airline and any of the hotels:
he tells the visitor about the airline and the hotel.

• The visitor sends a confirmation which the assistant notes.

UNIVERSITY OF TEXAS AT AUSTIN 6

DEPARTMENT OF COMPUTER SCIENCES

Example: workflow, contd.

After receiving the confirmation, the assistant

• confirms hotel and airline reservations.

• reserves a room for the lecture.

• announces the lecture by posting it at a web-site.

• requests a technician to check the equipment in the room.

UNIVERSITY OF TEXAS AT AUSTIN 7

DEPARTMENT OF COMPUTER SCIENCES

Wide-area Computing

Acquire data from remote services.

Calculate with these data.

Invoke yet other remote services with the results.

Additionally

Invoke alternate services for failure tolerance.

Repeatedly poll a service.

Ask a service to notify the user when it acquires the appropriate data.

Download an application and invoke it locally.

Have a service call another service on behalf of the user.

UNIVERSITY OF TEXAS AT AUSTIN 8

DEPARTMENT OF COMPUTER SCIENCES

The Nature of Distributed Applications

Three major components in distributed applications:

Persistent storage management

databases by the airline and the hotels.

Specification of sequential computational logic

does ticket price exceed $300?

Methods for orchestrating the computations

contact the visitor for a second time only after hearing from the airline
and one of the hotels.

We look at only the third problem.

UNIVERSITY OF TEXAS AT AUSTIN 9

DEPARTMENT OF COMPUTER SCIENCES

Orc

A new kind of assignment

x:∈ f

where x is a variable and f is an Orc expression.

Evaluation of f yields zero or more values.

Assign the first value to x .

An Orc expression is

• Simple: Site (Function call, method, web service, transaction)

• Compound: f | g , f À g , f ∗ g , { f where x:∈ g}

UNIVERSITY OF TEXAS AT AUSTIN 10

DEPARTMENT OF COMPUTER SCIENCES

Simple Orc Expression

• M is a news service, d a date. Download the news page for d .

x:∈ M(d)

• Side-effect: Book ticket at airline A for a flight described by c .

x:∈ A(c)

The returned value is the price and the confirmation number.

UNIVERSITY OF TEXAS AT AUSTIN 11

DEPARTMENT OF COMPUTER SCIENCES

Properties of Sites

• A site may not respond.

Its response at different times (for the same input) may be different.

• A site call may change states (of external servers) tentatively or
permanently.

Tentative state changes are made permanent by explicit commitment.

UNIVERSITY OF TEXAS AT AUSTIN 12

DEPARTMENT OF COMPUTER SCIENCES

Structure of response

• The response from a site has:
value, which the programmer can manipulate, and
pledge, which the programmer cannot manipulate.

• Pledge is used to commit this site call.
Pledge is valid for some time period.
Value is meaningful during then.

• By committing a valid pledge (during the given period), the
programmer establishes some fact.

UNIVERSITY OF TEXAS AT AUSTIN 13

DEPARTMENT OF COMPUTER SCIENCES

Nesting

• (Data Piping) Retrieve a news page for date d from M and email it
to address a . Here, Email is a site.

Email(a,M(d))

• (Higher-order site) Call discovery service D with parameter x to
locate a site; call that site with parameter y .

Apply(D(x), y)

UNIVERSITY OF TEXAS AT AUSTIN 14

DEPARTMENT OF COMPUTER SCIENCES

Simple Orc Expression: Sequencing

M , N , R are sites for 3 professors.

s is a set of possible meeting times.

M(s) is a subset of s , the times when M can meet.

M(N(R(s))) is the possible meeting times of all three professors.

UNIVERSITY OF TEXAS AT AUSTIN 15

DEPARTMENT OF COMPUTER SCIENCES

Parallel, Strict evaluation

Arguments of a site call are evaluated in parallel.

A site is called only after all its arguments have been evaluated.

UNIVERSITY OF TEXAS AT AUSTIN 16

DEPARTMENT OF COMPUTER SCIENCES

Fork-join parallelism

A(c) and B(c) return ticket prices from airlines A and B .

Min returns the minimum of its arguments.

Min(A(c), B(c)) :

Compute A(c) and B(c) in parallel.

Call Min when both quotes are available.

UNIVERSITY OF TEXAS AT AUSTIN 17

DEPARTMENT OF COMPUTER SCIENCES

Predefined sites

• Fail never responds.

• let(x, y, · · ·) returns a tuple of argument values as soon they are
available. let(θ) is skip .

• random returns a random number (in a specified range),
instantaneously.

• fst returns the value of the first argument as soon all argument
values are available.

• timer(t) , where t is a non-negative integer, returns a signal exactly
after t time units.

• timer(t, x) is fst(x, timer(t)) ; returns x after t time units.

UNIVERSITY OF TEXAS AT AUSTIN 18

DEPARTMENT OF COMPUTER SCIENCES

Composing Expressions

• (Alternation) f | g : evaluate f and g in parallel;
values of f | g are those from f and from g .

• (Piping) f À g : Evaluate g for all values of f ;
values of f À g are those from g .

• (Iteration) f ∗ g : values from g after zero or more piping steps of f .

f ∗ g
= g | (f À (f ∗ g))
= g | (f À (g | f À (g | f À · · ·)))

• (Definition) { f where x:∈ g}

UNIVERSITY OF TEXAS AT AUSTIN 19

DEPARTMENT OF COMPUTER SCIENCES

Pictorial Depiction of M ∗ N

N

N

M

M

N

Values of M ∗ N are the ones returned by N .

UNIVERSITY OF TEXAS AT AUSTIN 20

DEPARTMENT OF COMPUTER SCIENCES

Binding power

| has the lowest binding power.

À and ∗ have equal binding powers.

f ∗ g | hÀ g ≡ (f ∗ g) | (hÀ g)

Example of Orc expression:

G(q)À (〈M(q) | R(θ, q)ÀG(θ)〉 ∗ S(θ))

UNIVERSITY OF TEXAS AT AUSTIN 21

DEPARTMENT OF COMPUTER SCIENCES

Default Parameter

• M ÀN(x, θ)

• (M | S) À (N(x, θ) | R(θ))

• Start computation of f with value v for θ :
let(v) À f .

• Start an iteration where x0 = v and xi+1 = M(xi) .
Values returned are N(xi) , for i ≥ 0 .

let(v) À (M(θ) ∗ N(θ))

UNIVERSITY OF TEXAS AT AUSTIN 22

DEPARTMENT OF COMPUTER SCIENCES

Properties of the timer

x:∈ timer(t) | timer(u) ≡ x:∈ timer(t) , given t ≤ u ,
timer(t) À timer(u) ≡ timer(t + u)

UNIVERSITY OF TEXAS AT AUSTIN 23

DEPARTMENT OF COMPUTER SCIENCES

Alternation, Piping

• Assign the first value from M(c) or N(d) to z .

z :∈ M(c) | N(d)

• assign to z the value from M if it arrives before t , 0 otherwise.

z :∈ M | timer(t, 0)

• Interruption

f | Interrupt.get

• Make four requests to site M , in intervals of one time unit each.

M | timer(1)ÀM | timer(2)ÀM | timer(3)ÀM

UNIVERSITY OF TEXAS AT AUSTIN 24

DEPARTMENT OF COMPUTER SCIENCES

Priority

Request M and N for values. Give priority to M .

• Allocate one extra time unit for M to respond.

z:∈ M | timer(1)ÀN or z:∈ M | N À timer(1, θ)

• Accept the response from M if it arrives within one time unit, else
accept the first response.

z:∈ M | fst(N, timer(1))

UNIVERSITY OF TEXAS AT AUSTIN 25

DEPARTMENT OF COMPUTER SCIENCES

Iteration

• Call M forever at unit time intervals until it returns a value.

z:∈ timer(1) ∗ M

which is

z:∈ M | timer(1)À (M | timer(1)À (M | · · ·))

• Same as above, but stop calling after 10 time units.

z:∈ timer(1) ∗ M | timer(10)

UNIVERSITY OF TEXAS AT AUSTIN 26

DEPARTMENT OF COMPUTER SCIENCES

Iteration; Contd.

• Site M returns stock price of company abc

Site C(x) : returns x if x < 20 ; silent otherwise.

M ∗ C(θ)

either never returns a value (if abc never falls below 20)

or returns a value lower than 20 . Initially, θ ≥ 20 .

• Variation: Poll M once every hour for 6-hours:

timer(1) ∗ 〈M À C(θ)〉 | timer(6)

UNIVERSITY OF TEXAS AT AUSTIN 27

DEPARTMENT OF COMPUTER SCIENCES

Definition within Orc expression

• A machine is assembled from two parts, u and v .

• Two vendors for each part: u1 and u2 for u , and v1 and v2 for v .

• Solicit quotes from all vendors.

• Accept the first quote for each part.

• Compute the machine cost to be 20% above the sum of the part costs.

cost:∈ { (u + v)× 1.2
where

u:∈ u1 | u2
v:∈ v1 | v2

}

UNIVERSITY OF TEXAS AT AUSTIN 28

DEPARTMENT OF COMPUTER SCIENCES

General Orc Statements

z:∈{ f(· · ·x · · · y · · ·)
where

x:∈ g
y:∈ h

}

Example: M , N , R , S are sites.

z:∈{ (M(x) | N(y))ÀM(y) À { M(y)
where where

x:∈ R(y) | N(y) y:∈ S
y:∈{ R | N(t) }

where t:∈ S
}

}

UNIVERSITY OF TEXAS AT AUSTIN 29

DEPARTMENT OF COMPUTER SCIENCES

Syntax

statement ::= defn

defn ::= variable :∈ expr

expr ::= term
| expr expr
| expr À expr
| expr ∗ expr
| { expr where defn }

term ::= site([parameter])

parameter ::= variable | θ

[parameter] is a list of parameters, possibly empty.

UNIVERSITY OF TEXAS AT AUSTIN 30

DEPARTMENT OF COMPUTER SCIENCES

Free and Bound Variables

• Variable assigned in a statement is the goal variable.

• Variables named in an expression are global or local.

• Free variables:

free(M(L)) = {x| x ∈ L, x 6= θ}
free(f op g) = free(f) ∪ free(g) , where op ∈ { | , À , ∗ }
free({f where x:∈ g}) = (free(f)− {x}) ∪ free(g)

• In { f where x:∈ g}, any free occurrence of x in f is bound to the
variable shown.

• z:∈ f is well-formed if all the free variables in f are global variables.

UNIVERSITY OF TEXAS AT AUSTIN 31

DEPARTMENT OF COMPUTER SCIENCES

Flat Expression

Flat expression: without a where clause.
Non-flat expression:

Flat expression is a regular expression of language theory.

Terms are symbols.

UNIVERSITY OF TEXAS AT AUSTIN 32

DEPARTMENT OF COMPUTER SCIENCES

Syntactic Conventions: Omit Braces; group where

{{ f
where

x :∈ g
}
where

y :∈ h
}

is

f
where

x :∈ g
y :∈ h

or, { f where x:∈ g, y:∈ h}

UNIVERSITY OF TEXAS AT AUSTIN 33

DEPARTMENT OF COMPUTER SCIENCES

Syntactic Conventions: Nested Site Calls

• Email(a,M(d)) is not an expression.

It means:

{ Email(a, u) where u:∈ M(d)}

• We allow R(f, g) where f and g are expressions.
It means : { R(x, y) where x:∈ f, y:∈ g}

• timer(f, g) is (after f0 time units return g0)

{ fst(x, y)
where x:∈ g

y:∈ {timer(u) where u:∈ f }
}

UNIVERSITY OF TEXAS AT AUSTIN 34

DEPARTMENT OF COMPUTER SCIENCES

Argument Evaluation in Nested Site Calls

Consider Q(N(x), N(x), N(x)) .

For the first two arguments:
evaluate N(x) once and use the value for both.

For the last argument:
reevaluate N(x) .

{ Q(u, u, v)
where

u:∈ N(x)
v:∈ N(x)

}

UNIVERSITY OF TEXAS AT AUSTIN 35

DEPARTMENT OF COMPUTER SCIENCES

Operational Semantics

z:∈ {A(x) | B(y) À { C(p, θ)
where where

x:∈ M | R p:∈ N
y:∈ N

} }

• Execute the defns of x , y and evaluate A(x) | B(y) , all in parallel.

• Suspend evaluation of A(x) | B(y) until x or y gets a value.

• When x gets a value, resume evaluation of A(x) .

• When y gets a value, resume evaluation of B(y) .

• Suppose A(x) returns v . Evaluate C(p, v) . Start with p:∈ N .

UNIVERSITY OF TEXAS AT AUSTIN 36

DEPARTMENT OF COMPUTER SCIENCES

Execution Rules

• State: Variable, value pair. Value for θ in every state.

p.x is the value of x in state p .

• In the initial state only globals and θ have values.

• Rules describe the bag of values computed for expression f , by
structural induction on f .

expr ::= term
| expr expr
| expr À expr
| expr ∗ expr
| { expr where defn }

UNIVERSITY OF TEXAS AT AUSTIN 37

DEPARTMENT OF COMPUTER SCIENCES

Execution Rules; Starting state p

• term M(x, y) : call M with parameters p.x and p.y .

– M never responds: computation never terminates.
– M responds with value v : Only one result state q ,

q.θ = v and q.x = p.x for all other x .

• f | g : evaluate f and g in state p , in parallel.

The (bag of) result states are the ones returned by both f and g .

• f À g : evaluate f in p . For each result state q , evaluate g in q .

Value computed for f is in q.θ . Value of f À g are the states
returned by g .

UNIVERSITY OF TEXAS AT AUSTIN 38

DEPARTMENT OF COMPUTER SCIENCES

Execution Rule for f ∗ g in state p

Evaluate both f and g in p and in any q returned by f .

The result states are the ones returned by g .

N

N

M

M

N

Values are returned by N .

UNIVERSITY OF TEXAS AT AUSTIN 39

DEPARTMENT OF COMPUTER SCIENCES

Execution Rule for { f where x:∈ g} in state p

• Evaluate f and g in state p , in parallel.

• When g returns state q , augment p with (x, q.θ) .

• In evaluating f , if we need the value of x :

wait until the value is available (in an augmented state).

• Result states of { f where x:∈ g} are from f .

Remove the tuple for x from the state because x is not defined
outside this scope.

UNIVERSITY OF TEXAS AT AUSTIN 40

DEPARTMENT OF COMPUTER SCIENCES

Execution Rule for z:∈ f in state p

• Evaluate f in p .

• Any result state, q , has the same set of variables as p , and
p.x = q.x , for all x except θ ; the result of evaluation is q.θ .

• Let r be the first result state. Augment p by (z, r.θ) , and return this
as the result state of z:∈ f .

• If f never responds, state p is never augmented.

UNIVERSITY OF TEXAS AT AUSTIN 41

DEPARTMENT OF COMPUTER SCIENCES

Fork-Join parallelism

z:∈ fst(true, x) | fst(false, x)
where where

x:∈ timer(1) x:∈ timer(2)

z is assigned true after 1 time unit.

UNIVERSITY OF TEXAS AT AUSTIN 42

DEPARTMENT OF COMPUTER SCIENCES

Angelic Nondeterminism

In (M | N)ÀR , R may be called twice. We have

(M | N)ÀR = M ÀR | N ÀR ,

More generally, Right Distributivity of À over | :

(f | g)À h = (f À h | gÀ h)

UNIVERSITY OF TEXAS AT AUSTIN 43

DEPARTMENT OF COMPUTER SCIENCES

Demonic Nondeterminism; where clause

(N | R)ÀM

is not equivalent to

let(x)ÀM
where

x:∈ N | R

UNIVERSITY OF TEXAS AT AUSTIN 44

DEPARTMENT OF COMPUTER SCIENCES

Idempotence and Left Distributivity do not hold

Following laws do not hold.

(Idempotence of |) f | f = f
(Left Distributivity of À over |) f À (g | h) = (f À g) | (f À h)

M M

N R

M

N R

(a) (b)

Figure 1: Schematic for M À (N | R) and M ÀN | M ÀR

UNIVERSITY OF TEXAS AT AUSTIN 45

DEPARTMENT OF COMPUTER SCIENCES

Parallel or

Let sites M and N return booleans. Compute their parallel or.

z:∈ ift(x) | ift(y) | or(x, y)
where

x:∈ M
y:∈ N

Similarly, evaluate any function f of the form

f(x, y) =

p(x) if c(x)
q(y) if d(y)
r(x, y) otherwise

UNIVERSITY OF TEXAS AT AUSTIN 46

DEPARTMENT OF COMPUTER SCIENCES

Eight queens

• configuration: placement of queens in the last i rows.

• Represent a configuration by a list of integers j , 0 ≤ j ≤ 7 .

• Valid configuration: no queen captures another.

• check(x:xs) : Given xs valid, return

x : xs , if it is valid

remain silent, otherwise.

UNIVERSITY OF TEXAS AT AUSTIN 47

DEPARTMENT OF COMPUTER SCIENCES

Eight queens; Contd.

let([])
À 〈check(0 : θ) | check(1 : θ) | check(2 : θ) · · · | check(7 : θ)〉
À 〈check(0 : θ) | check(1 : θ) | check(2 : θ) · · · | check(7 : θ)〉
À 〈check(0 : θ) | check(1 : θ) | check(2 : θ) · · · | check(7 : θ)〉
À 〈check(0 : θ) | check(1 : θ) | check(2 : θ) · · · | check(7 : θ)〉
À 〈check(0 : θ) | check(1 : θ) | check(2 : θ) · · · | check(7 : θ)〉
À 〈check(0 : θ) | check(1 : θ) | check(2 : θ) · · · | check(7 : θ)〉
À 〈check(0 : θ) | check(1 : θ) | check(2 : θ) · · · | check(7 : θ)〉
À 〈check(0 : θ) | check(1 : θ) | check(2 : θ) · · · | check(7 : θ)〉

————————————
let([])À 〈À i : 0 ≤ i ≤ 7 :

〈 | j : 0 ≤ j ≤ 7 : check(j : θ)〉
〉

————————————

UNIVERSITY OF TEXAS AT AUSTIN 48

DEPARTMENT OF COMPUTER SCIENCES

Local object

• Call sites M , N and R .

• Terminate after receiving two response.

Object count with integer state. Initially, 0 .

• count.incr increments state;

• returns a signal if state ≥ 2 , otherwise, remains silent.

c:∈
M À count.incr

| N À count.incr
| R À count.incr

UNIVERSITY OF TEXAS AT AUSTIN 49

DEPARTMENT OF COMPUTER SCIENCES

And-Or graph

u v

M

v w

N

y
w

R

u

S

t

y

\/

\/

/\

/\

z

x

r:∈ let(z, t)
where

z:∈ R(x, y, w)
t:∈ S(y) | S(u)

where
x:∈ M(u, v)
y:∈ N(v) | N(w)

UNIVERSITY OF TEXAS AT AUSTIN 50

DEPARTMENT OF COMPUTER SCIENCES

Airline

• Return any quote, from A or B , provided it is below 300 .

• If neither quote is below 300 , then return the cheapest quote or any
quote available by time t .

• If no quote is available by t , return ∞ .

Min returns the minimum of its argument values.

threshold(x) returns x if x is below 300 ; silent otherwise.

z:∈ threshold(x) | threshold(y) | Min(x, y)
where

x:∈ A | timer(t,∞)
y:∈ B | timer(t,∞)

UNIVERSITY OF TEXAS AT AUSTIN 51

DEPARTMENT OF COMPUTER SCIENCES

Workflow: Visit Coordination

• Email(p, s) : contact p with dates s ; response is date d from s .

• Hotel(d) : booking from hotel.

• Airline(d) : booking from airline.

• Ack(p, t) : similar to Email ; response is an acknowledgment.

• Confirm(t) : confirm reservation t (for hotel or airline).

• Room(d) : reserve room for d . Response q : room number, time.

• Announce(p, q) : announce the lecture.

• AV (q) : contact technician with room and time information in q .

UNIVERSITY OF TEXAS AT AUSTIN 52

DEPARTMENT OF COMPUTER SCIENCES

Workflow; Contd.

z:∈ let(b) À let(c, e) À let(u, v)
where where where
b:∈ Ack(p, h, f) c:∈ Confirm(h) u:∈ Announce(p, q)

e:∈ Confirm(f) v:∈ AV (q)
where
q:∈ Room(d)

where
h:∈ Hotel(d)
f :∈ Airline(d)

where
d:∈ Email(p, s)

UNIVERSITY OF TEXAS AT AUSTIN 53

DEPARTMENT OF COMPUTER SCIENCES

Interrupt handling

• Orc statement can not be directly interrupted.

• Interrupt site: a monitor.

• Interrupt .set : to interrupt the Orc statement

• Interrupt .get : responds after Interrupt .set has been called.

————————————
z:∈ f

————————————

is changed to

z:∈ f | Interrupt .get

UNIVERSITY OF TEXAS AT AUSTIN 54

DEPARTMENT OF COMPUTER SCIENCES

Processing Interrupt

z:∈ { f(x, y)
where x:∈ g , y:∈ h }

If f is interrupted, call M and N with parameters x and y ,
respectively, to cancel the effects of g and h .

z:∈ Normal(t) | Interr(t) À let(X,Y)
where

X:∈ M(x)
Y :∈ N(y)

where
t :∈ f(x, y) | Interrupt .get

where
x :∈ g
y :∈ h

UNIVERSITY OF TEXAS AT AUSTIN 55

DEPARTMENT OF COMPUTER SCIENCES

Phase Synchronization

Process starts its (k + 1)th phase only after all processes have
completed their kth phases.

Consider M À f and N À g .

{let(x, y)
where

x:∈ M
y:∈ N}

À
fst(θ)À f | snd(θ)À g

UNIVERSITY OF TEXAS AT AUSTIN 56

DEPARTMENT OF COMPUTER SCIENCES

Phase Synchronization; Contd.

Synchronize M ∗ f and N ∗ g .

f

f

f

M

M

g N

g N

g

{let(x, y)
where

x:∈ M
y:∈ N}

∗
fst(θ)À f | snd(θ)À g

UNIVERSITY OF TEXAS AT AUSTIN 57

DEPARTMENT OF COMPUTER SCIENCES

Heat transfer computation over a grid

• Value xij at point (i, j) in a phase is the average of its neighbors’
values in the previous phase.

• Site average returns the average of its arguments.

• Site converge returns its argument value if the values have
converged sufficiently, otherwise, it remains silent.

z:∈ {let(x)
where
〈∀i, j :: xij:∈ average(θi−1,j, θi+1,j, θi,j−1, θi,j+1)〉

}
∗ converge(θ)

UNIVERSITY OF TEXAS AT AUSTIN 58

DEPARTMENT OF COMPUTER SCIENCES

Environment

An environment is a set of tuples. Each tuple has:

• a name (of a variable or θ),

• a val component (its value) and

• a clock component, the time at which this value was computed.

Example: p : 〈(x, false, 27), (y, true, 12), (θ, 13, 20)〉
p.x.val = false and p.x.clock = 27 .

An environment is a statement about a computation:
the value of x , computed at time 27, is false , and the value of y ,
computed at time 12, · · · .

UNIVERSITY OF TEXAS AT AUSTIN 59

DEPARTMENT OF COMPUTER SCIENCES

Relation over Bags of Environments

Each expression and defn is a binary relation over bags of environments.

Notation: P , Q are bags of environments. ∪ is bag union.

Write P f Q and P (z:∈ f) Q .

Coercion rule:
〈∀p : p ∈ P : {p} f Qp〉
P f 〈∪p : p ∈ P : Qp〉

Consequently, we need only consider {p} f Q .

Note: {} f {}

UNIVERSITY OF TEXAS AT AUSTIN 60

DEPARTMENT OF COMPUTER SCIENCES

Relation over Bags of Environments; Contd.

{p} f Q : evaluation of f started in p at time p.θ.clock yields all
environments in Q in some computation.

Q may be empty: non-terminating computation.

Q may have duplicates: as in evaluating M | M .

UNIVERSITY OF TEXAS AT AUSTIN 61

DEPARTMENT OF COMPUTER SCIENCES

Example

p : 〈(x, false, 27), (y, true, 12), (θ, 13, 20)〉 .

{p} let(x, y) {〈(x, false, 27), (y, true, 12), (θ, (false, true), 27)〉}

{p} timer(2) {〈(x, false, 27), (y, true, 12), (θ,SIGNAL, 22)〉}

{p} u:∈ let(x, y)
{〈(x, false, 27), (y, true, 12), (u, (false, true), 27), (θ, 13, 20)〉}

{p} let(z) {} , because z is not defined in p .

{p} u:∈ let(z) {p}

UNIVERSITY OF TEXAS AT AUSTIN 62

DEPARTMENT OF COMPUTER SCIENCES

Semantics of Term

Evaluate M(L) in environment p . Result is at most one environment.

• x ∈ L and x 6∈ p : no result environment.

• Otherwise: call M with values p.x.val for all x in L ,
at maximum of p.θ.clock and clock values of all parameters in L .

• If M responds with value v at time t , the result environment is q ,
where

q.x = p.x , for all x in p , x 6= θ
q.θ.val = v
q.θ.clock = t

UNIVERSITY OF TEXAS AT AUSTIN 63

DEPARTMENT OF COMPUTER SCIENCES

Axioms about terms

Notation: p\x : remove the tuple for x from q . x 6∈ p ⇒ p\x = p .

• {p} M(L) {} , if x ∈ L and x 6∈ p .

• Given {p} M(L) {q} :

– q.x = p.x , for all x in p , x 6= θ , and q.θ.clock ≥ p.θ.clock
– if x 6∈ L , then {p\x} M(L) {q\x}
– if x ∈ L , let p′ = p\x except

p′.θ.clock = max(p.θ.clock, p.x.clock) .
Then, {p′} M(L[x := p.x.val]) {q\x}

• (parameters may be renamed) For y 6∈ p and y 6∈ L ,

{p} M(L) {q} ≡ {p[x := y]} M(L[x := y]) {q[x := y]}

UNIVERSITY OF TEXAS AT AUSTIN 64

DEPARTMENT OF COMPUTER SCIENCES

Semantics of some sites

• {p} Fail {}

• {p} let(x, y) {q} :

q.θ.val = (p.x.val, p.y.val)
q.θ.clock = max(p.θ.clock, p.x.clock, p.y.clock)

In particular, {p} let(θ) {p} .

• {p} random {q} :

q.θ.val = a number from the specified range
q.θ.clock = p.θ.clock

UNIVERSITY OF TEXAS AT AUSTIN 65

DEPARTMENT OF COMPUTER SCIENCES

Semantics of some sites; Contd.

• {p} fst(x, y) {q} :

q.θ.val = p.x.val
q.θ.clock = max(p.θ.clock, p.x.clock, p.y.clock)

• {p} timer(t) {q} :

q.θ.val = SIGNAL
q.θ.clock = p.θ.clock + t

UNIVERSITY OF TEXAS AT AUSTIN 66

DEPARTMENT OF COMPUTER SCIENCES

Exercise: Properties of the timer

x:∈ timer(t) | timer(u) ≡ x:∈ timer(t) , given t ≤ u ,
timer(t) À timer(u) ≡ timer(t + u)

UNIVERSITY OF TEXAS AT AUSTIN 67

DEPARTMENT OF COMPUTER SCIENCES

Semantics of Defn

• {p} f {}
{p} (z:∈ f) {p}

• {p} f Q, q ismin Q
{p} (z:∈ f) {p + (z, q.θ)}

q ismin Q : q ∈ Q and q.θ.clock ≤ r.θ.clock for every r in Q .

+ denotes expansion of an environment by a tuple.

UNIVERSITY OF TEXAS AT AUSTIN 68

DEPARTMENT OF COMPUTER SCIENCES

Semantics of Expression

• {p} (x:∈ g) {q}, {q} f Q
{p} {f where x:∈ g} (Q\x)

• {p} f Q, {p} g R
{p} (f | g) (Q ∪R)

• {p} f Q, Q g R
{p} (f À g) R

• {p} f Q, Q f∗ R
{p} f∗ ({p} ∪R)

f ∗ g ≡ f∗À g
f∗ ≡ f ∗ 1 , where 1 = let(θ) .

UNIVERSITY OF TEXAS AT AUSTIN 69

DEPARTMENT OF COMPUTER SCIENCES

Notes

• À is relational composition.

• | is not relational union,

P f Q does not imply P (f | g) Q .

Under relational union M and M | M would be identical. We treat
them differently.

UNIVERSITY OF TEXAS AT AUSTIN 70

DEPARTMENT OF COMPUTER SCIENCES

Kleene Algebra

(Zero and |) f | 0 = f
(Commutativity of |) f | g = g | f
(Associativity of |) (f | g) | h = f | (g | h)
(Idempotence of |) f | f = f
(Associativity of À) (f À g)À h = f À (gÀ h)
(Left zero of À) 0À f = 0
(Right zero of À) f À 0 = 0
(Left unit of À) 1À f = f
(Right unit of À) f À 1 = f
(Left Distributivity of À over |) f À (g | h) = (f À g) | (f À h)
(Right Distributivity of À over |) (f | g)À h = (f À h | gÀ h)
(Recursive Expansion of Kleene star) f∗ = 1 | f À f∗

UNIVERSITY OF TEXAS AT AUSTIN 71

DEPARTMENT OF COMPUTER SCIENCES

Corollaries

(Left Distributivity of ∗ over |) f ∗ (g | h) = (f ∗ g | f ∗ h)
(Regrouping ∗ over À) (f ∗ g)À h = f ∗ (gÀ h)

UNIVERSITY OF TEXAS AT AUSTIN 72

DEPARTMENT OF COMPUTER SCIENCES

Additional Properties of Non-flat Expressions

• (Narrowing the scope) Given that x is not free in g :

{g where x:∈ h} = g
{f | g where x:∈ h} = {f where x:∈ h} | g
{f À g where x:∈ h} = {f where x:∈ h} À g

• (Bound variable renaming) In the following, y is not free in f or g .

{f where x:∈ g} = {f [x := y] where y:∈ g}

• (Independent defn) y is not free in g and x is not free in h .

{{f where x:∈ g} where y:∈ h}
= {{f where y:∈ h} where x:∈ g}

UNIVERSITY OF TEXAS AT AUSTIN 73

DEPARTMENT OF COMPUTER SCIENCES

Implementation

• Compile the statement into a (set of) finite state automata

• explore the automata to compute the goal variable.

For z:∈ (M(x) | N(y))ÀR(θ)

M(x) N(y)

θ)R(R(θ)

z::

UNIVERSITY OF TEXAS AT AUSTIN 74

DEPARTMENT OF COMPUTER SCIENCES

Difficulties In Automata construction

• How to compile a non-flat expression:

z:∈ {M(x) | N where x:∈ R}

• We cannot use standard procedures. In automata theory,
M À (N | R) ≡ M ÀN | M ÀR

M M

N R

M

N R

(a) (b)

• Non-determinism: M is called twice in M ÀN | M ÀR .

UNIVERSITY OF TEXAS AT AUSTIN 75

DEPARTMENT OF COMPUTER SCIENCES

Flat program

Transform {f where x:∈ g} to

open(x)À f À close(x) and add the defn x:∈ g .

————————————
z:∈ {M(x) | { R(u)

where where
x:∈ {A(y) u:∈ B}

where y:∈ B}
}

————————————
The corresponding flat program is

z:∈ open(x)ÀM(x)À close(x) | open(u)ÀR(u)À close(u)
x:∈ open(y)ÀA(y)À close(y)
y:∈ B
u:∈ B

UNIVERSITY OF TEXAS AT AUSTIN 76

DEPARTMENT OF COMPUTER SCIENCES

open and close

• open and close are treated differently from usual sites.

• Calling open(x) starts a new computation of x on a clone.

• A state includes the values for the global variables and θ , but
reference to clone for local variable.

• close(x) removes reference to x from the state.

UNIVERSITY OF TEXAS AT AUSTIN 77

DEPARTMENT OF COMPUTER SCIENCES

clone

Several clones of an fsa may be simultaneously in existence.

z:∈ { M(x) where x:∈ N } ∗ R has the flat program
z:∈ 〈open(x)ÀM(x)À close(x)〉 ∗ R
x:∈ N

R

R

R

M(x)
close(x)

open(x)

M(x)
close(x)

open(x)

UNIVERSITY OF TEXAS AT AUSTIN 78

DEPARTMENT OF COMPUTER SCIENCES

Finite State Automata (fsa) from Flat Program

• An Orc fsa is a finite directed graph.

• Its edges are labeled with terms (including open and close).

• A pair of nodes in the fsa may have multiple edges between them,
possibly with the same label.

• Two distinguished nodes: begin and end.

• No incoming edge to begin node; no outgoing edge of end.

• For every edge, there is a path from begin to end that includes the
edge.

UNIVERSITY OF TEXAS AT AUSTIN 79

DEPARTMENT OF COMPUTER SCIENCES

Recursive fsa Construction

merge of x , y is x + y : incoming, outgoing edges of x , y .

f.b and f.e for begin and end nodes of fsa for f .

term M(L) : The fsa has one edge from begin to end, labeled M(L) .

For edge from (f ∗ g).b to x with label r : make edge (f.e, x) with r .

b

e

f g

f.b+g.b

f.e+g.e

f

e
g

b

f.e+g.b

(b) f >> g

b

g

e

f

f.e g.e

f.b+g.b

(c) f * g(a) f | g

f.b

g.e

UNIVERSITY OF TEXAS AT AUSTIN 80

DEPARTMENT OF COMPUTER SCIENCES

fsa for M À (N | R) | M ∗ R

b

e

R

M R

N R

MM

UNIVERSITY OF TEXAS AT AUSTIN 81

DEPARTMENT OF COMPUTER SCIENCES

Notes on fsa

• Traditional deterministic fsa construction is P-space complete.

Orc fsa construction is linear (see exercise).

• Each fsa can be unrolled to a (possibly infinite) tree.

UNIVERSITY OF TEXAS AT AUSTIN 82

DEPARTMENT OF COMPUTER SCIENCES

fsa exploration; token

• token associated with an edge of a clone of an fsa.

• Corresponds to a single step of computation.

• token has a state and a parent. parent is a token in the same clone or
NIL .

• token processes label M(x) on edge e :

wait until x has a value, then call site M . On receiving v from M :

– creates children tokens on all successor edges of e ,
– bequeaths to them the state with θ value v ,
– if e has no successor edge, reports v as the value of the

computation.

UNIVERSITY OF TEXAS AT AUSTIN 83

DEPARTMENT OF COMPUTER SCIENCES

fsa exploration; token; contd.

Asssume: single outgoing edge from each begin node (begin edge).

Ensure by adding an edge with label 1 .

• The token processes label open(x) on edge e :

– initiate computation on a clone of the fsa for x
– return reference to the clone as part of the state

• close(x) : remove the reference to the clone for x from the state.

• To initiate computation on a clone in state s :

place a token on its begin edge with state s and NIL parent.

UNIVERSITY OF TEXAS AT AUSTIN 84

DEPARTMENT OF COMPUTER SCIENCES

Site

• Any level of granularity in site,

from simple message transmission

to business-business transaction involving many servers

• May spawn new processes, start servers and change database
contents

• May interact with peripheral devices, including displays and keyboards

UNIVERSITY OF TEXAS AT AUSTIN 85

DEPARTMENT OF COMPUTER SCIENCES

Site Specification

The specification of site M is a predicate p over a triple (x, y, t) :

x is the value of actual parameters,

y is the result returned by M ,

t is an (absolute) time instant.

UNIVERSITY OF TEXAS AT AUSTIN 86

DEPARTMENT OF COMPUTER SCIENCES

Two stage Site Operation

A site operates in two stages.

• response: Client calls. Site returns y or remains silent.

also returns a pledge which is invisible to the Orc statement.

pledge carries a deadline by which it should be committed.

• commit: If the caller commits the pledge at time t before the deadline,

the site executes its commit stage,

which establishes predicate p(x, y, t) .

UNIVERSITY OF TEXAS AT AUSTIN 87

DEPARTMENT OF COMPUTER SCIENCES

Examples of Site Specification

• Function f :

returns y where y = f(x) . The deadline is irrelevant.

predicate: y = f(x) . No commitment needed.

• Site postOffice :

called with description of a parcel and returns y , the cost of delivery.

The deadline is the instant t , the time of response.

predicate: the cost of delivery of x at time t is y .

needs no commitment to establish this predicate.

UNIVERSITY OF TEXAS AT AUSTIN 88

DEPARTMENT OF COMPUTER SCIENCES

Examples of Site Specification; Contd.

• Object count : has an integer value count.v and
two methods, incr and read .

• Initially, count.v = 0 .

• incr : count.v := count.v + 1 ;
read : returns v = count.v .

The moment of response, t , is the deadline.

• predicate: count.v ≥ v beyond t . No commitment required.

• Another spec: count.v = v at the moment of commitment s , s ≤ t .

Implement specification by: lock count.v until the moment of
commitment or t , whichever comes first.

UNIVERSITY OF TEXAS AT AUSTIN 89

DEPARTMENT OF COMPUTER SCIENCES

Examples of Site Specification; Contd.

• Transaction sells 80 shares of stock pqr if price is above $25 and

buys 100 shares of stock abc if it is below $20 a share.

• Both price conditions are met before the transaction returns a signal.

• The deadline is very short.

• If the client commits within the deadline, establishes the predicate:

client has bought and sold the requisite number of shares for the
given prices at the moment of commitment.

UNIVERSITY OF TEXAS AT AUSTIN 90

DEPARTMENT OF COMPUTER SCIENCES

Examples of Site Specification; Contd.

• A site call may cause state change during the response stage.

• An airline issues a price quote and changes its state during the
response stage, even if no call commits.

• Its only obligation is to issue a ticket at the given price if the client
commits within the deadline.

UNIVERSITY OF TEXAS AT AUSTIN 91

DEPARTMENT OF COMPUTER SCIENCES

Type of pledge

• Instant pledge: site makes immediate commitment for the caller

The pledge can only be revoked next.

Calling site email sends an email, without waiting for commitment.

Common in concurrent computing.

• Deferred pledge: Commitment by deadline establishes the associated
predicate.

UNIVERSITY OF TEXAS AT AUSTIN 92

DEPARTMENT OF COMPUTER SCIENCES

Structure of pledge

A pledge has:

• An id,

• A deadline, an absolute time instant by which it has to be committed
or revoked (if already committed),

• A set of pertinent arguments, the arguments of the site call which
must be committed in order to commit this pledge.

z:∈ Min(x, y)
where

x:∈ A
y:∈ B

Pertinent argument from Min is the cheaper of x and y .

UNIVERSITY OF TEXAS AT AUSTIN 93

DEPARTMENT OF COMPUTER SCIENCES

Critical Path

Response from a terminal edge, e , is assigned as the variable value.

Edge e defines the Critical Path.

R

R

R

N R

M M R

M

M

Commit all pledges and their pertinent pledges along the critical path.
Transitive closure needed.

Revoke all other instant pledges.

UNIVERSITY OF TEXAS AT AUSTIN 94

DEPARTMENT OF COMPUTER SCIENCES

Definitions

For any clone c :

child(c) = {d| d is a clone spawned by an open in c}
pert(c) = {d| d is not a global variable or θ , and

d is a pertinent argument in a deferred pledge
along c ’s critical path}

instant(c) = instant pledge ids received in c
deferred(c) = deferred pledge ids received in c
instant+(c) = instant pledge ids received along the critical path in c
deferred+(c) = deferred pledge ids received along the critical path in c

UNIVERSITY OF TEXAS AT AUSTIN 95

DEPARTMENT OF COMPUTER SCIENCES

Transitive closure definitions

For any clone c :

all instant(c) instant pledge ids received in c and its descendants.

all deferred(c) deferred pledge ids received in c and its descendants.

all instant+(c) and all deferred+(c) , limited to the critical paths.

all instant(c) = instant(c)
∪ 〈∪d : d ∈ child(c) : all instant(d)〉

all deferred(c) = deferred(c)
∪ 〈∪d : d ∈ child(c) : all deferred(d)〉

all instant+(c) = instant+(c)
∪ 〈∪d : d ∈ pert(c) : all instant+(d)〉

all deferred+(c) = deferred+(c)
∪ 〈∪d : d ∈ pert(c) : all deferred+(d)〉

UNIVERSITY OF TEXAS AT AUSTIN 96

DEPARTMENT OF COMPUTER SCIENCES

Pledges to be Committed, Revoked

For any clone c :

all+(c) : pledges necessary and sufficient to commit c (received by c
and its descendants).

all+(c) = all instant+(c) ∪ all deferred+(c)

Instant pledges in all+(c) are already committed.

pos(c) : pledges which remain to be committed in all+(c) ; i.e.,

pos(c) = all deferred+(c)

neg(c) : pledges which need to be revoked, i.e., already committed and
not part of all+(c) ,

neg(c) = all instant(c)− all+(c) , i.e.,
neg(c) = all instant(c)− all instant+(c)

UNIVERSITY OF TEXAS AT AUSTIN 97

DEPARTMENT OF COMPUTER SCIENCES

Commitment and Revocation Algorithm

• Client: sends to the appropriate sites,

commitinit for pledges in pos(c) ,

revokeinit for pledges in neg(c)

• Site: responds with

ackinit if it is ready to commit/revoke the pledge or

nackinit if it can not.

Treat failure to respond (timely) as nackinit .

UNIVERSITY OF TEXAS AT AUSTIN 98

DEPARTMENT OF COMPUTER SCIENCES

Commitment and Revocation Algorithm; Contd.

• Client:

– If all responses are ackinit , sends
commitfinal to sites corresponding to pos(c) and
revokefinal to sites corresponding to neg(c) .

– Otherwise, sends abortfinal to all sites.

• Site:

commit after receiving commitfinal

revoke after receiving revokefinal ,

recovery computation after receiving abortfinal .

UNIVERSITY OF TEXAS AT AUSTIN 99

DEPARTMENT OF COMPUTER SCIENCES

Explicit Commit and Revoke

To handle transactions of differing deadlines.

Commit and Revoke sites.

A successful call to Commit(x, y) :

returns true and guarantees that x and y are committed with their
pertinent variables. Similarly, Revoke .

Make explicit the commit in z:∈ f

z:∈ { Commit(y) À let(y)
where

y:∈ f
}

UNIVERSITY OF TEXAS AT AUSTIN 100

DEPARTMENT OF COMPUTER SCIENCES

Example

Reserve a hotel room and an airline ticket.

The hotel responds after a long delay but gives a long deadline.

The airline usually responds quickly but gives a short deadline.

Strategy

• Contact the hotel. After it responds, contact the airline.

• Airline responds before the hotel’s deadline:

if its quote is excessively high: cancel vacation plan and assign ∞ to
the goal variable.

Otherwise: commit to both and return the sum of the quotes as the
goal variable value.

UNIVERSITY OF TEXAS AT AUSTIN 101

DEPARTMENT OF COMPUTER SCIENCES

Example; Contd.

• Airline does not respond before the hotel’s deadline: commit to the
hotel; and wait 1 unit for the airline response.

– Airline responds before the new deadline:
if its quote is excessive: revoke the hotel commitment and cancel
vacation plans.
Otherwise: commit to the airline and return the sum of the quotes
as the goal variable value.

– Airline does not respond before the new deadline: revoke the hotel
commitment and cancel vacation plans.

UNIVERSITY OF TEXAS AT AUSTIN 102

DEPARTMENT OF COMPUTER SCIENCES

Example; Contd.

z:∈
{ exc(a) À let(∞)
| ¬exc(a) À Commit(a, h) À Plus(a, h)
| let(t0) À Commit(h) À

((exc(a) | let(t1)) À Revoke(h) À let(∞)
| ¬exc(a) À Commit(a) À Plus(a, h)

)
where

(h, d) :∈ Hotel
a :∈ let(h)ÀAirline
t0 :∈ timer(d)
t1 :∈ let(t0)À timer(1)

}

UNIVERSITY OF TEXAS AT AUSTIN 103

