
1

A Common Approach to Pointer 

Analysis in Software Verification

� Break verification problem into two phases

• Preprocessing phase  – separate points-to analysis

• typically no distinction between objects allocated at same site

• Verification phase – verification using points-to results

� May lose precision

• May lose ability to perform strong updates

• May produce false alarms

Program

Property

Pointer 
Analysis

Verification
Analysis



2

Loss of Precision in Two-Phase 

Approach

f = new InputStream();

f.read();

f.close();

Verify f is not read
after it is closed

Straightforward ...



3

Loss of Precision in Two-Phase 

Approach

while (?) {

f = new InputStream();

f.read();

f.close();

}

f1
f

closed

False alarm!
“read may be erroneous”



4

The TVLA Approach

� TVLA is a flexible (parametric) system for 
abstract interpretation and verification

1. parametric heap (i.e., pointer) analysis

� user can specify criterion for merging heap-allocated objects

� user can specify criterion for merging shape graphs

2. verification integrated with heap analysis

� heap analysis (merging criterion) can adapt to verification

Program

Property

Front
end

First-Order
Transition Sys

Abstract
Interpretation



5

while (?) {

f = new InputStream();

f.read();

f.close();

}

The TVLA Approach: An Example

f

closedf

closedf closed

closedf closed closed

…

Concrete States

f

closedf

closedf

Abstract States



6

Tal Lev-Ami and Roman Manevich 
http://www.cs.tau.ac.il/~tvla

TVLA: 3-Valued Logic Analyzer

“A Yacc For Static Analysis”

Alexey Loginov

G. Ramalingam 

Eran Yahav



7

Outline

� Simple examples
• Cleanness of linked lists

• Recursive procedures

• Correctness of sorting

• MarkAndSweep

� Projects
• Compile time garbage collection

• CANVAS

� Ongoing Work



8

Cleanness Analysis of  Linked Lists 

(Nurit Dor, SAS 2000)

� Static analysis of C programs manipulating 
linked lists

� Defects checked

• References to freed memory

• Null dereferences

• Memory leaks

� Existing algorithms are inadequate

• Miss errors

• Report too many false alarms



9

Null Dereferences

Demo

typedef struct element 

{

int value;

struct element ∗n; 

} Element

bool search(  int value, 
Element ∗x)

{

Element ∗ c = x

while (  x != NULL )
{

if (c→ val == value)

return TRUE;

c = c → n; 

}

return FALSE; }

40



10

TVLA inputs

TVP - Three Valued Program

• Predicate declaration

• Action definitions  SOS

• Control flow graph

� TVS - Three Valued Structure

Program 
independent

Demo



11

Challenge 1

�Write a C procedure on which TVLA reports 
false null dereference



12

Proving Correctness of Sorting 

Implementations (Lev-Ami, 

Reps, S, Wilhelm ISSTA 2000)

� Partial correctness

• The elements are sorted

• The list is a permutation of the original list

� Termination

• At every loop iterations the set of elements reachable 
from the head is decreased



13

Example: InsertSort

Run Demo

List InsertSort(List x) {  
List r, pr, rn, l, pl; r = x; pr = NULL;

while  (r != NULL) { 
l = x; rn = r → n; pl = NULL;  
while  (l != r) { 

if  (l → data > r → data) { 
pr → n = rn; r → n = l; 
if  (pl == NULL) x = r; 
else pl → n = r; 
r = pr; 
break;

}  
pl = l; l = l → n; 

}
pr = r; r = rn; 

}
return x;                                                

} 

typedef struct list_cell {
int data;
struct list_cell *n;

} *List;

pred.tvp

actions.tvp



14

Example: InsertSort

Run Demo

List InsertSort(List x) {  
if (x == NULL) return NULL 
pr = x;  r = x->n;
while (r != NULL) {

pl = x; rn = r->n; l = x->n; 
while (l != r) {

pr->n = rn ; 
r->n = l; 
pl->n = r; 
r = pr; 
break; 

} 
pl = l; 
l = l->n; 
} 

pr = r;
r = rn;
}

typedef struct list_cell {
int data;
struct list_cell *n;

} *List;

14



15

Example: Reverse

Run Demo

typedef struct list_cell {
int data;
struct list_cell *n;

} *List;

List reverse (List x) {
List y, t;
y = NULL;
while (x != NULL) {

t = y;
y = x;
x = x → next;
y → next = t;

}
return y;

}



16

Challenge 2

�Write a sorting C procedure on which TVLA fails 
to prove sortedness or permutation    



17

Interprocedural Analysis
(Noam Rinetzky)

�Model the stack as a linked list (CC 2001)

• Observe alias patterns

• Handles recursion with pointers from the stack to the 
heap (but rather slow)

� Exploit referential transparency

• The part of the store modified by a procedure is limited

• Summarize irrelevant calling contexts

• Pre-analyze Abstract Data Types

⌧Analyzed parts of LEDA linked lists



18

Example: Mark and Sweep

void Sweep() {
unexplored = Universe
collected = ∅
while (unexplored ≠ ∅) {
x = SelectAndRemove(unexplored)
if (x ∉ marked)

collected = collected ∪ {x}
}
assert(collected = =

Universe – Reachset(root)
)

}

void Mark(Node root) {
if (root != NULL) {

pending = ∅
pending = pending ∪ {root}
marked = ∅
while (pending ≠ ∅) {

x = SelectAndRemove(pending)
marked = marked ∪ {x}
t = x → left
if (t ≠ NULL)

if (t ∉ marked)
pending = pending ∪ {t}

t = x → right
if (t ≠ NULL)

if (t ∉ marked)
pending = pending ∪ {t}

}
}
assert(marked = = Reachset(root))

}

Run Demo

pred.tvp



19

Challenge 3

� Use TVLA to show termination of 
markAndSweep



20

Mobile Ambients [Nielson’

ESOP’00]
� Algorithm for analyzing safety properties of 
mobile ambients

� Example properties in a routing protocol:

• uniqueness of packet
• mutual exclusion

� Code the tree and the program logical structures

� Code the operational semantics using first order 
logic

� Let TVLA do the rest



21

Establishing Local Temporal Heap Safety Properties 

with Applications to 

Compile-Time Memory Management

[Ran Shaham SAS’03, SCP]



22

Memory deallocation in a timely 

manner is a hard problem

� Undecidable

� Premature deallocation � Program errors

� Late deallocation � Memory leaks
Inefficient use of memory



23

(Old) Idea Compile-Time GC

� The compiler can issue free when objects are no 
longer needed

� Zero cost

� No more memory leaks

� Difficult for imperative heap-manipulating 
programs

• No static names for locations

• Destructive updates (mutations) x.field=null



24

Results

� A framework for developing static algorithms for 
memory management

• Free analysis

• Assign-null (combined with GC)

� “reference” static algorithms

• Compile-time GC which handles destructive heap 
updates



25

Free Analysis

� Free unneeded objects

� Insert “free x” after program point p



26

When can free x be inserted after 

p?

p
cannot free x

x references an object l

some reference to l is used

On all execution paths after p there are no uses of references 
to the object referenced by x �

inserting free x after p is valid



27

When does inserting

free x after p is not valid?

p
cannot free x

x refereces a location l

some reference to l is used

err
initial refp,x use

0

use refp,x

1



28

free x after p automaton

p
cannot free x

x references an object l

some reference to l is used

err
initial refp,x use

0

use refp,x

1

Automaton for an 
object l



29

A Concrete Semantics for 

Deallocating Space

� Program state

• “Usual heap information”

⌧Variable values, Field Values

• Free x after p automaton state

⌧For every object l

� Program statement effect

• “Usual semantics”

• Trigger automaton events



30

Prototype Implementation

� Analysis of Java/JavaCard
programs

� Generic Java Bytecode
Frontend

� Precise analysis

� Scalability issues due to 
procedure calls

� Model library code

� Number of automata



31

More Scalable Solution

[Gilad Arnold]

� Combine backward and forward analysis

• Forward analysis determine the shape

• Backward analysis locates heap liveness

• Use 6



32

Lightweight Specification

�"correct usage" rules a client 
must follow

�"call open() before read()"

Certification

does the client program satisfy 
the lightweight specification?

Verification of Safety 

Properties

Component

a library with cleanly 
encapsulated state

Client

a program that uses 
the library

The Canvas Project (IBM Watson and Tel Aviv)

(Component Annotation, Verification and Stuff)



33

E. Yahav

School of Computer Science

Tel-Aviv University

Verifying Safety Properties

using Separation

and Heterogeneous Abstractions

PLDI’04

G. Ramalingam

IBM T.J. Watson Research Center



34

Quick Overview:

Fine Grained Heap Abstraction

Heap

H

Precise ...
... but often too expensive



35

Separation & Heterogeneous Abstraction

Fine-grained
abstraction

Coarse
abstraction



36

Outline of Seperation

�Decompose verification problem into a set of 
subproblems

�Adapt abstraction to each subproblem



37

Outline of Seperation

�Decompose verification problem into a set of 
subproblems

• Analysis-user specifies a separation strategy

�Adapt abstraction to each subproblem

• Heterogeneous abstraction



38

Prototype Implementation

� Implemented over TVLA

� Correctness comes from the embedding theorem

� Applied to several example programs

• Up to 5000 lines of Java

� Used to verify

• Absence of concurrent modification exception (CME)

• JDBC API conformance

• IOStreams API conformance

� Improved performance

� In some cases improved precision



39



40

Analysis Times

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

IS
Path

 

In
pu

tS
tre

am
5

In
pu

tS
tre

am
5b

inp
utS

tre
am

6

JD
BC E

xa
mple

 

JD
BC E

xa
mple

 2db
 

Ker
ne

l B
en

ch
m

ar
k 

1

SQLE
xe

cu
to

r

Benchmark

T
im

e 
(s

ec
)vanilla

single

singlesim

multi

incremental



41

Ongoing Work

� Assume guarantee reasoning [Yorsh]

� Correctness of collection implementation [Livshits]

� Refinement [Loginov]

� Sclalablity [Manevich, Lev-Ami]

� Heap modularity [Bauer & Rinetzky]



42

TVLA Design Mistakes

� The operational semantics is written in too 
low level language

� TVP can be a high level language

� “instrumentation” = “derived”

� “Consistency Rules” = “Integrity Rules”

� Focus = Partial Concretization

� TVLA⇒3VLA



43

Conclusion

� FOTC is expressive for defining semantics

� TVLA is a very useful research tool

• Try before you publish

• Easy to try new algorithms

� Sometimes faster than existing shape analyzers

� But has high interpretation overhead

• Currently improved



44

http://www.cs.tau.ac.il/~tvla


