Little (but Hard) Theorems
About Big Systems:
Some Case Studies

J Strother Moore
Department of Computer Sciences
University of Texas at Austin

Marktoberdorf Summer School 2004

Lecture 3



Definitions

When using a formal system it is necessary
to be able to extend the theory with the
introduction of new concepts.

For example, if we cannot introduce the
new functions rev or revl, how can we
prove anything about them?



But it is risky to add new axioms to a
formal system in an undisciplined way.

How do we know the system Is consistent
after adding a new axiom?

A Definitional Principle permits one to
extend a formal system without risk.



Theorem. (p x) — (q x).
Proof:
Definition: (defun r (x) ...)
Lemma 1: (p x) — (r x).
Lemma 2: (r x) — (q x).

Q.E.D.

But how do you know (p x) — (g x) Is a
theorem In the original theory? You added
an axiom!



Definitions

(defun f (v1 ... v,) 3)
introduces the new axiom

Voi...v, :+ (f v1...v,) = 0
provided the definition is admissible.

Such definitions are conservative: the only
new theorems are ones involving the new

symbol.



(defun f (v1 ... v,) 3)

is admissible iff

1. f is a new function symbol

2. the v; are distinct variable symbols

3. B is a term that contains no (free)
variable symbols other than the v,



(defun car (x) x) ; Violates 1

(defun f (x x) x) ; Violates 2

(defun g (x) y) ; Violates 3



Theorem: 2=7
Proof:

We have the axiom Vx: (g x)=y.

(g 0) =2
(g 0) =7
2 =17

Q.E.D.



What Is the harm in non-terminating
functions?

(defun f (x)
(if (equal x 1)
nil
(cons nil (f (- x 1)))))

Lemma:
(natp n) AN x <1 — n < (len (f x)).
Theorem: (len (f 0)) < (len (f 0)).



Admissiblity (continued)

4. There Is a natural number measure

(m v1...v,) such that for every recursive
call (f 07...90,) in B and its governing
tests 7

Measure T heorem:

(implies 7

(< (m 51 571)

10



(defun app (x y)
(if (consp x)
(cons (car x)
(app (cdr x) y))
y) )

(consp x) governs (app (cdr x) y).

Measure Theorem:
(implies (consp x)
(< (m (cdr x) v)
(m x y)))



Measure Theorem:
(implies (consp x)
(< (m (cdr x) yv) (m x y)))

where we measure the length of x
(defun m (x y) (len x))
or the “tree size”

(defun m (x y) (acl2-count x))

12



Elaboration: m may return an ordinal, in
which case, < should be replaced by o<.

Note: ACL2 represents the ordinals up to

13



Examples (ordered by o<)

0 0

1 1

2 2

» ((1.1).0)

W X 2 ((1.2).0)

WX 2+ 23 (1.2).23)

X3 twxT+19 ((2.3)(1. 7). 19)
o ((1.1).0).1). 0)



ACL2 provides support for ordinal
arithmetic.

W X3 +wxT7+19

(o+ (o*x (o~ (omega) 2) 3)
(o*x (omega) 7)
19)

(2 .3) (1.7 . 19)

15



Induction
To prove (¢ x y) by induction on x prove:

Base Case:
(implies (not (consp x)) (¥ x y))

Induction Step:
(implies (and (consp x)

(¢ (car x) oq)
(¢p (cdr x) a9))

(Y x y))
where the «; are arbitrary terms.

16



Elaborations

You may, of course, omit an induction
hypothesis.

Induction Step:
(implies (and (consp x)

(¢p (cdr x) a9))
(Y x y))

17



You may have multiple ¢;.

Induction Step:
(implies (and (consp x)
(¢ (car x) ag)
(v (cdr x) o)
(Y (cdr x) az))
(Y x y))



Instead of (car x) and (cdr x) you may
use any terms whose values are smaller
than x's when the “test” (consp x) holds.

Induction Step:
(implies (and (consp x)
(v (1o x) 1)
(¢ (hi x) a2))
(Y x y))

(lo ) =liste€ex:e < (car x).
(hi ) =liste€ex:e > (car x).

19



Induction Principle To prove v, let 7 be a

term and let 01,09, ... be variable-to-term
substitutions.

Base (Case:
(implies (not 7) )

Induction Step:
(implies (and 7 ¥/o1 ... Y/0oy)
¥)

provided

20



there I1s a term m such that
(o-p m), and
foreach 1 <1 <n

(implies 7
(O< m/()'i m))

are theorems.

21



proposed definitions
conjectures and
advice

< rules

— rules

pr 0ofd
execution
environment %
i
forms and
and
values advice

22



Destructor Elimination

Q Equality

Slmpllflcatlor/’

-

formula |— &

Generalization

@

pool

Q Elimination of
Q / Irrelevance

Induction

23



Destructor Elimination

TN

Q Equality

Generalization

Elimination of
Q Irrelevance

Induction

Simplificatio
evaluation
propositional calcu
BDDs

equality
uninterpreted function symbols
rational linear arithmetic \\
rewrite rules

recursive definitions

back- and forward—chaining
metafunctions
ongruence—based rewriting

&

24



Demo

25



Note

| will make available my solutions to the
twins problem, the subp problem, and the
Hanoi problem.

Next time | will begin to present larger
systems.

26



