Little (but Hard) Theorems
About Big Systems:
Some Case Studies

J Strother Moore
Department of Computer Sciences
University of Texas at Austin

Marktoberdorf Summer School 2004

Lecture 1

Thesis

The size and complexity of today's artifacts

make 1t hard to prove theorems about
them.

This is not an argument against formal
methods.

It Is an argument for formal methods!

We focus on proving theorems of interest
to the industrial designers of commercial
hardware and software artifacts.

These theorems do not ensure every

interesting property of the design. In this
sense they are “little” theorems.

But they deal with very precise models of

extremely complex designs. So their proofs
are often “big.”

How Important Are These Theorems?

An elusive circuitry error Is causing a chip
used in millions of computers to generate

Inaccurate results

— NY Times, “Circuit Flaw Causes
Pentium Chip to Miscalculate, Intel

Admits,” Nov 11, 1994

Intel Corp. last week took a $475 million
write-off to cover costs associated with the
divide bug in the Pentium microprocessor's
floating-point unit — EE Times, Jan 23,

1995

In 1995, we proved that FDIV works

correctly (IEEE 754 compliance) on the
AMD K5 — months before the K5 was

fabricated.

AMD ATHLON™
rockersTo 1 GHz

All elementary arithmetic ops In the
Athlon’'s FPU were verified before fab.

Four RTL-level bugs were found and fixed.

AMD Austin has b people using theorem
proving on AMD designs.

One person keeps up with the FPU design
team.

AMD's design process (for FPUs) has
changed!

RTL-level circuit descriptions of modules in
the FPU are routinely verified
(mechanically) to be IEEE compliant.

"AMD will never again produce an
unverified floating-point unit.”

How Big is “Big”?
AMD work involves thousands of lemmas.

Models involve 4000 mutually recursive
functions.

Motorola CAP Digital Signal Processor

16

low_data

16
high data

addr3to0
pwr_on reset
ce_bar
r_wbar
ts_bar
ta_bar

hr bar

PROGRAM
SEQUENCER/
DEDCODER

1 11 m/zy ||
| |

xd/yd

xs/ys \

|
|]
T] w1

aol/sol

ao2/so2

— 1BIT
[1 2x20BITS

|| eaBrs

serial clk

serial data

10

Our formal model of the Motorola CAP
digital signal processor was bit- and cycle-
accurate.

We proved that the microarchitecture
implemented the specified microcode

engine.
We proved microcode correct.

Some proofs involved subgoals of 25 MB.

11

Our formal model of alile System’s silicon
JVM was bit- and cycle-accurate and

was used in place of the traditional
C-simulator for requirements testing

12

Tim Lindholm * Frank Yellin

The Java" Virtual
Machine Specification
Second Edition

The Java Series a2 pragrer

@ Sun

:JVMin ACL2

(defun make-state (tt hp ct)
)

(defun step (th s)
)

(defun run (sched s)
(if (endp sched)
s
(run
(cdr sched)
(step (car sched) s))))

13

Our model of the JVM executes most
J2ME Java programs and includes

- almost all bytecodes
- multi-threading

- synchronization

- class loading

- Initialization, and

- byte-code verification.

The model is 10K lines of formalism (about
175 pages).

Additionally, about 200MB of formal
constants are involved (representing the
entire Sun CLDC API library)

15

How Do You Construct Big Proofs?

(1) Learn to express your conjectures
formally.

16

How Do You Construct Big Proofs?

(1) Learn to express your conjectures
formally.

(2) Learn to prove little theorems formally.

17

How Do You Construct Big Proofs?

(1) Learn to express your conjectures
formally.

(2) Learn to prove little theorems formally
and simply.

18

How Do You Construct Big Proofs?

(1) Learn to express your conjectures
formally.

(2) Learn to prove little theorems formally
and simply.

(3) Learn how to get a machine to do the
rote work.

19

How Do You Construct Big Proofs?

(1) Learn to express your conjectures
formally.

(2) Learn to prove little theorems formally
and simply.

(3) Learn how to get a machine to do the
rote work.

(4) Practice, practice, practice ...

20

The Plan for These Lectures

e a trivial formal system (1 lecture and
homework)

e how to prove little theorems (2 lectures
and homework)

e demo with (slightly) larger problems
(1 lecture)

21

e proof of an algorithm on a Motorola DSP
(1 lecture)

e modeling the JVM and veritying JVM
bytecoded methods (1 lecture)

22

How To Get the Most Out of This

Read the orange booklet associated with
these lectures.

The paper in the booklet is titled “How to
Prove Theorems Formally” and gives lots
of advice.

Do the ~ 30 exercises in the booklet!

Check your answers against mine on the
web.

23

Or, use a mechanical theorem prover.

24

A Simple Formal System

We will use a tiny subset of pure Lisp, both
as a programming language and a
first-order mathematical logic.

The subset is from

A Computational Logic for
Applicative Common Lisp

or

ACL2

25

Poll

How many have heard of Lisp (or Scheme)?

How many have written at least one Lisp
program?

How many know Lisp?

26

About Lisp and ACL2
Lisp Is untyped.

Lisp is strict (not lazy).

ACL2 is a subset of Lisp.

ACL2 is first order (no functional args).
ACL?2 is applicative (functional).

All ACL2 functions are total (always
terminate on all arguments).

27

The Boyer-Moore Project

McCarthy’s “Theory of Computation”
Edinburgh Pure Lisp Theorem Prover

A Computational Logic
NQTHM
ACL2
!
1960 1970 1980 1990 2000
Boyer]

Moore
Kaufmann | |

28

The Boyer-Moore Project

simple list processing

academic math and cs

commercial

applications

l | | | | | | | | ‘ | | | | | | | | ‘ | | | | | | | | ‘ | | | | ‘ | | | |

|

1960 1970 1980 1990

2000

29

Lisp Syntax

< term > := <wvar > |
(quote < const >)
(< fn> <term >

< term >,)

30

Example Terms
(CONS (CAR X) REST))
e.g., CONS(CAR(x), rest)

(ASSOC-EQUAL KEY ASSOCIATION-LIST)
(assoc-equal key association-list)

(assoc-equal key

association-list)

31

Data Types
ACL2 supports five disjoint data types:

e numbers (integers, non-integer rationals,
complex rationals)

e characters
e strings
e symbols

® pairs

32

There are primitive functions for

e creating each type of object from its
constituents

e accessing the constituents
e recognizing instances of each type

e other expected operations (e.g., addition
of numbers)

33

Every instance of each type can be printed.

In these lectures we won't have much use
for numbers (other than the integers),
characters, strings, or many symbols.

Case will be irrelevant here, e.g., NIL, Nil
and nil are the same.

Here are some printed instances ...

34

65 66 #c(3 2) #\Space
97 22/7 #\A #\B
-33 "ABC" "Hello, World!"
T NIL ABC COLOR RED
(65 . RED) JONES::FN SMITH::FN
(#\A . (#\B . (#\C . NIL)))
(0. 1) . (2. 4))
((COLOR . RED) (SIZE . 7))

35

About T and NIL

T and NIL are used as the “truth values”
true and false.

NIL is used as the “terminal marker’ on
nested pairs representing lists.

Informally, “NIL is the empty list.”
But T and NIL are symbols!

36

About Pairs
<z, <y, <z, nil>>>

N\

VAN

Y v N\

Z nil

(z . (y . (# . nil)))

37

About Pairs
<z, <y, <z, nil>>>

N\

VAN

Y v N\

Z nil

(z . (y . (# . nil)))
(x . (y . (z)))

38

About Pairs
<z, <y, <z, nil>>>

N\

VAN

Y v N\

Z nil

(z . (y . (# . nil)))
(x . (y . (z)))
(x . (y 2))

39

About Pairs
<z, <y, <z, nil>>>

N\

VAN

Y v N\

z nil

(x . (y . (z . nil)))
(x . (y . (z)))

(x Y 2z)

About Pairs
<z, <y, <z, nil>>>

N\

VAN

Y v N\

z nil

(x . (y . (z . nil))) (x
(x . (y . (z))) (x

(x Y 2z)

. (z

Z

41

. nil))
. nil

Is 1t strange that Lisp provides so many
ways to write (x y 2)7?

(x . (y . (z . nil)))
(x . (y . (z)))
(x . (y Z))
(x Y Z)

Is 1t strange that you know so many ways
to write 1237

123
0123

+123
01111011,
Ox7B

43

About Pairs

<<1, 2>, <3, 4>>

.)/\‘.
N N
1 2 3 4

(1.2 . 3. 4)
(1. 2) 3.4)

44

< term > := <wvar > |
(quote < const >)|
(< fn> <term >

< term >,)

Every instance of each type can be written
as a constant term.

>const is an abbreviation for
(quote const).

45

About Quote

(CAR X) 1s a term denoting the application
of the function symbol CAR to the value of
the variable symbol X.

>(CAR X) Is a term denoting a list
constant.

Which do you mean?

46

(0K OK °0K ’ (0K OK °’0K))
OK(ok, OK, [OK, OK, [QUOTE, OK]])
F(x,3,[3,3,[7,3]])

Primitive Functions

e (cons x y)
construct the ordered pair (x, y)

e (car x)
left component of x, if x is a pair; nil
otherwise

e (cdr x)
right component of x, if Is a pair; nil
otherwise

48

e (consp x)
t If x Is a pair; nil otherwise

o (if z vy 2)
z it x 1s nil; y otherwise

e (equal x y)
t if x is y; nil otherwise

49

Defining Functions

(defun not (p) (if p nil t))
(defun and (p q) (if p q nil))

(defun or (p q) (if pp q))

(defun implies (p q)
(if p (if g t nil) t))

(defun iff (p q)
(and (implies p q) (implies q p)))

50

We make the conventions
“term” term

(and p g r) (and p (and q r))
(or p q 1) (or p (or q r))
(+ 1 j k) (+1i (+ j k))

(list x) (cons x nil)
(list x y) (cons x (cons y nil))
(list x y z) (coms x
(cons y
(cons z nil)))

51

Homework

Problem 1.0 If you haven't already, read
"How to Prove Theorems Formally!”

Do the exercises In it!

Some of you may want some new exercises.
| will not collect or grade these. But if you
want something to think about ...

52

Problem 1.1. We say e “is a twin" In the
true-list x iff e occurs exactly twice in .
Define (twins x) so that it returns a list
of all the twins in z, with no duplications.
Avoid using arithmetic in your definition(s)!

53

Problem 1.2. Define (perm x y) so that
it returns t or nil according to whether
the lists x and y are permutations of one
another. You may assume both are
true-lists (terminated by nil).

54

Problems 1.3 and 1.4. Skipped.

55

Problem 1.5. You know the “Towers of
Hanol” puzzle:

Al il L

start finish

Define (hanoi m) so that it solves the
puzzle for an arbitrary natural number n.

(To subtract 1 from n, use (- n 1). To
test whether n is 0, use (zp n).)

56

Problem 1.6. Formalize what it means for
hanoi to be “correct.” That Is, write a
term whose value is always true precisely if
(hanoi n) solves the n-puzzle.

57

Why Am | Being So Vague?

... because a crucial skill you must learn is
how to write formulas that “capture”
imprecise, informal, intuitive ideas.

58

