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Lecture 1: Safety and Progress A. Pnueli

Lectures Outline

• Safety and progress. Fair discrete systems and operations on them.

• A general framework for abstraction for verification. Is the method complete?

• Counter Abstraction. Will skip – interested students can read it in the notes.

• Methods of invisible auxiliary constructs for safety and progress. Small model
theorems.

• Small models for predicate abstraction – application to shape analysis.
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Lecture 1: Safety and Progress A. Pnueli

Safety and Progress

Program properties are often partitioned into safety and progress (liveness)
properties.

• Lamport suggested the following informal characterization of the two classes:

A safety property states that something bad does not happen.

A progress property states that something good will eventually happen.

These two classes complement one another. A specification that contains only
one of the classes is usually incomplete.
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Lecture 1: Safety and Progress A. Pnueli

Illustrate a Specification
The following program MUX-SEM, implements mutual exclusion by semaphores.

y : natural initially y = 1

P1 ::

⎡
⎢⎢⎢⎢⎣

�0 : loop forever do⎡
⎢⎢⎣
�1 : Non-critical
�2 : request y
�3 : Critical
�4 : release y

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎦ P2 ::

⎡
⎢⎢⎢⎢⎣

m0 : loop forever do⎡
⎢⎢⎣
m1 : Non-critical
m2 : request y
m3 : Critical
m4 : release y

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎦

The semaphore instructions request y and release y respectively stand for

〈await y > 0 ; y := 0〉 and y := 1.

The safety specification

¬(at−�3 ∧ at−m3)

requires that the two processes never simultaneously execute their critical
sections.

Is this an adequate (complete) specification?
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A Faulty Implementation Satisfying mutual exclusion

The following program satisfies the safety requirement of mutual exclusion
¬(at−�3 ∧ at−m3):

y : natural initially y = 1

P1 ::

⎡
⎢⎢⎣
�0 : loop forever do⎡
⎣ �1 : Non-critical
�2 : go to �1
�3 : Critical

⎤
⎦

⎤
⎥⎥⎦ P2 ::

⎡
⎢⎢⎣
m0 : loop forever do⎡
⎣ m1 : Non-critical
m2 : go to m1

m3 : Critical

⎤
⎦

⎤
⎥⎥⎦

In this implementation neither process ever visits its critical section.
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A Faulty Implementation Satisfying mutual exclusion
The following program satisfies the safety requirement of mutual exclusion

¬(at−�3 ∧ at−m3):

y : natural initially y = 1

P1 ::

⎡
⎢⎢⎣
�0 : loop forever do⎡
⎣ �1 : Non-critical
�2 : go to �1
�3 : Critical

⎤
⎦

⎤
⎥⎥⎦ P2 ::

⎡
⎢⎢⎣
m0 : loop forever do⎡
⎣ m1 : Non-critical
m2 : go to m1

m3 : Critical

⎤
⎦

⎤
⎥⎥⎦

In this implementation neither process ever visits its critical section.

To prevent such unacceptable implementations, we need the following complete
specification, which contains the additional progress requirements of accessibility:

¬(at−�3 ∧ at−m3)
at−�2 ⇒ at−�3 at−m2 ⇒ at−m3

The property at−�2 ⇒ at−�3 requires that, after any state at which process P1

is at location �2, there follows a state at which P1 is critical.
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Verifying Safety Properties

In order to verify the safety property p over program P , we may use the following
rule:

Rule INV

Find an assertion ϕ satisfying,
I1. All P -initial states satisfy ϕ
I2. Every P -successor of a ϕ-state satisfies ϕ
I3. ϕ→ p

p

An assertion ϕ satisfying premises I1 and I2 is called inductive. Every inductive
assertion is invariant, i.e. holds in any reachable state of the system. Not every
invariant assertion is inductive.

Abstraction for Progress, Marktoberdorf, Summer, 2004 6



Lecture 1: Safety and Progress A. Pnueli

Example: Program MUX-SEM
Reconsider program MUX-SEM. We wish to prove
MUX-SEM |= ¬(at−�3 ∧ at−m3).

y : natural initially y = 1

P1 ::

⎡
⎢⎢⎢⎢⎣

�0 : loop forever do⎡
⎢⎢⎣
�1 : Non-critical
�2 : request y
�3 : Critical
�4 : release y

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎦ P2 ::

⎡
⎢⎢⎢⎢⎣

m0 : loop forever do⎡
⎢⎢⎣
m1 : Non-critical
m2 : request y
m3 : Critical
m4 : release y

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎦

We choose:
ϕ : at−�3,4 + at−m3,4 + y = 1

Check premises:

I1. Initially, at−�3,4 = at−m3,4 = 0, y = 1, 0 + 0 + 1 = 1.

I2. Induction step – Transitions �2, �4 preserve at−�3,4 + y, transitions m2,m4

preserve at−m3,4 + y. All other transitions preserve the full expression.

I3. Implication. ϕ→ p. Since at−�3 = at−m3 = 1 implies y = −1 violating y’s type.
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Verifying Progress Properties

Progress properties are verified using a combination of invariants and variants.
These are ranking functions measuring distance from the goal.

For sequential programs, we can use a ranking function ranging over a well
founded domain (such as the naturals), which decreases on every step of the
program.

For example,
y: natural

�0 : while y > 0 do[
�1 : y := y − 1
�2 : skip

]

�3 :

We can take:

ϕ : at−�1 → y > 0

δ : 2 · at−�2 + at−�0 + 3 · y

δ
�0 : while y > 0 do 3 · y + 1[

�1 : y := y − 1
�2 : skip

]
3 · y
3 · y + 2

�3 : 0
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Concurrent Programs

When we consider concurrent programs, we can no longer rely on a ranking
function which decreases at every step. Consider, for example, program
UP-DOWN.

x, y : natural initially x = y = 0

P1 ::

⎡
⎢⎢⎢⎢⎣

�0 : while x = 0 do
[�1 : y := y + 1]

�2 : while y > 0 do
[�3 : y := y − 1]

�4 :

⎤
⎥⎥⎥⎥⎦ P2 ::

[
m0 : x := 1
m1 :

]

When process P2 is at location m0, no number of steps of process P1 will get us
closer to termination.
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Verifying Progress of Concurrent Programs

The approach to verification of progress for concurrent programs uses, in addition
to a ranking functions, also an identification of helpful steps. We thus require:

• The ranking function decreases on every helpful step

• It never increases, even on unhelpful steps

• Until the goal is reached, a helpful step is always available, and some helpful
step must eventually be taken
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Illustrate on Program UP-DOWN
x, y : natural initially x = y = 0

P1 ::

⎡
⎢⎢⎢⎢⎣

�0 : while x = 0 do
[�1 : y := y + 1]

�2 : while y > 0 do
[�3 : y := y − 1]

�4 :

⎤
⎥⎥⎥⎥⎦ P2 ::

[
m0 : x := 1
m1 :

]

The following table specifies the conditions under which a step is helpful:

Step When helpful
m0 at−m0

�0 at−�0 ∧ x = 1
�1 at−�1 ∧ x = 1
�2 at−�2 ∧ x = 1
�3 at−�3 ∧ x = 1

The ranking function ranges over lexicographic pairs, and is given by:

δ : (at−m0, at−m1 · (2 · y + 2 · at−�0 + 5 · at−�1 + at−�2))
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Fair Discrete Systems

As our computational model, we take fair discrete systems. An FDS

D = 〈V,Θ, ρ,J , C〉 consists of:

• V – A finite set of typed state variables. A V -state s is an interpretation of V .
Denote by ΣV – the set of all V -states.

• Θ – An initial condition. A satisfiable assertion that characterizes the initial
states.

• ρ – A transition relation. An assertion ρ(V, V ′), referring to both unprimed
(current) and primed (next) versions of the state variables. For example,
x′ = x+ 1 corresponds to the assignment x := x+ 1.

• J = {J1, . . . , Jk} A set of justice (weak fairness) requirements. Ensure that a
computation has infinitely many Ji-states for each Ji, i = 1, . . . , k.

• C = {〈p1, q1〉, . . . 〈pn, qn〉} A set of compassion (strong fairness) requirements.
Infinitely many pi-states imply infinitely many qi-states.
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A Simple Programming Language: SPL

A language allowing composition of parallel processes communicating by
shared variables as well as message passing.

Example: Program ANY-Y

Consider the program

x, y : natural initially x = y = 0

⎡
⎣ �0 : while x = 0 do

[�1 : y := y + 1]
�2 :

⎤
⎦ [

m0 : x := 1
m1 :

]

− P1 − − P2 −
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The Corresponding FDS

• State Variables V :

⎛
⎝ x, y : natural

π1 : {�0, �1, �2}
π2 : {m0,m1}

⎞
⎠.

• Initial condition: Θ : π1 = �0 ∧ π2 = m0 ∧ x = y = 0.

• Transition Relation: ρ: ρ
I
∨ ρ�0 ∨ ρ�1 ∨ ρm0, with appropriate disjunct (transition)

for each statement. For example, the disjuncts ρ
I

and ρ�0 are

ρ
I

: π′
1 = π1 ∧ π′

2 = π2 ∧ x′ = x ∧ y′ = y

ρ�0 : π1 = �0 ∧
⎛
⎝ x = 0 ∧ π′

1 = �1
∨

x �= 0 ∧ π′
1 = �2

⎞
⎠ ∧ π′

2 = π2 ∧ x′ = x ∧ y′ = y

• Justice set: J : {¬at−�0,¬at−�1,¬at−m0}. Usually, we have a justice
transition expressing the disableness of each just transition.

• Compassion set: C: ∅.
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Computations
Let D be an FDS for which the above components have been identified. The state
s′ is defined to be a D-successor of state s if

〈s, s′〉 |= ρD(V, V ′).

We define a computation of D to be an infinite sequence of states

σ : s0, s1, s2, ...,

satisfying the following requirements:

• Initiality: s0 is initial, i.e., s0 |= Θ.

• Consecution: For each j ≥ 0, the state sj+1 is a D-successor of the state sj.

• Justice: For each J ∈ J , σ contains infinitely many J-positions. This
guarantees that every just transition is disabled infinitely many times.

• Compassion: For each 〈p, q〉 ∈ C, if σ contains infinitely many p-positions,
it must also contain infinitely many q-positions. This guarantees that every
compassionate transition which is enabled infinitely many times is also taken
infinitely many times.
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Justice is not Enough. You also Need Compassion

The following program MUX-SEM, implements mutual exclusion by semaphores.

y : natural initially y = 1

P1 ::

⎡
⎢⎢⎢⎢⎢⎣

�0 : loop forever do⎡
⎢⎢⎣
�1 : Non-critical
�2 : request y
�3 : Critical
�4 : release y

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎦

P2 ::

⎡
⎢⎢⎢⎢⎢⎣

m0 : loop forever do⎡
⎢⎢⎣
m1 : Non-critical
m2 : request y
m3 : Critical
m4 : release y

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎦

The compassion set of this program consists of

C: {(at−�2 ∧ y > 0, at−�3), (at−m2 ∧ y > 0, at−m3)}.
Usually, with a compassionate transition τ , we associate the compassion
requirement

(En(τ), taken(τ))
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FDS Operations: Asynchronous Parallel Composition

The asynchronous parallel composition of systems D1 and D2, denoted by
D1 ‖D2, is given by D = 〈V,Θ, ρ,J , C〉, where

V = V1 ∪ V2

Θ = Θ1 ∧ Θ2

ρ = (ρ1 ∧ pres(V2 − V1)) ∨ (ρ2 ∧ pres(V1 − V2))
J = J1 ∪ J2

C = C1 ∪ C2

The predicate pres(U) stands for the assertion U ′ = U , implying that all the
variables in U are preserved by the transition.

Asynchronous parallel composition represents the interleaving-based concurrency
which is assumed in shared-variables models.

Claim 1. D(P1 ‖P2) ∼ D(P1) ‖D(P2)
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Synchronous Parallel Composition

The synchronous parallel composition of systems D1 and D2, denoted by
D1 ‖| D2, is given by the FDS D = 〈V,Θ, ρ,J , C〉, where

V = V1 ∪ V2

Θ = Θ1 ∧ Θ2

ρ = ρ1 ∧ ρ2

J = J1 ∪ J2

C = C1 ∪ C2

Synchronous parallel composition is used for the construction of an observer: a
system O which observes and evaluates the behavior of an observed system D.
Running D ‖| O, we let D behave as usual, while O observes its behavior.
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Verification-Driven Abstraction

We will consider a general approach to abstraction of systems in order to simplify
their verification.

Lessons to be learned from today’s lecture:

• It is possible to do abstraction without lattices, Galois connection, Moore
families, fixpoints, and 3-valued Logic.

Abstract interpretation for dummies (Model Checkers)

• When abstracting the verification problem P |= ϕ, it is necessary to over-
abstract P and under-abstract ϕ.

• For verification of progress, state abstraction is inadequate. You also need to
abstract transitions.
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Approaches to Formal Verification

The Common Wisdom:

To verify a reactive system S,

• If it is finite state, model check it.

• Otherwise, prove it by temporal deduction, using a temporal deductive system
such as [MP] or TLA, supported by theorem provers, such as STeP, TLP, or
PVS.

Often, both approaches to verification can be simplified by using abstraction.
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AAV: Abstraction Aided Verification
An Obvious idea:

• Abstract system S into S
A

– a simpler system, but admitting more behaviors.

• Verify property for the abstracted system S
A
.

• Conclude that property holds for the concrete system.

Approach is particularly impressive when abstracting an infinite-state system into
a finite-state one.

Technically, Define the methodology of Verification by Finitary Abstraction
(VFA) as follows:

To prove D |= ψ,

• Abstract D into a finite-state system Dα and the specification ψ into a
propositional LTL formula ψα.

• Model check Dα |= ψα.

The question considered here is whether we can find instantiations of this general
methodology which are sound and (relatively) complete.
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Finitary Abstraction

Based on the notion of abstract interpretation [CC77].

Let Σ denote the set of states of an FDS D – the concrete states. Let α : Σ �→ Σ
A

be a mapping of concrete into abstract states. α is finitary if Σ
A

is finite.

We consider abstraction mappings which are presented by a set of equations
α : (u1 = E1(V ), . . . , un = En(V )) (or more compactly, V

A
= Eα(V )), where

V
A

= {u1, . . . , un} are the abstract state variables and V are the concrete
variables.
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Example: Program ANY-Y

Consider the program

x, y : integer initially x = y = 0

P1 ::

⎡
⎣ �0 : while x = 0 do

[�1 : y := y + 1]
�2 :

⎤
⎦ P2 ::

[
m0 : x := 1
m1 :

]

Assume we wish to verify the property (y ≥ 0) for system ANY-Y.

We introduce two abstract variables:

X : boolean, Y : {−1, 0,+1}
The abstraction mapping α is specified by the following list of defining
expressions:

α : [X = (x �= 0), Y = sign(y)]

where sign(y) is defined to be −1, 0, or 1, according to whether y is negative,
zero, or positive, respectively.
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The Abstracted Version

With the mapping α, we can obtain the abstract version of ANY-Y, called ANY-Yα:

X : boolean initially X = 0
Y : {neg, zero,pos} initially Y = zero

P1 ::

⎡
⎢⎢⎢⎢⎣

�0 : while X = 0 do

[�1 : Y :=

⎧⎪⎪⎪⎪⎪⎪⎩
if Y = neg
then {neg, zero}
else pos

⎫⎪⎪⎪⎪⎪⎪⎭]

�2 :

⎤
⎥⎥⎥⎥⎦ P2 ::

[
m0 : X := 1
m1 :

]

The original invariance property ψ: (y ≥ 0), is abstracted into:

ψα: (Y ∈ {zero, pos}),
which can be model-checked over ANY-Yα.
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When is Such an Abstraction Sound?

Reconsider program ANY-Y, but this time with the property

(0 ≤ y ≤ 10)

Abstracting this property in a way consistent with the abstraction function
Y = sign(y), we obtain the same abstraction as before, namely,

(Y ∈ {zero,pos})
which we know to be valid over the abstracted version of ANY-Y.

Can we conclude

ANY-Y |= (0 ≤ y ≤ 10)?

Obviously not!!!

What went wrong?
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Lifting a State Abstraction to Assertions

For an abstraction mapping α : V
A

= Eα(V ) and an assertion p(V ), there are two
ways we can abstract p:

• The expanding α-abstraction (over approximation) of p is given by

α(p): ∃V (V
A

= Eα(V ) ∧ p(V )) ‖α(p)‖ = {α(s) | s ∈ ‖p‖}

An abstract state S belongs to ‖α(p)‖ iff there exists some concrete state s ∈
α−1(S) such that s ∈ ‖p‖.

• The contracting abstraction (under approximation) is given by

α(p): ∃V (V
A

= Eα(V )) ∧ ∀V (V
A

= Eα(V ) → p(V ))
‖α(p)‖ = {S | α−1(S) ⊆ ‖p‖}

An abstract state S belongs to ‖α(p)‖ iff all concrete states s ∈ α−1(S) satisfy
s ∈ ‖p‖.
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Visual Illustration of the Two Abstraction Transformers

p
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The Existential (expanding) Abstraction

α(p)p

Abstract state S belongs to α(p) if some concrete state α-mapped into S satisfies
p.
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The Universal (contracting) Abstraction

α(p)α(p)p

Abstract state S belongs to α(p) if all concrete states α-mapped into S satisfy p.

In many cases, the abstraction α is precise with respect to the assertion p. This
is when p does not distinguish between two concrete states which are mapped by
α to the same abstract state. In such cases

α(p) = α(p)
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Sound Abstraction of Set Inclusions

Claim 2. Let T1 and T2 be two sets of concrete states. The correct sound
abstraction of the inclusion problem T1 ⊆ T2 is

α(T1) ⊆ α(T2)

That is, the claim states that α(T1) ⊆ α(T2) is a sufficient condition for the inclusion
T1 ⊆ T2.

Proof: Assume that α(T1) ⊆ α(T2) and let s ∈ T1. It follows that the abstract
state S = α(s) is a member of α(T1). Since α(T1) ⊆ α(T2), it follows that S ∈
α(T2). According to the definition of α(T2), S ∈ α(T2) implies that all α-sources of
S, in particular s, belong to T2. We conclude that T1 ⊆ T2.
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Sound Joint Abstraction

For a temporal formula ψ, we define ψα to be the formula obtained by replacing
every (maximal) state sub-formula p ∈ ψ by α(p).

For an FDS D = 〈V,Θ, ρ,J , C〉, we define the α-abstracted version
Dα = 〈V

A
,Θα, ρα,J α, Cα〉, where

Θα = α(Θ)
ρα = α(ρ)
J α = {α(J) | J ∈ J }
Cα = {(α(p), α(q)) | (p, q) ∈ C}

Soundness:

If α is an abstraction mapping and D and ψ are abstracted according to the recipes
presented above, then

Dα |= ψα implies D |= ψ.
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Lecture 2: Verification-Driven Abstraction A. Pnueli

Computing the Abstract ρ

Technically,

α(ρ) : ∃V , V ′ : (V
A

= Eα(V ) ∧ V ′
A

= Eα(V ′) ∧ ρ(V , V ′))

For example,

α(y′ = y + 1)(Y, Y ′) = ∃y, y′ : (Y = sign(y) ∧ Y ′ = sign(y′) ∧ y′ = y + 1)

In many cases, it is possible to break the computation of α(ρ) into a set of decision
problems, such as:

α(ρ)(−1,−1) = 1 ⇐⇒ y < 0 ∧ y′ < 0 ∧ y′ = y + 1 is satisfiable
α(ρ)(−1, 0) = 1 ⇐⇒ y < 0 ∧ y′ = 0 ∧ y′ = y + 1 is satisfiable
α(ρ)(−1,+1) = 1 ⇐⇒ y < 0 ∧ y′ > 0 ∧ y′ = y + 1 is satisfiable

· · ·

This enumeration yields the following abstraction:

α(y′ = y + 1) : Y = −1 ∧ Y ′ ∈ {−1, 0} ∨ Y ∈ {0, 1} ∧ Y ′ = 1
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Rectifying the False Counter-Example

Previously, we considered the problem

ANY-Y |= (0 ≤ y ≤ 10)

The correct abstraction of this problem is

ANY-Yα |= (Y = 0)

The assertion Y = 0 is not an invariant of the abstract program ANY-Yα. Therefore
we cannot (falsely) conclude that 0 ≤ y ≤ 10 is an invariants of ANY-Y.
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Proving Soundness of the Method

Let α be an abstraction mapping over the variables of an FDS D. For σ : s0, s1, . . .
a computation of D, we denote by σα the sequence of abstract states σα :
α(s0), α(s1), . . .. The proof of soundness if based on the following two claims:

Claim 3. If σ is a computation of D, then σα is a computation of Dα.

and

Claim 4. Let σ be a state sequence and ψ a positive form temporal formula. If
σα |= ψα then σ |= ψ.
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Predicate Abstraction

The mapping α is called a predicate abstraction if it contains the boolean equation
Bp = p for each atomic state formula p occurring in ψ, Θ, J , and C.

Let p1, p2, . . . , pk be the set of all atomic formulas referring to the data (non-
control) variables appearing within conditions in the program P and within the
temporal formula ψ.

Following [GS97], define abstract boolean variables
Bp1, Bp2, . . . , Bpk

, one for each atomic data formula. The abstraction mapping α
is defined by

α: {Bp1 = p1, Bp2 = p2, . . . , Bpk
= pk}
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Example: Program BAKERY-2
local y1, y2 : natural initially y1 = y2 = 0

P1 ::

⎡
⎢⎢⎢⎢⎢⎢⎣

�0 :loop forever do⎡
⎢⎢⎢⎢⎣

�1 : Non-Critical
�2 : y1 := y2 + 1
�3 : await y2 = 0 ∨ y1 < y2
�4 : Critical
�5 : y1 := 0

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

P2 ::

⎡
⎢⎢⎢⎢⎢⎢⎣

m0 :loop forever do⎡
⎢⎢⎢⎢⎣

m1 : Non-Critical
m2 : y2 := y1 + 1
m3 : await y1 = 0 ∨ y2 ≤ y1
m4 : Critical
m5 : y2 := 0

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

The temporal properties for program BAKERY-2 are
ψexc : ¬(at−�4 ∧ at−m4)
ψacc : (at−�2 → at−�4),
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Abstracting Program BAKERY-2
Define abstract variables By1=0, By2=0, and By1<y2.

local By1=0, By2=0, By1<y2: boolean
where By1=0 = By2=0 = 1, By1<y2 = 0

P1 ::

⎡
⎢⎢⎢⎢⎢⎢⎣

�0 :loop forever do⎡
⎢⎢⎢⎢⎣

�1 : Non-Critical
�2 : (By1=0, By1<y2) := (0, 0)
�3 : await By2=0 ∨ By1<y2

�4 : Critical
�5 : (By1=0, By1<y2) := (1,¬By2=0)

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

P2 ::

⎡
⎢⎢⎢⎢⎢⎢⎣

m0 :loop forever do⎡
⎢⎢⎢⎢⎣

m1 : Non-Critical
m2 : (By2=0, By1<y2) := (0, 1)
m3 : await By1=0 ∨ ¬By1<y2

m4 : Critical
m5 : (By2=0, By1<y2) := (1, 0)

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

The abstracted properties can now be model-checked.
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The Question of Completeness

We have shown above that the AAV method is sound. How about completeness?

Completeness means that for every FDS D and temporal property ψ such that
D |= ψ, there exists a finitary abstraction mapping α such that Dα |= ψα.

At this point we can only claim completeness for the special case that ψ is an
invariance property.

Claim 5. [Completeness for Invariance Properties]
Let D be an FDS and ψ : p be an invariance property such that D |= p. Then
there exists a finitary abstraction mapping α such that Dα |= α(p).
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Sketch of the Proof
Like many completeness proofs in logic, the proof of this theorem is simple but
not very useful.

Let D = 〈V,Θ, ρ, . . .〉 be an FDS and p be an assertion such that D |= p. We
will show that there exists a finitary abstraction α which transforms the verification
problem D |= p into a simple finite-state problem.

By the theory of temporal verification, D |= p implies the existence of an
assertion ϕ satisfying the following 3 premises:

Θ → ϕ
ϕ ∧ ρ → ϕ′
ϕ → p

ϕ p

As the abstraction mapping, we take α : Bϕ = ϕ using a single abstract boolean
variable Bϕ which is true whenever the corresponding concrete state satisfies ϕ.
This leads to the following abstractions:
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Proof Continued

θ ϕ p

The abstractions:

System Dα Property ψα

V : Bϕ : boolean
α(Θ) : Bϕ

α(ρ) : Bϕ → B′
ϕ ∧ · · ·

BϕBϕ

α(p) = Bϕ

The only computation of Dα is σα : Bϕ, Bϕ, . . .. It follows that Dα |= ψα.
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Abstracting for Progress

Today’s Lessons:

• It is not enough to abstract states. To verify progress, one must also abstract
transitions.

• Compassion provides a useful abstraction to well-foundedness.

• Predicate abstraction should be augmented by ranking function abstraction.
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Inadequacy of State Abstraction
Not all properties can be proven by pure finitary state abstraction.

Consider the program LOOP.

y: natural
�0 : while y > 0 do[

�1 : y := y − 1
�2 : skip

]

�3 :

Termination of this program cannot be proven by pure finitary abstraction. For
example, the abstraction α : IN �→ {zero, pos} leads to the abstracted program

Y : {zero, pos}
�0 : while Y = pos do[

�1 : Y := sub1(Y )
�2 : skip

]

�3 :
where

sub1(Y ) = if Y = pos then {zero,pos} else zero
This abstracted program may diverge!
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Solution: Augmentation with a Non-Constraining Progress
Monitor
y: natural⎡

⎢⎢⎢⎣
�0 : while y > 0 do[

�1 : y := y − 1
�2 : skip

]

�3 :

⎤
⎥⎥⎥⎦ ‖|

⎡
⎢⎢⎢⎢⎣

inc : {−1, 0, 1}
compassion

(inc < 0, inc > 0)
always do
m0 : inc := sign(y′ − y)

⎤
⎥⎥⎥⎥⎦

− LOOP − − MONITOR My −
Forming the cross product, we obtain:

y : natural
inc : {−1, 0, 1}
compassion (inc < 0, inc > 0)

�0 : while y > 0 do[
�1 : (y, inc) := (y − 1, sign(y′ − y))
�2 : inc := sign(y′ − y)

]

�3 :
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Abstracting the Augmented System

We obtain the program

Y : {zero,pos}
inc : {−1, 0, 1}
compassion (inc < 0, inc > 0)

�0 : while Y = pos do⎡
⎢⎢⎢⎢⎣
�1 : (Y, inc) :=

⎧⎪⎪⎪⎪⎪⎪⎩
if Y = pos
then ({pos, zero},−1)
else (zero, 0)

⎫⎪⎪⎪⎪⎪⎪⎭
�2 : inc := 0

⎤
⎥⎥⎥⎥⎦

�3 :

Which always terminates.
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A More Complicated Case

Sometimes we need a more complex progress measure:

y: natural

�0 : while y > 1 do⎡
⎣ �1 : y := y − 2
�2 : y := {y + 1, y}
�3 : skip

⎤
⎦

�4 :

To prove termination of this program we augment it by the monitor:

define δ = y + at−�2
inc : {−1, 0, 1}
compassion (inc < 0, inc > 0)

m0 : always do
inc := sign(δ′ − δ)
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Complicated Case Continued

Augmenting and abstracting, we get:

Y : {zero,one, large}
inc : {−1, 0, 1}
compassion (inc < 0, inc > 0)

�0 : while Y = large do⎡
⎣ �1 : (Y, inc) := (sub2(Y ), −1)
�2 : (Y, inc) := {(add1(Y ), 0), (Y,−1)}
�3 : inc := 0

⎤
⎦

�4 :

where,

sub2(Y ) = if Y ∈ {zero,one} then zero else {zero,one, large}

add1(Y ) = if Y = zero then one else large

This program always terminates
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Verification by Augmented Finitary Abstraction - The AFA

Method

To verify that ψ is D-valid,

• Optionally choose a non-constraining progress monitor FDS M and let
A = D ‖| M . In case this step is skipped, we let A = D.

• Choose a finitary state abstraction mapping α and calculate Aα and ψα

according to the sound recipes.

• Model check Aα |= ψa.

• Infer D |= ψ.

Claim 6. The AFA method is complete, relative to deductive verification.

That is, whenever there exists a deductive proof of D |= ψ, we can find a finitary
abstraction mapping α and a non-constraining progress monitor M , such that
Aα |= ψa.
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Some Comments

One possible interpretation of our results is

It is not sufficient to abstract states. One should also abstract transitions.

Our completeness results can also be related to the work of Abadi and Lamport
[AL91] who claim that abstraction can be made complete by the addition of history
and prophecy variables. In our case, the history is represented by the reference
to both y and y′. The prophecy is represented by the compassion requirement
(inc < 0, inc > 0).
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How Practical is This Approach?
The advantage of this approach over conventional deductive verification is that
one may throw in as many elementary ranking functions as she wishes, and let
the model checker sort out their interaction and relevance.

Consider the following program NESTED-LOOPS:

x, y: natural

�0 : x :=?
�1 : while x > 0 do⎡

⎢⎢⎢⎢⎢⎢⎣

�2 : y :=?
�3 : while y > 0 do[

�4 : y := y − 1
�5 : skip

]

�6 : x := x− 1
�7 : skip

⎤
⎥⎥⎥⎥⎥⎥⎦

�8 :

Note: Due to the presence of unbounded non-determinism, a deductive
termination proof of this program needs to use a ranking function ranging over
lexicographic triplets, whose core is (at−�0, x, y).
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The Augmented-Abstraction Version
We augment the system with monitors for the ranking functions x, y, and abstract
the domain of x, y into {zero, pos}. This yields:

X,Y : : {zero,pos}
incx , incy : {−1, 0, 1}
compassion (incx < 0, incx > 0), (incy < 0, incy > 0)

�0 : (X,Y, incx , incy) := (?, Y, ?, 0)
�1 : while X = pos do⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�2 : (X,Y, incx , incy) := (X, ?, 0, ?)
�3 : while Y = pos do⎡

⎣�4 : (X,Y, incx , incy) :=
⎧⎪⎪⎩if Y = zero then (X, zero, 0, 0) else
{(X,pos, 0,−1), (X, zero, 0,−1)}

⎫⎪⎪⎭
�5 : incy := 0

⎤
⎦

�6 : (X,Y, incx , incy) :=
⎧⎪⎪⎩if X = zero then (zero, Y, 0, 0) else
{(pos, Y,−1, 0), (zero, Y,−1, 0)}

⎫⎪⎪⎭
�7 : incx := 0;

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�8 :

Model checking this program, we find that it always terminates.
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Doing it in TLV

We will introduce the programmable symbolic model checker TLV and illustrate its
use for model checking finite-state systems, and computation of abstractions.

The TLV tool, developed by Elad Shahar, is a programmable symbolic calculator
over finite-state systems, based on the CMU symbolic model checker SMV.

It can be used to model check LTL formulas over finite-state systems. As we
will show, it can also be used for computations of abstractions.

TLV

SPLC

output

sys.spl sys.smv

scr.pf
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File nested-aug.smv

MODULE main
VAR

inpb: {zero,vpos}; inpc: -1..1;
pi: 0..8;
X,Y : {zero,vpos};
incx,incy : -1..1;

ASSIGN
init(pi) := 0;
next(pi) := case

pi in {0,2,4,6} : pi+1;
pi=1 & X=vpos : 2;
pi=1 : 8;
pi=3 & Y=vpos : 4;
pi=3 : 6;
pi=5 : 3;
pi=7 : 1;
1 : pi;

esac;
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next(X) := case pi=0 : inpb;
pi=6 & X=zero : zero;
pi=6 : inpb;
1 : X; esac;

next(Y) := case pi=2 : inpb;
pi=4 & Y=zero : zero;
pi=4 : inpb;
1 : Y; esac;

next(incx) := case pi=0 : inpc;
pi=6 & X=zero : 0;
pi=6 : -1;
1 : 0; esac;

next(incy) := case pi=2 : inpc;
pi=4 & Y=zero : 0;
pi=4 : -1;
1 : 0; esac;

JUSTICE 1
COMPASSION (incx<0,incx>0),(incy<0,incy>0)
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File nested-aug.pf

In file nested-aug.pf, we place the following script:

Print "\n Model check termination of augmented program\n";
Call Temp_Entail(1,pi=8);
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Doing it All within TLV

Outline:

• Small model theorem, justifying truncation of infinie-state systems.

• Computing abstractions (predicates+ranking) within TLV.

• Shape Analysis via P+R abstraction.
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Computing the Abstraction within the Model Checker

For some simple infinite domains, it is possible to decide satisfiability (validity)
by boolean methods. For such domains, it is possible to compute and apply the
abstraction, all within a single session of the model checker.
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A Poor Man’s Decision Procedure

Consider system variables:

N : natural
z1, . . . , zn : 1..N

An EA-assertion is a formula of the form ϕ : ∃�x∀�y.p(�x, �y, �u), where p is a boolean
combination of atomic formulas of the form zi < zj.
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Small Model Theorem

Claim 7.
Assertion ϕ = ∃�x∀�y.p(�x, �y, �u) is satisfiable iff ϕ is satisfiable in a model of size
≤ N0 = |�x| + |�u|.
Proof:
Assume ϕ is satisfiable in a model M1 of size N1 > N0. We show how to construct
a satisfying model M2 of size N2 ≤ N0.

Let v1 < v2 < · · · < vk be all the distinct values assumed by �x, �u in model M1.
Obviously k ≤ N0. We construct a model M2 of size k.

For every z ∈ �x ∪ �u, let

M2[z] = j iff M1[z] = vj

We can show that M2 |= ϕ
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Truncation of Infinite-state Systems

Let P be a (potentially) infinite-state program. Denote by �P �
N

the N -truncated
version of P obtained by restricting all integer variables to the subrange −N..N
(or 0..N for naturals) and all array bounds to N .

Let α be a finitary abstraction mapping and R a ranking augmentation which is
a conjunction of expression of the form inc′ = sign(δ′ − δ).

An abstraction problem (P,α,R) is called truncatable if there exists a natural
N > 0 such that

α(P ‖| R) ∼ α(�P �
N
‖| R)

Claim 8. If all assertions occurring within α, R, and the FDS of P are EA-
assertions, then (P,α, δ) is truncatable.

The value of N is determined as he maximal |�x|+ |�u| over all abstraction formulas.
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Example: Program NESTED-LOOPS
Reconsider program NESTED-LOOPS.

x, y: natural
�0 : x :=?
�1 : while x > 0 do⎡

⎢⎢⎢⎢⎢⎢⎣

�2 : y :=?
�3 : while y > 0 do[

�4 : y := y − 1
�5 : skip

]

�6 : x := x− 1
�7 : skip

⎤
⎥⎥⎥⎥⎥⎥⎦

�8 :

with the abstracion α : (X = (x > 0), Y = (y > 0)) and ranking augmentation
R : incx ′ = sign(x′ − x) ∧ incy ′ = sign(y′ − y).

Note that x′ = x−1 is expressible as x = 0∧x′ = 0 ∨ x′ < x∧∀u.u ≤ x′∨u ≥ x,
and incx ′ = sign(x′ − x) is expressible as

incx ′ = −1 ∧ x′ < x ∨ incx ′ = 0 ∧ x′ = x ∨ incx ′ = 1 ∧ x′ > x
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Shape Analysis by P+R-Abstracion
Consider the REVERSE program:

�0 :y := null ; �1 :while x �= null do �2 :(x, y, x.n) := (x.n, x, y); �3 :

We define the predicate reach(u, v) which means that there is a chain of next-links
leading from the node pointed to by u to the node to which v points.

One of the properties we would like to prove is

at−�0 ∧ t �= null ∧ reach(x, t) → (at−�3 → reach(y, t))

We therefore assume the initial condition Θ : t �= null ∧ reach(x, t), and verify the
invariance property

(at−�3 → reach(y, t))

As a predicate base we take the following predicates:

x = null , t = null , reach(x, t), reach(y, t)

and use the following abstraction mapping:

x null = (x = null), t null = (t = null), r xt = reach(x, t), r yt = reach(y, t)
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The Abstracted Program

This leads to the following abstract program:

x null , t null , r xt , r yt : boolean where x null = t null = 0, r xt = 1
�0 :r yt := t null
�1 :while ¬x null do

�2 :

⎡
⎢⎢⎢⎢⎢⎢⎣

(r xt , r yt) := case
¬r xt ∧ ¬r yt : (0, 0)
¬r xt ∧ r yt : {(0, 1), (1, 1)}
1 : {(0, 1), (1, 0), (1, 1)}

esac
x null := if r xt then 0 else {0, 1}

⎤
⎥⎥⎥⎥⎥⎥⎦

3

It is not difficult to verify (say by model checking) that

Π = 3 ⇒ r yt
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Doing it in TLV

We will proceed to show how the analysis of this pointer manipulating program
can be managed automatically within the TLV framework.

We start by considering a finite-state bounded instance of program REVERSE.
In file reverse.smv (next slide), we present an SMV program in which the heap
size has been set to 4. In this presentation, the array Next represents the next-
links. The special index 0 represents null . We allocate the variables x, y, and t,
all of them ranging over the domain 0..4.

Note that 0 is not a legitimate index in the array Next, however, since we
wanted the definition Nextx:= Next[x] to be valid uniformly, we added the
extra definition Next[0] := 0.

The body of the program executes the simultaneous assignment (x, y, x.n) :=
(x.n, x, y) whenever x �= null . The assignment to x.n is performed by the loop
constructor

for (i=1; i<= N; i=i+1)
{next(Next[i]) := (go & i=x) ? y : Next[i];}
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File reverse.smv

MODULE main
DEFINE N:=4;

null := 0;
go := (x != null);
Next[0] := 0;
Nextx := Next[x];

VAR x : 0..N; y : 0..N; t : 0..N;
Next : array 1..N of 0..N;

ASSIGN next(x) := case
go : Nextx;
1 : x;

esac;
next(y) := case

go : x;
1 : y;

esac;
next(t) := t;
for (i=1; i<= N; i=i+1)

{next(Next[i]) := (go & i=x) ? y : Next[i];}
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Preparation of the pf File

Note that file reverse.smv does not specify any initial condition. This is because
the initial condition should specify that t is reachable from x, and this requirement
is better specified in the pf file.

File abs-reverse.pf starts with several definition of functions:

Function reach1(x,y) returns an assertion which expresses the property that
y is reachable from x in 0 or 1 steps. For the case of 1 step, it is required that
x �= null .

Function reach2(x,y) returns an assertion which expresses the property that
y is reachable from x in 2 or less steps.

Function reach4(x,y) returns an assertion which expresses the property that y
is reachable from x in 4 or less steps. For a heap of size 4 this also captures the
fact that y is reachable from x by a path of any length.

Following these definitions, we set the initial condition of the system to require
y = null ∧ t �= null ∧ reach(x, t). We then continue to model check that
x = null → reach(y, t) is an invariant of the system.
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File abs-reverse.pf

Func reach1(x,y);
Return x!=nil & (Next[x]=y) | (x=y);

End -- Func reach1(x,y)
Func reach2(x,y);

Local r := 0;
For (i in 1...N)
Let r := r | reach1(x,i) & reach1(i,y);

End -- For (i in 1...N)
Return r; End -- Func reach2(x,y)
Func reach4(x,y);

Local r := 0;
For (i in 1...N)
Let r := r | reach2(x,i) & reach2(i,y);

End -- For (i in 1...N)
Return r; End -- Func reach4(x,y)
Let nil := 0;
Print "Model Check Integrity of Terms\n";
Let _s[1].i := (y=nil) & (t != nil) & reach4(x,t);
Call Invariance(x=nil -> reach4(y,t));
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Moving to Abstraction

In the next step we move to computing and model checking abstraction of program
abs-reverse.smv, using the abstraction

x null = (x = null), t null = (t = null), r xt = reach(x, t), r yt = reach(y, t)

We prepare file abs-reverse.smv in which we embed two systems:
conc-reverse which is a copy of reverse.smv and abs-reverse which
would hold the abstract version. The abs-reverse system only defines the
abstract variables xnull, tnull, rxt, and ryt.

The definitions of x, y, and t at the top level is intended to make this variables
(which are local to system CS) visible at the top level. Similarly for the abstract
variables xnull, tnull, rxt, and ryt.
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File abs-reverse.smv

MODULE main
DEFINE N:= 4; x:= CS.x; y:= CS.y; t:= CS.t;

xnull:= AS.xnull; tnull:= AS.tnull;
rxt := AS.rxt; ryt := AS.ryt;

VAR CS: system conc-reverse(N);
AS: system abs-reverse;

MODULE conc-reverse(N)
DEFINE null := 0; go := (x != null);

Next[0]:= 0; Nextx:= Next[x];
VAR x : 0..N; y : 0..N; t : 0..N;

Next : array 1..N of 0..N;
ASSIGN next(x) := go ? Nextx: x;

next(y) := go ? x : y;
next(t) := t;

for (i=1; i<= N; i=i+1)
{next(Next[i]) := (go & i=x) ? y : Next[i];}

MODULE abs-reverse
VAR xnull: boolean; tnull: boolean;

rxt : boolean; ryt : boolean;
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File abs-reverse.pf

This file consists of the following parts:

1. Functions reach1, reach2, and reach=reach4.

2. Abstractions of an assertion, a relation and a Transition System, assuming that
the abstraction mapping has been pre-computed.

3. A new procedure check counter which prints a concretized version of a
counter example, in case the abstract model checking produced an abstract
counter-example. It should be invoked following every call to Invariance.

4. The main part of the program, which defines the abstraction mapping, performs
the abstraction of CS into AS and invokes model checking on the abstract
system.

We will present each part in a separate slide.

Abstraction for Progress, Marktoberdorf, Summer, 2004 69



Lecture 4: Computing Abstractions A. Pnueli

The reach Functions

Func reach1(x,y);
Local result := (CS.Next[x]=y) & x!=nil | (x=y);
Return result;

End -- Func reach1(x,y)
Func reach2(x,y);

Local r := 0;
For (i in 1...N)
Let r := r | reach1(x,i) & reach1(i,y);

End -- For (i in 1...N)
Return r;

End -- Func reach2(x,y)
Func reach(x,y);

Local r := 0;
For (i in 1...N)
Let r := r | reach2(x,i) & reach2(i,y);

End -- For (i in 1...N)
Return r;

End -- Func reach(x,y)
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The Abstraction Functions

Func abs-assert(phi);
Return (phi & abst) forsome vars1; End -- abs-assert

Func concs(st); -- Concretize State ‘‘st’’
Return (st & abst) forsome vars2; End -- concs;

Func abs-trans(rho);
Return (rho & abst & abstp) forsome all_vars1;

End -- Func abs-assert(phi);
To abs-sys;

Let _s[2].i := abs-assert(_s[1].i);
Let _s[2].tn := _s[1].tn;
For (i in 1..._s[1].tn)
Let _s[2].t[i] := abs-trans(_s[1].t[i]);

End -- For (i in 1..._s[1].tn)
Let _s[2].jn := _s[1].jn;
For (i in 1..._s[1].jn)
Let _s[2].j[i] := abs-assert(_s[1].j[i]);

End -- For (i in 1..._s[1].jn)
End -- To abs-sys;
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Print Concrete Counter Example
To check_counter; -- Print concrete counter-example if exists

If(exist(ce[1]))
Print "\n Concrete counter-example follows:\n";
Local L := length(ce); Local ic := 1;
Let cce[1] := concs(ce[1]) & _s[1].i;
While (ic<L)

Local nxst := succ1(cce[ic],1) & concs(ce[ic+1]);
If(nxst) Let ic := ic+1; Let cce[ic] := nxst;
Else Break; End -- If(nxst)

End -- While (ic<L)
Let cce[ic] := fsat(cce[ic],vars1); Let jc := ic - 1;
While (jc>0)

Let cce[jc] := fsat(pred1(cce[jc+1],1) & cce[jc],vars1);
Let jc := jc - 1;

End -- While (jc>0)
For (i in 1...ic)

Print "\n---- State no. ", i," =\n", cce[i]; End -- For
End -- If(exist(ce[1]))

End -- To check_counter;
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Main Part of File abs-reverse4.pf

Let vars1 := _s[1].v;
Let vars2 := _s[2].v;
Let all_vars1 := set_union(vars1,prime(vars1));
Let nil := 1;
Let _s[1].i := (y=nil) & (t != nil) & reach(x,t);
Let abst := (xnull <-> (x=nil)) &

(tnull <-> (t=nil)) &
(rxt <-> (reach(x,t))) &
(ryt <-> (reach(y,t));

Let abstp := prime(abst);
abs-sys;
Print "Check presence of t in abstract system\n";
Call Invariance(xnull -> ryt,2);
check_counter;
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Proving Progress Properties

Reconsider the REVERSE program:

�0 :y := null ; �1 :while x �= null do �2 :(x, y, x.n) := (x.n, x, y); �3 :

A relevant progress property of this program is that of termination, which can be
specified as

1 ⇒ (pi = 3)

A possible way of solving the problem is that of augmentation, composing the
system with the following progress monitor:⎡

⎢⎢⎣
inc : {−1, 0, 1}
compassion (inc < 0, inc > 0)
loop forever do

inc := sign(|{i | reach′(x, i)}| − |{j | reach(x′, j)}|)

⎤
⎥⎥⎦

In the following slides we will show the additions to the relevant smv/pf files.
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Additions to abs-reverse.smv

To module conc-reverse, we add the following paragraphs:

JUSTICE 1

To module abs-reverse we add the declaration

inc: -1..1;
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Additions to File abs-reverse.pf

We add the following auxiliary function which computes the ranking:

Func del(x);
Local sum := 0;
For (i in 1...N)
Let sum := sum + reach(x,i);

End -- For (i in 1...N)
Return sum;

End -- Func del(x);

Then, we add the following statements to the main part:

Let abst := abst & (AS.Inc=CS.inc);
Let diff := prime(del(x))-del(x);
Let _s[1].t[1] := _s[1].t[1] &

(next(AS.inc) = case
diff>0 : 1;
diff<0 : -1;
1 : 0; esac);

Print "Check Termination\n"; Call Temp_Entail(1,xnull,2);
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First Attempt

*** Property is NOT VALID ***
Counter-Example Follows:
---- State no. 1 =
AS.Pi = 0, AS.xnull = 0, AS.rxt = 1, AS.ryt = 0,
AS.tnull = 0, AS.inc = -1,
---- State no. 2 =
AS.Pi = 1, AS.xnull = 0, AS.rxt = 1, AS.ryt = 0,
AS.tnull = 0, AS.inc = 0,
---- State no. 3 =
AS.Pi = 2, AS.xnull = 0, AS.rxt = 1, AS.ryt = 0,
AS.tnull = 0, AS.inc = 0,
---- State no. 4 =
AS.Pi = 1, AS.xnull = 0, AS.rxt = 0, AS.ryt = 1,
AS.tnull = 0, AS.inc = 1,
---- State no. 5 =
AS.Pi = 2, AS.xnull = 0, AS.rxt = 0, AS.ryt = 1,
AS.tnull = 0, AS.inc = 0,
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Repeating Period
---- State no. 6 =
AS.Pi = 2, AS.xnull = 0, AS.rxt = 0, AS.ryt = 1,
AS.tnull = 0, AS.inc = 0,
---- State no. 7 =
AS.Pi = 1, AS.xnull = 0, AS.rxt = 0, AS.ryt = 1,
AS.tnull = 0, AS.inc = 1,
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What Went Wrong?

According to the counter-example, t is possible o take a transition which causes
the number of nodes reachable from x to increase. To see how this is possible,
we performed the following:

>> Let t1:= _s[1].t[1];
>> Let st := x!=nil & t!=nil;
>> Print st & t1 & next(inc)=1;
pi = 2,1 x = 4,4 y = 2,4 t = 4,4
Next[1] = 0,0 Next[2] = 0,0 Next[3] = 0,0 Next[4] = 4,2
inc = ,1

This shows that the number of x-reachable nodes can increase if one of these
nodes participate in a cycle.

To avoid this, we add the predicate

r xn = reach(x, null)

and added reach(x, null) to the initial condition.

Now it ran successfully!!!
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