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Computation Orchestration

Given are basic computing elements. How to compose them?

• Computing elements are logic gates: ∧ , ∨ , ¬
Composition is a circuit.

• Computing elements are functions.

Composition is through higher-order functions.

• Computing elements are processes.

Composition is through CCS or CSP operators.
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Orc

Computing elements are Sites, such as

• function: Compress MPEG file

• method of an object: LogOn procedure at a bank

• monitor procedure: read from a buffer

• web service: get a stock quote

• transaction: check account balance

• distributed transaction: move money from one bank to another
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Structure of the Lectures

• Programming Notation: the composition operators, their usage

• Programming Methodology: Parallelism, Synchronization, Interrupt

• Semantics, Implementation

• Site Specification, Commitment, Revocation

Other Possible Topics:

• Program Structuring

• Concurrency
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Lecture Material

Computation Orchestration: A Basis for Wide-Area Computing

http://www.cs.utexas.edu/users/psp/Wide-area.pdf

Exercises in your Handouts

I will give additional exercises during the lecture.
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Example: Airline

• Contact two airlines simultaneously for price quotes.

• Buy ticket from either airline if its quote is at most $300.

• Buy the cheapest ticket if both quotes are above $300.

• Buy any ticket if the other airline does not provide a timely quote.

• Notify client if neither airline provides a timely quote.
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Example: workflow

• An office assistant contacts a potential visitor.

• The visitor responds, sends the date of her visit.

• The assistant books an airline ticket and
contacts two hotels for reservation.

• After hearing from the airline and any of the hotels:
he tells the visitor about the airline and the hotel.

• The visitor sends a confirmation which the assistant notes.
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Example: workflow, contd.

After receiving the confirmation, the assistant

• confirms hotel and airline reservations.

• reserves a room for the lecture.

• announces the lecture by posting it at a web-site.

• requests a technician to check the equipment in the room.
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Wide-area Computing

Acquire data from remote services.

Calculate with these data.

Invoke yet other remote services with the results.

Additionally

Invoke alternate services for failure tolerance.

Repeatedly poll a service.

Ask a service to notify the user when it acquires the appropriate data.

Download an application and invoke it locally.

Have a service call another service on behalf of the user.
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The Nature of Distributed Applications

Three major components in distributed applications:

Persistent storage management

databases by the airline and the hotels.

Specification of sequential computational logic

does ticket price exceed $300?

Methods for orchestrating the computations

contact the visitor for a second time only after hearing from the airline
and one of the hotels.

We look at only the third problem.
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Orc

A new kind of assignment

x:∈ f

where x is a variable and f is an Orc expression.

Evaluation of f yields zero or more values.

Assign the first value to x .

An Orc expression is

• Simple: Site (Function call, method, web service, transaction)

• Compound: f | g , f À g , f ∗ g , { f where x:∈ g}
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Simple Orc Expression

• M is a news service, d a date. Download the news page for d .

x:∈ M(d)

• Side-effect: Book ticket at airline A for a flight described by c .

x:∈ A(c)

The returned value is the price and the confirmation number.
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Properties of Sites

• A site may not respond.

Its response at different times (for the same input) may be different.

• A site call may change states (of external servers) tentatively or
permanently.

Tentative state changes are made permanent by explicit commitment.
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Structure of response

• The response from a site has:
value, which the programmer can manipulate, and
pledge, which the programmer cannot manipulate.

• Pledge is used to commit this site call.
Pledge is valid for some time period.
Value is meaningful during then.

• By committing a valid pledge (during the given period), the
programmer establishes some fact.
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Nesting

• (Data Piping) Retrieve a news page for date d from M and email it
to address a . Here, Email is a site.

Email(a,M(d))

• (Higher-order site) Call discovery service D with parameter x to
locate a site; call that site with parameter y .

Apply(D(x), y)
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Simple Orc Expression: Sequencing

M , N , R are sites for 3 professors.

s is a set of possible meeting times.

M(s) is a subset of s , the times when M can meet.

M(N(R(s))) is the possible meeting times of all three professors.
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Parallel, Strict evaluation

Arguments of a site call are evaluated in parallel.

A site is called only after all its arguments have been evaluated.
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Fork-join parallelism

A(c) and B(c) return ticket prices from airlines A and B .

Min returns the minimum of its arguments.

Min(A(c), B(c)) :

Compute A(c) and B(c) in parallel.

Call Min when both quotes are available.
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Predefined sites

• Fail never responds.

• let(x, y, · · · ) returns a tuple of argument values as soon they are
available. let(θ) is skip .

• random returns a random number (in a specified range),
instantaneously.

• fst returns the value of the first argument as soon all argument
values are available.

• timer(t) , where t is a non-negative integer, returns a signal exactly
after t time units.

• timer(t, x) is fst(x, timer(t)) ; returns x after t time units.
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Composing Expressions

• (Alternation) f | g : evaluate f and g in parallel;
values of f | g are those from f and from g .

• (Piping) f À g : Evaluate g for all values of f ;
values of f À g are those from g .

• (Iteration) f ∗ g : values from g after zero or more piping steps of f .

f ∗ g
= g | (f À (f ∗ g))
= g | (f À (g | f À (g | f À · · · )))

• (Definition) { f where x:∈ g}
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Pictorial Depiction of M ∗ N

N

N

M

M

N

Values of M ∗ N are the ones returned by N .
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Binding power

| has the lowest binding power.

À and ∗ have equal binding powers.

f ∗ g | hÀ g ≡ (f ∗ g) | (hÀ g)

Example of Orc expression:

G(q)À ( 〈M(q) | R(θ, q)ÀG(θ)〉 ∗ S(θ) )
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Default Parameter

• M ÀN(x, θ)

• (M | S) À (N(x, θ) | R(θ))

• Start computation of f with value v for θ :
let(v) À f .

• Start an iteration where x0 = v and xi+1 = M(xi) .
Values returned are N(xi) , for i ≥ 0 .

let(v) À (M(θ) ∗ N(θ))
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Properties of the timer

x:∈ timer(t) | timer(u) ≡ x:∈ timer(t) , given t ≤ u ,
timer(t) À timer(u) ≡ timer(t + u)
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Alternation, Piping

• Assign the first value from M(c) or N(d) to z .

z :∈ M(c) | N(d)

• assign to z the value from M if it arrives before t , 0 otherwise.

z :∈ M | timer(t, 0)

• Interruption

f | Interrupt.get

• Make four requests to site M , in intervals of one time unit each.

M | timer(1)ÀM | timer(2)ÀM | timer(3)ÀM
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Priority

Request M and N for values. Give priority to M .

• Allocate one extra time unit for M to respond.

z:∈ M | timer(1)ÀN or z:∈ M | N À timer(1, θ)

• Accept the response from M if it arrives within one time unit, else
accept the first response.

z:∈ M | fst(N, timer(1))
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Iteration

• Call M forever at unit time intervals until it returns a value.

z:∈ timer(1) ∗ M

which is

z:∈ M | timer(1)À (M | timer(1)À (M | · · · ))

• Same as above, but stop calling after 10 time units.

z:∈ timer(1) ∗ M | timer(10)
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Iteration; Contd.

• Site M returns stock price of company abc

Site C(x) : returns x if x < 20 ; silent otherwise.

M ∗ C(θ)

either never returns a value (if abc never falls below 20)

or returns a value lower than 20 . Initially, θ ≥ 20 .

• Variation: Poll M once every hour for 6-hours:

timer(1) ∗ 〈M À C(θ)〉 | timer(6)
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Definition within Orc expression

• A machine is assembled from two parts, u and v .

• Two vendors for each part: u1 and u2 for u , and v1 and v2 for v .

• Solicit quotes from all vendors.

• Accept the first quote for each part.

• Compute the machine cost to be 20% above the sum of the part costs.

cost:∈ { (u + v)× 1.2
where

u:∈ u1 | u2
v:∈ v1 | v2

}
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General Orc Statements

z:∈{ f(· · ·x · · · y · · · )
where

x:∈ g
y:∈ h

}

Example: M , N , R , S are sites.

z:∈{ (M(x) | N(y))ÀM(y) À { M(y)
where where

x:∈ R(y) | N(y) y:∈ S
y:∈{ R | N(t) }

where t:∈ S
}

}
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Syntax

statement ::= defn

defn ::= variable :∈ expr

expr ::= term
| expr expr
| expr À expr
| expr ∗ expr
| { expr where defn }

term ::= site([parameter])

parameter ::= variable | θ

[parameter] is a list of parameters, possibly empty.
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Free and Bound Variables

• Variable assigned in a statement is the goal variable.

• Variables named in an expression are global or local.

• Free variables:

free(M(L)) = {x| x ∈ L, x 6= θ}
free(f op g) = free(f) ∪ free(g) , where op ∈ { | , À , ∗ }
free({f where x:∈ g}) = (free(f)− {x}) ∪ free(g)

• In { f where x:∈ g}, any free occurrence of x in f is bound to the
variable shown.

• z:∈ f is well-formed if all the free variables in f are global variables.
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Flat Expression

Flat expression: without a where clause.
Non-flat expression:

Flat expression is a regular expression of language theory.

Terms are symbols.
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Syntactic Conventions: Omit Braces; group where

{{ f
where

x :∈ g
}
where

y :∈ h
}

is

f
where

x :∈ g
y :∈ h

or, { f where x:∈ g, y:∈ h}
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Syntactic Conventions: Nested Site Calls

• Email(a,M(d)) is not an expression.

It means:

{ Email(a, u) where u:∈ M(d)}

• We allow R(f, g) where f and g are expressions.
It means : { R(x, y) where x:∈ f, y:∈ g}

• timer(f, g) is (after f0 time units return g0 )

{ fst(x, y)
where x:∈ g

y:∈ {timer(u) where u:∈ f }
}
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Argument Evaluation in Nested Site Calls

Consider Q(N(x), N(x), N(x)) .

For the first two arguments:
evaluate N(x) once and use the value for both.

For the last argument:
reevaluate N(x) .

{ Q(u, u, v)
where

u:∈ N(x)
v:∈ N(x)

}
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Operational Semantics

z:∈ {A(x) | B(y) À { C(p, θ)
where where

x:∈ M | R p:∈ N
y:∈ N

} }

• Execute the defns of x , y and evaluate A(x) | B(y) , all in parallel.

• Suspend evaluation of A(x) | B(y) until x or y gets a value.

• When x gets a value, resume evaluation of A(x) .

• When y gets a value, resume evaluation of B(y) .

• Suppose A(x) returns v . Evaluate C(p, v) . Start with p:∈ N .
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Execution Rules

• State: Variable, value pair. Value for θ in every state.

p.x is the value of x in state p .

• In the initial state only globals and θ have values.

• Rules describe the bag of values computed for expression f , by
structural induction on f .

expr ::= term
| expr expr
| expr À expr
| expr ∗ expr
| { expr where defn }
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Execution Rules; Starting state p

• term M(x, y) : call M with parameters p.x and p.y .

– M never responds: computation never terminates.
– M responds with value v : Only one result state q ,

q.θ = v and q.x = p.x for all other x .

• f | g : evaluate f and g in state p , in parallel.

The (bag of) result states are the ones returned by both f and g .

• f À g : evaluate f in p . For each result state q , evaluate g in q .

Value computed for f is in q.θ . Value of f À g are the states
returned by g .
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Execution Rule for f ∗ g in state p

Evaluate both f and g in p and in any q returned by f .

The result states are the ones returned by g .

N

N

M

M

N

Values are returned by N .
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Execution Rule for { f where x:∈ g} in state p

• Evaluate f and g in state p , in parallel.

• When g returns state q , augment p with (x, q.θ) .

• In evaluating f , if we need the value of x :

wait until the value is available (in an augmented state).

• Result states of { f where x:∈ g} are from f .

Remove the tuple for x from the state because x is not defined
outside this scope.
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Execution Rule for z:∈ f in state p

• Evaluate f in p .

• Any result state, q , has the same set of variables as p , and
p.x = q.x , for all x except θ ; the result of evaluation is q.θ .

• Let r be the first result state. Augment p by (z, r.θ) , and return this
as the result state of z:∈ f .

• If f never responds, state p is never augmented.
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Fork-Join parallelism

z:∈ fst(true, x) | fst(false, x)
where where

x:∈ timer(1) x:∈ timer(2)

z is assigned true after 1 time unit.
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Angelic Nondeterminism

In (M | N)ÀR , R may be called twice. We have

(M | N)ÀR = M ÀR | N ÀR ,

More generally, Right Distributivity of À over | :

(f | g)À h = (f À h | gÀ h)
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Demonic Nondeterminism; where clause

(N | R)ÀM

is not equivalent to

let(x)ÀM
where

x:∈ N | R
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Idempotence and Left Distributivity do not hold

Following laws do not hold.

(Idempotence of | ) f | f = f
(Left Distributivity of À over | ) f À (g | h) = (f À g) | (f À h)

M M

N R

M

N R

(a) (b)

Figure 1: Schematic for M À (N | R) and M ÀN | M ÀR
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Parallel or

Let sites M and N return booleans. Compute their parallel or.

z:∈ ift(x) | ift(y) | or(x, y)
where

x:∈ M
y:∈ N

Similarly, evaluate any function f of the form

f(x, y) =





p(x) if c(x)
q(y) if d(y)
r(x, y) otherwise

UNIVERSITY OF TEXAS AT AUSTIN 46



DEPARTMENT OF COMPUTER SCIENCES

Eight queens

• configuration: placement of queens in the last i rows.

• Represent a configuration by a list of integers j , 0 ≤ j ≤ 7 .

• Valid configuration: no queen captures another.

• check(x:xs) : Given xs valid, return

x : xs , if it is valid

remain silent, otherwise.
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Eight queens; Contd.

let([])
À 〈check(0 : θ) | check(1 : θ) | check(2 : θ) · · · | check(7 : θ)〉
À 〈check(0 : θ) | check(1 : θ) | check(2 : θ) · · · | check(7 : θ)〉
À 〈check(0 : θ) | check(1 : θ) | check(2 : θ) · · · | check(7 : θ)〉
À 〈check(0 : θ) | check(1 : θ) | check(2 : θ) · · · | check(7 : θ)〉
À 〈check(0 : θ) | check(1 : θ) | check(2 : θ) · · · | check(7 : θ)〉
À 〈check(0 : θ) | check(1 : θ) | check(2 : θ) · · · | check(7 : θ)〉
À 〈check(0 : θ) | check(1 : θ) | check(2 : θ) · · · | check(7 : θ)〉
À 〈check(0 : θ) | check(1 : θ) | check(2 : θ) · · · | check(7 : θ)〉

————————————
let([])À 〈À i : 0 ≤ i ≤ 7 :

〈 | j : 0 ≤ j ≤ 7 : check(j : θ)〉
〉

————————————
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Local object

• Call sites M , N and R .

• Terminate after receiving two response.

Object count with integer state. Initially, 0 .

• count.incr increments state;

• returns a signal if state ≥ 2 , otherwise, remains silent.

c:∈
M À count.incr

| N À count.incr
| R À count.incr
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And-Or graph

u v

M

v w

N

y
w

R

u

S

t

y

\/

\/

/\

/\

z

x

r:∈ let(z, t)
where

z:∈ R(x, y, w)
t:∈ S(y) | S(u)

where
x:∈ M(u, v)
y:∈ N(v) | N(w)
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Airline

• Return any quote, from A or B , provided it is below 300 .

• If neither quote is below 300 , then return the cheapest quote or any
quote available by time t .

• If no quote is available by t , return ∞ .

Min returns the minimum of its argument values.

threshold(x) returns x if x is below 300 ; silent otherwise.

z:∈ threshold(x) | threshold(y) | Min(x, y)
where

x:∈ A | timer(t,∞)
y:∈ B | timer(t,∞)
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Workflow: Visit Coordination

• Email(p, s) : contact p with dates s ; response is date d from s .

• Hotel(d) : booking from hotel.

• Airline(d) : booking from airline.

• Ack(p, t) : similar to Email ; response is an acknowledgment.

• Confirm(t) : confirm reservation t (for hotel or airline).

• Room(d) : reserve room for d . Response q : room number, time.

• Announce(p, q) : announce the lecture.

• AV (q) : contact technician with room and time information in q .
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Workflow; Contd.

z:∈ let(b) À let(c, e) À let(u, v)
where where where
b:∈ Ack(p, h, f) c:∈ Confirm(h) u:∈ Announce(p, q)

e:∈ Confirm(f) v:∈ AV (q)
where
q:∈ Room(d)

where
h:∈ Hotel(d)
f :∈ Airline(d)

where
d:∈ Email(p, s)
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Interrupt handling

• Orc statement can not be directly interrupted.

• Interrupt site: a monitor.

• Interrupt .set : to interrupt the Orc statement

• Interrupt .get : responds after Interrupt .set has been called.

————————————
z:∈ f

————————————

is changed to

z:∈ f | Interrupt .get
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Processing Interrupt

z:∈ { f(x, y)
where x:∈ g , y:∈ h }

If f is interrupted, call M and N with parameters x and y ,
respectively, to cancel the effects of g and h .

z:∈ Normal(t) | Interr(t) À let(X,Y )
where

X:∈ M(x)
Y :∈ N(y)

where
t :∈ f(x, y) | Interrupt .get

where
x :∈ g
y :∈ h
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Phase Synchronization

Process starts its (k + 1)th phase only after all processes have
completed their kth phases.

Consider M À f and N À g .

{let(x, y)
where

x:∈ M
y:∈ N}

À
fst(θ)À f | snd(θ)À g
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Phase Synchronization; Contd.

Synchronize M ∗ f and N ∗ g .

f

f

f

M

M

g N

g N

g

{let(x, y)
where

x:∈ M
y:∈ N}

∗
fst(θ)À f | snd(θ)À g
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Heat transfer computation over a grid

• Value xij at point (i, j) in a phase is the average of its neighbors’
values in the previous phase.

• Site average returns the average of its arguments.

• Site converge returns its argument value if the values have
converged sufficiently, otherwise, it remains silent.

z:∈ {let(x)
where
〈∀i, j :: xij:∈ average(θi−1,j, θi+1,j, θi,j−1, θi,j+1)〉

}
∗ converge(θ)
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Environment

An environment is a set of tuples. Each tuple has:

• a name (of a variable or θ ),

• a val component (its value) and

• a clock component, the time at which this value was computed.

Example: p : 〈(x, false, 27), (y, true, 12), (θ, 13, 20)〉
p.x.val = false and p.x.clock = 27 .

An environment is a statement about a computation:
the value of x , computed at time 27, is false , and the value of y ,
computed at time 12, · · · .
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Relation over Bags of Environments

Each expression and defn is a binary relation over bags of environments.

Notation: P , Q are bags of environments. ∪ is bag union.

Write P f Q and P (z:∈ f) Q .

Coercion rule:
〈∀p : p ∈ P : {p} f Qp〉
P f 〈∪p : p ∈ P : Qp〉

Consequently, we need only consider {p} f Q .

Note: {} f {}
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Relation over Bags of Environments; Contd.

{p} f Q : evaluation of f started in p at time p.θ.clock yields all
environments in Q in some computation.

Q may be empty: non-terminating computation.

Q may have duplicates: as in evaluating M | M .
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Example

p : 〈(x, false, 27), (y, true, 12), (θ, 13, 20)〉 .

{p} let(x, y) {〈(x, false, 27), (y, true, 12), (θ, (false, true), 27)〉}

{p} timer(2) {〈(x, false, 27), (y, true, 12), (θ,SIGNAL, 22)〉}

{p} u:∈ let(x, y)
{〈(x, false, 27), (y, true, 12), (u, (false, true), 27), (θ, 13, 20)〉}

{p} let(z) {} , because z is not defined in p .

{p} u:∈ let(z) {p}
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Semantics of Term

Evaluate M(L) in environment p . Result is at most one environment.

• x ∈ L and x 6∈ p : no result environment.

• Otherwise: call M with values p.x.val for all x in L ,
at maximum of p.θ.clock and clock values of all parameters in L .

• If M responds with value v at time t , the result environment is q ,
where

q.x = p.x , for all x in p , x 6= θ
q.θ.val = v
q.θ.clock = t
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Axioms about terms

Notation: p\x : remove the tuple for x from q . x 6∈ p ⇒ p\x = p .

• {p} M(L) {} , if x ∈ L and x 6∈ p .

• Given {p} M(L) {q} :

– q.x = p.x , for all x in p , x 6= θ , and q.θ.clock ≥ p.θ.clock
– if x 6∈ L , then {p\x} M(L) {q\x}
– if x ∈ L , let p′ = p\x except

p′.θ.clock = max(p.θ.clock, p.x.clock) .
Then, {p′} M(L[x := p.x.val]) {q\x}

• (parameters may be renamed) For y 6∈ p and y 6∈ L ,

{p} M(L) {q} ≡ {p[x := y]} M(L[x := y]) {q[x := y]}
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Semantics of some sites

• {p} Fail {}

• {p} let(x, y) {q} :

q.θ.val = (p.x.val, p.y.val)
q.θ.clock = max(p.θ.clock, p.x.clock, p.y.clock)

In particular, {p} let(θ) {p} .

• {p} random {q} :

q.θ.val = a number from the specified range
q.θ.clock = p.θ.clock
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Semantics of some sites; Contd.

• {p} fst(x, y) {q} :

q.θ.val = p.x.val
q.θ.clock = max(p.θ.clock, p.x.clock, p.y.clock)

• {p} timer(t) {q} :

q.θ.val = SIGNAL
q.θ.clock = p.θ.clock + t
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Exercise: Properties of the timer

x:∈ timer(t) | timer(u) ≡ x:∈ timer(t) , given t ≤ u ,
timer(t) À timer(u) ≡ timer(t + u)
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Semantics of Defn

• {p} f {}
{p} (z:∈ f) {p}

• {p} f Q, q ismin Q
{p} (z:∈ f) {p + (z, q.θ)}

q ismin Q : q ∈ Q and q.θ.clock ≤ r.θ.clock for every r in Q .

+ denotes expansion of an environment by a tuple.
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Semantics of Expression

• {p} (x:∈ g) {q}, {q} f Q
{p} {f where x:∈ g} (Q\x)

• {p} f Q, {p} g R
{p} (f | g) (Q ∪R)

• {p} f Q, Q g R
{p} (f À g) R

• {p} f Q, Q f∗ R
{p} f∗ ({p} ∪R)

f ∗ g ≡ f∗À g
f∗ ≡ f ∗ 1 , where 1 = let(θ) .
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Notes

• À is relational composition.

• | is not relational union,

P f Q does not imply P (f | g) Q .

Under relational union M and M | M would be identical. We treat
them differently.
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Kleene Algebra

(Zero and | ) f | 0 = f
(Commutativity of | ) f | g = g | f
(Associativity of | ) (f | g) | h = f | (g | h)
(Idempotence of | ) f | f = f
(Associativity of À ) (f À g)À h = f À (gÀ h)
(Left zero of À ) 0À f = 0
(Right zero of À ) f À 0 = 0
(Left unit of À ) 1À f = f
(Right unit of À ) f À 1 = f
(Left Distributivity of À over | ) f À (g | h) = (f À g) | (f À h)
(Right Distributivity of À over | ) (f | g)À h = (f À h | gÀ h)
(Recursive Expansion of Kleene star) f∗ = 1 | f À f∗
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Corollaries

(Left Distributivity of ∗ over | ) f ∗ (g | h) = (f ∗ g | f ∗ h)
(Regrouping ∗ over À ) (f ∗ g)À h = f ∗ (gÀ h)
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Additional Properties of Non-flat Expressions

• (Narrowing the scope) Given that x is not free in g :

{g where x:∈ h} = g
{f | g where x:∈ h} = {f where x:∈ h} | g
{f À g where x:∈ h} = {f where x:∈ h} À g

• (Bound variable renaming) In the following, y is not free in f or g .

{f where x:∈ g} = {f [x := y] where y:∈ g}

• (Independent defn) y is not free in g and x is not free in h .

{{f where x:∈ g} where y:∈ h}
= {{f where y:∈ h} where x:∈ g}
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Implementation

• Compile the statement into a (set of) finite state automata

• explore the automata to compute the goal variable.

For z:∈ (M(x) | N(y))ÀR(θ)

M(x) N(y)

θ)R( R(θ)

z::
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Difficulties In Automata construction

• How to compile a non-flat expression:

z:∈ {M(x) | N where x:∈ R}

• We cannot use standard procedures. In automata theory,
M À (N | R) ≡ M ÀN | M ÀR

M M

N R

M

N R

(a) (b)

• Non-determinism: M is called twice in M ÀN | M ÀR .
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Flat program

Transform {f where x:∈ g} to

open(x)À f À close(x) and add the defn x:∈ g .

————————————
z:∈ {M(x) | { R(u)

where where
x:∈ {A(y) u:∈ B}

where y:∈ B}
}

————————————
The corresponding flat program is

z:∈ open(x)ÀM(x)À close(x) | open(u)ÀR(u)À close(u)
x:∈ open(y)ÀA(y)À close(y)
y:∈ B
u:∈ B
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open and close

• open and close are treated differently from usual sites.

• Calling open(x) starts a new computation of x on a clone.

• A state includes the values for the global variables and θ , but
reference to clone for local variable.

• close(x) removes reference to x from the state.
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clone

Several clones of an fsa may be simultaneously in existence.

z:∈ { M(x) where x:∈ N } ∗ R has the flat program
z:∈ 〈open(x)ÀM(x)À close(x)〉 ∗ R
x:∈ N

R

R

R

M(x)
close(x)

open(x)

M(x)
close(x)

open(x)
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Finite State Automata (fsa) from Flat Program

• An Orc fsa is a finite directed graph.

• Its edges are labeled with terms (including open and close).

• A pair of nodes in the fsa may have multiple edges between them,
possibly with the same label.

• Two distinguished nodes: begin and end.

• No incoming edge to begin node; no outgoing edge of end.

• For every edge, there is a path from begin to end that includes the
edge.
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Recursive fsa Construction

merge of x , y is x + y : incoming, outgoing edges of x , y .

f.b and f.e for begin and end nodes of fsa for f .

term M(L) : The fsa has one edge from begin to end, labeled M(L) .

For edge from (f ∗ g).b to x with label r : make edge (f.e, x) with r .

b

e

f g

f.b+g.b

f.e+g.e

f

e
g

b

f.e+g.b

(b) f >> g

b

g

e

f

f.e g.e

f.b+g.b

(c)  f * g(a)  f | g

f.b

g.e
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fsa for M À (N | R) | M ∗ R

b

e

R

M R

N R

MM
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Notes on fsa

• Traditional deterministic fsa construction is P-space complete.

Orc fsa construction is linear (see exercise).

• Each fsa can be unrolled to a (possibly infinite) tree.
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fsa exploration; token

• token associated with an edge of a clone of an fsa.

• Corresponds to a single step of computation.

• token has a state and a parent. parent is a token in the same clone or
NIL .

• token processes label M(x) on edge e :

wait until x has a value, then call site M . On receiving v from M :

– creates children tokens on all successor edges of e ,
– bequeaths to them the state with θ value v ,
– if e has no successor edge, reports v as the value of the

computation.
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fsa exploration; token; contd.

Asssume: single outgoing edge from each begin node (begin edge).

Ensure by adding an edge with label 1 .

• The token processes label open(x) on edge e :

– initiate computation on a clone of the fsa for x
– return reference to the clone as part of the state

• close(x) : remove the reference to the clone for x from the state.

• To initiate computation on a clone in state s :

place a token on its begin edge with state s and NIL parent.
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Site

• Any level of granularity in site,

from simple message transmission

to business-business transaction involving many servers

• May spawn new processes, start servers and change database
contents

• May interact with peripheral devices, including displays and keyboards
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Site Specification

The specification of site M is a predicate p over a triple (x, y, t) :

x is the value of actual parameters,

y is the result returned by M ,

t is an (absolute) time instant.
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Two stage Site Operation

A site operates in two stages.

• response: Client calls. Site returns y or remains silent.

also returns a pledge which is invisible to the Orc statement.

pledge carries a deadline by which it should be committed.

• commit: If the caller commits the pledge at time t before the deadline,

the site executes its commit stage,

which establishes predicate p(x, y, t) .
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Examples of Site Specification

• Function f :

returns y where y = f(x) . The deadline is irrelevant.

predicate: y = f(x) . No commitment needed.

• Site postOffice :

called with description of a parcel and returns y , the cost of delivery.

The deadline is the instant t , the time of response.

predicate: the cost of delivery of x at time t is y .

needs no commitment to establish this predicate.
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Examples of Site Specification; Contd.

• Object count : has an integer value count.v and
two methods, incr and read .

• Initially, count.v = 0 .

• incr : count.v := count.v + 1 ;
read : returns v = count.v .

The moment of response, t , is the deadline.

• predicate: count.v ≥ v beyond t . No commitment required.

• Another spec: count.v = v at the moment of commitment s , s ≤ t .

Implement specification by: lock count.v until the moment of
commitment or t , whichever comes first.
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Examples of Site Specification; Contd.

• Transaction sells 80 shares of stock pqr if price is above $25 and

buys 100 shares of stock abc if it is below $20 a share.

• Both price conditions are met before the transaction returns a signal.

• The deadline is very short.

• If the client commits within the deadline, establishes the predicate:

client has bought and sold the requisite number of shares for the
given prices at the moment of commitment.
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Examples of Site Specification; Contd.

• A site call may cause state change during the response stage.

• An airline issues a price quote and changes its state during the
response stage, even if no call commits.

• Its only obligation is to issue a ticket at the given price if the client
commits within the deadline.
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Type of pledge

• Instant pledge: site makes immediate commitment for the caller

The pledge can only be revoked next.

Calling site email sends an email, without waiting for commitment.

Common in concurrent computing.

• Deferred pledge: Commitment by deadline establishes the associated
predicate.
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Structure of pledge

A pledge has:

• An id,

• A deadline, an absolute time instant by which it has to be committed
or revoked (if already committed),

• A set of pertinent arguments, the arguments of the site call which
must be committed in order to commit this pledge.

z:∈ Min(x, y)
where

x:∈ A
y:∈ B

Pertinent argument from Min is the cheaper of x and y .
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Critical Path

Response from a terminal edge, e , is assigned as the variable value.

Edge e defines the Critical Path.

R

R

R

N R

M M R

M

M

Commit all pledges and their pertinent pledges along the critical path.
Transitive closure needed.

Revoke all other instant pledges.
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Definitions

For any clone c :

child(c) = {d| d is a clone spawned by an open in c}
pert(c) = {d| d is not a global variable or θ , and

d is a pertinent argument in a deferred pledge
along c ’s critical path}

instant(c) = instant pledge ids received in c
deferred(c) = deferred pledge ids received in c
instant+(c) = instant pledge ids received along the critical path in c
deferred+(c) = deferred pledge ids received along the critical path in c
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Transitive closure definitions

For any clone c :

all instant(c) instant pledge ids received in c and its descendants.

all deferred(c) deferred pledge ids received in c and its descendants.

all instant+(c) and all deferred+(c) , limited to the critical paths.

all instant(c) = instant(c)
∪ 〈∪d : d ∈ child(c) : all instant(d)〉

all deferred(c) = deferred(c)
∪ 〈∪d : d ∈ child(c) : all deferred(d)〉

all instant+(c) = instant+(c)
∪ 〈∪d : d ∈ pert(c) : all instant+(d)〉

all deferred+(c) = deferred+(c)
∪ 〈∪d : d ∈ pert(c) : all deferred+(d)〉
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Pledges to be Committed, Revoked

For any clone c :

all+(c) : pledges necessary and sufficient to commit c (received by c
and its descendants).

all+(c) = all instant+(c) ∪ all deferred+(c)

Instant pledges in all+(c) are already committed.

pos(c) : pledges which remain to be committed in all+(c) ; i.e.,

pos(c) = all deferred+(c)

neg(c) : pledges which need to be revoked, i.e., already committed and
not part of all+(c) ,

neg(c) = all instant(c)− all+(c) , i.e.,
neg(c) = all instant(c)− all instant+(c)
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Commitment and Revocation Algorithm

• Client: sends to the appropriate sites,

commitinit for pledges in pos(c) ,

revokeinit for pledges in neg(c)

• Site: responds with

ackinit if it is ready to commit/revoke the pledge or

nackinit if it can not.

Treat failure to respond (timely) as nackinit .
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Commitment and Revocation Algorithm; Contd.

• Client:

– If all responses are ackinit , sends
commitfinal to sites corresponding to pos(c) and
revokefinal to sites corresponding to neg(c) .

– Otherwise, sends abortfinal to all sites.

• Site:

commit after receiving commitfinal

revoke after receiving revokefinal ,

recovery computation after receiving abortfinal .
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Explicit Commit and Revoke

To handle transactions of differing deadlines.

Commit and Revoke sites.

A successful call to Commit(x, y) :

returns true and guarantees that x and y are committed with their
pertinent variables. Similarly, Revoke .

Make explicit the commit in z:∈ f

z:∈ { Commit(y) À let(y)
where

y:∈ f
}
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Example

Reserve a hotel room and an airline ticket.

The hotel responds after a long delay but gives a long deadline.

The airline usually responds quickly but gives a short deadline.

Strategy

• Contact the hotel. After it responds, contact the airline.

• Airline responds before the hotel’s deadline:

if its quote is excessively high: cancel vacation plan and assign ∞ to
the goal variable.

Otherwise: commit to both and return the sum of the quotes as the
goal variable value.
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Example; Contd.

• Airline does not respond before the hotel’s deadline: commit to the
hotel; and wait 1 unit for the airline response.

– Airline responds before the new deadline:
if its quote is excessive: revoke the hotel commitment and cancel
vacation plans.
Otherwise: commit to the airline and return the sum of the quotes
as the goal variable value.

– Airline does not respond before the new deadline: revoke the hotel
commitment and cancel vacation plans.
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Example; Contd.

z:∈
{ exc(a) À let(∞)
| ¬exc(a) À Commit(a, h) À Plus(a, h)
| let(t0) À Commit(h) À

( ( exc(a) | let(t1)) À Revoke(h) À let(∞)
| ¬exc(a) À Commit(a) À Plus(a, h)

)
where

(h, d) :∈ Hotel
a :∈ let(h)ÀAirline
t0 :∈ timer(d)
t1 :∈ let(t0)À timer(1)

}
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