Little (but Hard) Theorems
About Big Systems:
Some Case Studies

J Strother Moore
Department of Computer Sciences
University of Texas at Austin

Marktoberdorf Summer School 2004

Lecture 5

An Entertaining Puzzle: The Thread

Game

process A:

repeat{

C=C+C}

R
read C

read C
add

write C
I

C

atomic

process B:

repeat{
C=C+C;}

1
read C

read C
add

write C

N

Theorem? For every positive integer n
there is an interleaving of A and B steps
that produces C = n.

Thesis

The abstractions of Java are nicely
captured by the Java Virtual Machine

(JVM).

We verify Java programs by verifying the
bytecode produced by the Java compiler.

We formalize the JVM with an operational
semantics in the ACL2 logic.

Our “M6" model is based on an
implementation of the J2ME KVM. It
executes most J2ME Java programs
(except those with significant |/O or
floating-point).

M6 supports all data types (except floats),
multi-threading, dynamic class loading,
class initialization and synchronization via
monitors.

We have translated the entire Sun CLDC
API library implementation into our
representation with 672 methods in 87
classes. We provide implementations for 21

out of 41 native APIs that appear in Sun's
CLDC API library.

We prove theorems about bytecoded
methods with the ACL2 theorem prover.

This work is supported by a gift from Sun
Microsystemes.

Disclaimers about Our JVM Model

Our thread model assumes

e sequential consistency and

e atomicity at the bytecode level.

Java and the JVM

class Demo {

public static int fact(int n){
if (n>0) {return n*fact(n-1);}
else return 1;

}

public static void main(String[] args){
int n = Integer.parselnt(args[0], 10);
System.out.println(fact(n));
return;

I3

Demo.java

Translating the JVM Spec into ACL2

Tim Lindholm « Frank Yellin . JVM in ACL2 -

The Java" Virtual
Machine SPECiﬁCﬂti()n (defun make-state (tt hp ct)
Second Edition)

The Java Series "'""'--'F"faumm ‘ (dEfun Step (th S)
)

(defun run (sched s)

(if (endp sched)
S
(run
e - ' (cdr sched)
XY - rom the Source” IR (step (car sched) s))))

We define a Lisp interpreter for bytecode.

sighals—
step

state -
[] - -

f

(defun run (signals state)
(if (endp signals)
state
(run (cdr signals)
(step (car signals) state))))

10

The JVM Spec from Sun

iload_0
Operation
Load int from local variable O
Format
lload_0
Form
26 (Ox1la)
Operand Stack
.. = ..., value

11

S
t

Description

The local variable at 0 must contain
an int. The value of the local variable
at 0 Is pushed onto the operand stack.

Note: ILOAD_O, ... ILOAD_3 are one-byte

necializations of the more general

nree-byte ILOAD n instruction.

12

Java

javac

.class

jvm2acli2

=

lisp |

Theorems

“fact(5)=120"

.) ‘‘fact(n)=n!"

13

ACL2 Demo

This Model Is Executable

We define (jvm-Demo param) to

e build a JVM state poised to invoke the
main method of class Demo on command
line param,

e use simple-run to step that state to
completion, and

e print some results.

15

ACL2 Demo

16

We get execution speeds of about 1000
bytecodes/sec on a 728 MHz processor.

We suspect this could be increased x100
using ACL2 optimization features.

17

But This Model is Formal

It 1s possible to prove theorems about this
JVM model.

Let's prove that fact returns the low-order
32 bits of the mathematical factorial.

18

(defthm fact-is-correct
3k

(implies

(poised-to-invoke-fact s n)

(equal (simple-run s k)

(state-set-pc (+ 3 (pc s))
(pushStack (int-fix (! n))
(popStack s))))))

19

(defthm fact-is-correct

(implies
(poised-to-invoke-fact s n)
(equal (simple-run s (fact-clock n))
(state-set-pc (+ 3 (pc s))
(pushStack (int-fix (! n))
(popStack s))))))

20

ACL2 Demo

21

Such proofs are sometimes called direct or
clock-style proofs because they proceed by
direct appeal to the operational semantics

and (informally) “by induction on the
number of steps.”

22

(defthm fact-is-correct

(implies
(poised-to-invoke-fact s n)
(equal (simple-run s (fact-clock n))
(state-set-pc (+ 3 (pc s))
(pushStack (int-fix (! n))
(popStack s))))))

23

A Precise Informal Notation

We proved that

public static int fact(int n){
if (n>0) {return n*fact(n-1);}
else return 1; }

returns

(int-fix (! n))

24

We can also prove that

class IterativeDemo {
public static int ifact(int n){
int temp = 1;
while (0<n) {
temp = n*temp;

n =n-1;}
return temp,
I
returns

(int-fix (! n))

25

Changing the Heap

class Cons {

int car;

Object cdr;

public static Cons cons(int x, Object y){
Cons ¢ = new Cons();
c.car = X;
c.cdr = y;
return c; } }

26

class ListProc extends Cons {
public static Cons insert(int e,Object x){
if (x==null)
{return cons(e,x);}
else if (e <= ((Cons)x).car)
{return cons(e,x);}
else
return
cons(((Cons)x) .car,
insert(e, ((Cons)x).cdr)); }

27

public static Object isort(Object x){
if (x==null)
{return x;}

else return insert(((Cons)x).car,
isort(((Cons)x).cdr)); } }

28

Let deref* be the function that chases
references through the heap (recursively)
and constructs the tree represented.

Suppose isort is invoked on x(in heap hy
and returns xy in heap h;.

Let oy be (deref* xy hy), i.e., the list of
elements represented by the object xg In hy.

Let «v;y be (deref* 21 hy).

Then a; is an ordered permutation of «y.

29

Basic Proof Structure

Lemma 1: Prove that executing the byte
code produces a state transformation
decribed by a given ACL2 function, i.e.,
that the isort method produces a state
change that, modulo derefx*, is the same
as the ACL2 isort function.

Lemma 2: Prove that the ACL2 function
satisfies the requirements, i.e., produces an
ordered permutation.

30

We Can Prove Partial Correctness
Theorems

The proofs mentioned above characterize
the number of steps the computations take.

They are “total correctness” theorems.

We can prove partial correctness theorems
about non-terminating programs.

The operational semantics can be used
directly to do a Floyd-Hoare-style proof.

31

ACL2 Demo

32

What just happened?
We took

e o theorem prover and

e a formal operational semantics

and did an inductive assertion proof
without adopting a “program logic” or
implementing a predicate transformer for
Java.

33

Random Remarks

This method of generating proof
obligations allows the invariants to
participate in the control flow exploration.

This method rationalizes the universal mix
of predicate transformation and on-the-fly
simplification.

Inductive assertion proofs can be mixed
with direct operational semantics proofs.

34

A Class Involving Multiple Threads

class Container {
public int counter; }

class Job extends Thread {
Container objref;

public void setref(Container o) {
objref = o; }

35

public Job incr () {
synchronized(objref) {
objref.counter = objref.counter + 1; }
return this; }

public void run() {
for (;;) {incrO; } } }

36

class Apprentice {
public static void main(String[] args){
Container container = new Container();
for (;;) {Job job = new Job();
job.setref (container);
job.start(); } } }

37

Theorem The value of the counter never
decreases.

This has to be formulated more carefully to
account for Java's 32-bit int arithmetic.

38

We Have Proved Progress Properties
The theorem above is a Safety property.

We have also proved a Progress property:

The value of the counter will increase.

39

Acknowledgements

Thanks to Bishop Brock, Rich Cohen,
Warren Hunt, Robert Krug, Hanbing Liu,
Matt Kaufmann, Pete Manolios, George
Porter, Sandip Ray, and Rob Sumners, plus
dozens of other Nqthm /ACL2 users.

40

