Little (but Hard) Theorems
About Big Systems:
Some Case Studies

J Strother Moore
Department of Computer Sciences
University of Texas at Austin

Marktoberdorf Summer School 2004

Lecture 6

The Plan

e Trivial Hardware
e AMD Hardware
e Other Commercial Applications

e Conclusion

Trivial Hardware Demo

IEEE 754 Floating Point Standard

Elementary operations are to be performed
as though the infinitely precise (standard
mathematical) operation were performed
and then the result rounded to the
iIndicated precision.

AMD K5 Algorithm FDIV(p, d, mode)

29.
30.
31.
32.

S s wh =

sdy = lookup(d)

d. =d

sddy = sdy X d,
sdy = sdy x comp(sddy, 32)

sddy = sd; X d,
Sdg =

g3 = sdy X phs
qq2 = q2 + G3
qq1 — 442 — 41

sdy X comp(sddy, 32)

fdiv = qq A

- 40

exact 17
laway 17
laway 17

trunc 17
laway 17

trunc 17

trunc 17
sticky 17
sticky 17
mode

32
32
32
32
32

24
64
64

Using the Reciprocal

3 6.
+ -17
+ 0034
+ -.000066

35833334

12 /430000000
432.
2
204
04
0408
0008
-.000792

-.000008

Reciprocal Calculation:
1/12 = 0.0833 =~ 0.083 = sd>

Quotient Digit Calculation:

0.083 x 430.0000 = 35.6900000 ~ 36.000000 = qq
0.083 x -2.0000 = -.1660000 ~ -.170000 = ¢
0.083 x .0400 = .0033200 ~ .003400 = g-
0.083 x -.0008 = -.0000664 ~ -.000067 = qs

Summation of Quotient Digits:
Qo + q1 + q2 + q3 = 35.833333

Computing the Reciprocal

1
y = - d
dy = x7?
dx

[[o = sd@-«d d)ﬂ

top 8 bits approx top 8 bits approx top 8 bits approx top 8 bits approx
of d inverse of d inverse of d inverse of d inverse
1.00000009 0.111111115 | 1.01000005 0.110011009 | 1.10000009 0.101010109 | 1.11000005 0.100100109
1.00000015 0.111111019 | 1.01000015 0.110010119 | 1.10000015 0.101010015 | 1.11000019 0.10010001,
1.00000109 0.111110119 | 1.0100010o 0.110010109 | 1.10000109 0.101010009 | 1.11000109 0.100100019
1.00000115 0.111110019 | 1.01000115 0.110010009 | 1.10000115 0.101010009 | 1.11000119 0.100100009
1.00001009 0.111101115 | 1.01001005 0.110001119 | 1.10001009 0.101001115 | 1.1100100o 0.10001111,
1.00001015 0.111101015 | 1.01001015 0.110001109 | 1.10001015 0.101001109 | 1.11001019 0.100011115
1.00001109 0.111101009 | 1.0100110o 0.110001015 | 1.10001109 0.101001019 | 1.11001109 0.100011109
1.00001115 0.111100109 | 1.01001115 0.110001009 | 1.10001115 0.101001009 | 1.11001119 0.100011109
1.00010009 0.111100009 | 1.01010005 0.110000109 | 1.10010009 0.101000115 | 1.1101000o 0.100011015
1.00010015 0.111011109 | 1.01010019 0.110000015 | 1.10010019 0.101000119 | 1.11010019 0.100011009
1.00010109 0.111011019 | 1.0101010o 0.110000009 | 1.10010109 0.101000109 | 1.11010109 0.100011009
1.00101109 0.110110109 | 1.0110110o 0.101101009 | 1.10101109 0.100110015 | 1.1110110o 0.100001014
1.00101119 0.110110009 | 1.01101115 0.101100119 | 1.10101119 0.100110009 | 1.11101119 0.100001009
1.00110009 0.110101119 | 1.0111000o 0.101100109 | 1.10110009 0.100101119 | 1.11110009 0.100001009
1.00110015 0.110101015 | 1.01110015 0.101100019 | 1.10110015 0.100101115 | 1.11110019 0.10000011,
1.00110109 0.110101009 | 1.0111010o 0.101100009 | 1.10110109 0.100101109 | 1.1111010o 0.10000011,
1.00110115 0.110100119 | 1.01110119 0.101011119 | 1.10110119 0.100101015 | 1.11110119 0.100000109
1.00111009 0.1101000195 | 1.0111100o 0.101011109 | 1.10111009 0.100101015 | 1.11111009 0.100000109
1.00111015 0.110100009 | 1.0111101 0.101011019 | 1.10111019 0.100101009 | 1.11111019 0.10000001,
1.00111109 0.110011119 | 1.01111109 0.101011009 | 1.10111109 0.100100115 | 1.1111110o 0.10000001,
1.00111119 0.1100110195 | 1.01111119 0.101010115 | 1.10111119 0.100100119 | 1.11111119 0.100000009

The Formal Model of K5 FDIV

(defun FDIV (p d mode)

(let*

((sd0 (eround (lookup d) ’(exact 17 8)))
(dr (eround d ’(away 17 32)))
(sdd0 (eround (* sdO dr) >(away 17 32)))
(sdl (eround (* sdO (comp sddO 32)) ’(trunc 17 32)))
(sddl (eround (* sdi dr) ’(away 17 32)))

(sd2 (eround (* sdl (comp sddl 32)) ’(trunc 17 32)))

(qq2 (eround (+ g2 q3) >(sticky 17 64)))
(qql1 (eround (+ qg2 qil) ’(sticky 17 64)))
(fdiv (round (+ qql q0) mode)))

(or (first-error sd0 dr sddO sdl sddl ... fdiv)

fdiv)))

The K5 FDIV Theorem (1200 lemmas)

(defthm FDIV-divides
(implies (and (floating-point-numberp p 15 64)
(floating-point-numberp d 15 64)
(not (equal d 0))
(rounding-modep mode))

(equal (FDIV p d mode)
(round (/ p d) mode))))

(by Moore, Lynch and Kaufmann, in 1995,
before the K5 was fabricated)

10

AMD Athlon 1997

All elementary floating-point operations,
FADD, FSUB, FMUL, FDIV, and FSQRT,
on the AMD Athlon were

e specified in ACL2 to be IEEE compliant,
e proved to meet their specifications, and

e the proofs were checked mechanically.

11

AMD Athlon FMUL

module FMUL; // sanitized from AMD Athlon(TM)

// by David Russinoff and Art Flatau
[/% %k ok ok sk sk sk ok ok ok sk ok K o ok ok ok K ok ok kK ok ok sk K ok ok sk 3 K ok ok sk 3k K ok ok ok 3k K ok ok ok

// Declarations
/ /% sk ok sk ok sk ok sk ok sk ok ok ok ok s ok sk ok ok sk ok s ok sk ok ok sk ok s ok sk sk ok sk ok s ok sk sk ok ok ok sk ok ok ok

//Precision and rounding control:

‘define SNG 1°bO0 // single precision
‘define DBL 1°’b1l // double precision
‘define NRE 2’°b00 // round to nearest
‘define NEG 2’b01 // round to minus infinity

‘define POS 2’b10 // round to plus infinity

12

//Parameters:

input x[79:0]; //first operand

input y[79:0]; //second operand
input rc[1:0]; //rounding control
input pc; //precision control
output z[79:0]; //rounded product

//**

// First Cycle
[/%% 3k ok ke ok ok sk sk o ok sk K o ok sk K o ok sk K ok ok ok K o ok sk K ok ok ok 3 oK ok 3k 3 oK ok 3k K ok ok ok ok

//0Operand fields:
sgnx = x[79]; sgny = y[79];
expx[14:0] = x[78:64]; expyl14:0] = y[78:64];

13

RTL ‘ I ‘- ‘proofs‘

\ RTL sim l

\
PN

fabrication

14

Other Work at AMD

AMD is experimenting (struggling) with
ACL2 to reason about the bus unit on a
future AMD microprocessor.

The unit consists of 1 million lines of RTL,

which translates to 1.5 million lines of
ACL2.

AMD is using ACL2 to reason about
multi-processor implementations, at the

15

algorithm level and close to the RTL level.

They have proved a progress theorem
about a model hand-derived from the RTL.

They have proved correctness at the
algorithm level of a mechanism related to
speculative reads.

New bugs (which were undetected after
simulation) have been found and fixed
before tapeout.

16

Commercial Applications of ACL2

e JVM bytecode programs (sequential and
multi-threaded) (Moore)

e JVM bytecode verifier (Liu)

e AMD modules for K5, Athlon, Opteron,

etc. (Russinoff, Sumners, Kaufmann,
Flatau)

e IBM Power 4 FDIV and FSQRT (Sawada)

17

e Motorola CAP DSP (Brock, Hunt,
Moore)

e Rockwell Collins microarchitectural
equivalence (Greve, Wilding)

e Rockwell Collins / alile Systems JEM1
(Hardin, Greve, Wilding)

e Rockwell Collins AAMP-7 separation
kernel (Greve, Wilding)

18

Motorola CAP DSP

low_data

high data

addr3to0
pwr_on reset
ce_bar
r_wbar
ts_bar
ta_bar

hr bar

PROGRAM
SEQUENCER/
DEDCODER

1 11 m/zy ||
| |

xs/ys

|
|]
[T] w1

aol/sol

— 1BIT
[1 2x20BITS

|| eaBrs

serial clk

serial data

19

Features of CAP Microarchitecture
separate program and data memories

252 programmer-visible data and control
registers

6 independently addressable data and
parameter memories

data memories are logically partitioned into
‘'source’ and ‘destination’ memories; the
sense of the memories may be switched

20

under program control

the arithmetic unit includes 4
multiplier-accumulators and a 6-adder array

04-bit instruction word, which in the
arithmetic unit i1s further decoded into a
317-bit, low-level control word

instruction set includes no-overhead
looping constructs; as many as 10 different
registers are involved in the determination

21

of the next program counter

a single Instruction can simultaneously
modify over 100 registers

the 3-stage instruction pipeline contains
many hazards visible to the programmer.

22

A Hint of the Main Theorem

ROM containing
50 microcoded
DSP algorithms

Pipelined Sequential
microarchitecture microcode ISA

(If no hazards)

23

Summary and Conclusion

We've seen proofs at many levels in the
system hierarchy

e basic recursive functions (app, rev)
e arithmetic (AMD FPU)
e algorithms (e.g., gsort)

e hardware description languages
(eval-net, AMD RTL)

24

e processor architecture (CAP DSP, et al)

e machine/assembly code (m0, m6 — the
JVM)

e microcode (CAP DSP, Rockwell
AAMP-T7)

e Java (via javac and bytecode proofs)

e operating system /separation kernel
(Rockwell AAMP7)

25

e safety and progress properties of
multi-threaded Java classes

26

On Hardware versus Software
Every ACL2 proof is an example of
software verification.

E.g., one view of our JVM work: We are
proving theorems about 10,000 lines of
Lisp.

Whether you like Lisp or not you must
admit: it I1s a widely used,
commercially-supported, ANSI standard
programming language.

27

On Lisp as a Logic

If you think that these projects would be
easier in another logic, try it!

28

On Why ACL2 is Successful

Its logic is a functional programming
language:

e clean semantics

e often adequate expressive power

e executable (dual-use) models

29

e industrial strength

e directly supported by other tools (Emacs,
many GUI debuggers, profilers, etc).

Do not lightly dismiss these advantages.

We use Lisp as both an object logic and a
meta-language.

Having a formally supported
meta-language is very powerful.

30

We support proofs with a high degree of
automation.

We make the user guide the system by
posing theorems.

This is hard to learn and at first makes you
feel powerless.

But it has big advantages when you want
to do big proofs.

31

On Theorem Proving versus Other
Techniques

My personal goal is to make it possible,
with an acceptable amount of input from
the user, to prove mechanically the
important properties of practical hardware
and software.

We can ignore complexity only when that
complexity is irrelevant to the properties of

Interest.

32

Many of the other lectures are about about
automatic techniques for proving certain
kinds of properties.

The “ultimate general-purpose verification
system” will have to employ those
techniques, as needed.

But that system will also have to face
number theory, sequences, trees, recursion

and induction.

33

Those basic problems will not go away,
regardless of improvements to logics and
programming languages.

So there is plenty of work to do!

34

On What Remains

There are two hard problems in theorem
proving and you have encountered them
both in the simple exercises:

e finding the right formula to prove, and

e inventing the right concepts and lemmas
to decompose the proof.

35

Acknowledgments

Little of what you have seen would have
been possible without the creative work of
many colleagues and students over three
decades.

Thank you for giving me the chance to tell
you about some of it.

J Strother Moore
Marktoberdorf, 2004

36

