A Common Approach to Pointer
Analysis in Software Verification

Pointer Verification

[Property

® Break verification problem into two phases

e Preprocessing phase — separate points-to analysis
» typically no distinction between objects allocated at same site

o Verification phase — verification using points-to results
® May lose precision

e May lose ability to perform strong updates

e May produce false alarms

Loss of Precision in Two-Phase
Approach

= new InputStream() ;

f.read() ;

f.close() ;

Verify f is not read
after it is closed

Straightforward ...

Loss of Precision in Two-Phase
Approach

while

False alarm!
“read may be erroneous”

The TVLA Approach

® TVLA is a flexible (parametric) system for
abstract interpretation and verification

1. parametric heap (i.e., pointer) analysis

» user can specify criterion for merging heap-allocated objects
» user can specify criterion for merging shape graphs

2. verification integrated with heap analysis
» heap analysis (merging criterion) can adapt to verification

First-Order Abstract
[Program @ Transition Sys Interpretation

[Property

The TVLA Approach: An Example

while (?)

}

{

f = new InputStream() ;

f.read?T?\\\:>>

f.close() ;

Concrete States

Abstract States

=

0

—O0®

—O0®

—0©e

EOIS

BOLEIElE

TVLA: 3-Valued Logic Analyzer
“A Yacc For Static Analysis”

Tal Lev-Ami and Roman Manevich
http://www.cs.tau.ac.il/~tvia

Alexey Loginov
G. Ramalingam
Eran Y ahav

Outline

® Simple examples
e Cleanness of linked lists
e Recursive procedures
e Correctness of sorting
e MarkAndSweep

® Projects
e Compile time garbage collection
e CANVAS

® Ongoing Work

Cleanness Analysis of Linked Lists
(Nurit Dor, SAS 2000)

® Static analysis of C programs manipulating
linked lists

® Defects checked
e References to freed memory

e Null dereferences
e Memory leaks

® Existing algorithms are inadequate
e Miss errors
e Report too many false alarms

Null Dereferences

bool search(int value,
typedef struct element Element #x)

{ {

int value; Element * ¢ = X

struct element =n; while (x '= NULL)

} Element {
if (c— val == value)

return TRUE;
c=Cc—-n

¥

__Demo Iaanal

TVLA inputs

TVP - Three Valued Program

Program
Independent

Challenge 1

® Write a C procedure on which TVLA reports
false null dereference

Proving Correctness of Sorting

Implementations (Lev-Ami,
Reps, S, Wilhelm ISSTA 2000)

® Partial correctness
e The elements are sorted
e The list is a permutation of the original list

® Termination

e At every loop iterations the set of elements reachable
from the head is decreased

Example: InsertSort

typedef struct list_cell { List InsertSort(List x) {
int data; Listr, pr,rn, |, pl; r =x; pr = NULL;
struct list_cell *n; while (r!'=NULL) {
} *List; | =x;rn=r — n; pl = NULL;
while (1 !=r){
If (I - data>r — data) {
pro>n=r;r->n=|I;
pred.tvp if (ol == NULL) X =1
elsepl > n=r;
i r=pr,
actions.tvp S

}

pl=1;1=1—-n;
}

Run Demo } AU

return X;

}

Example: InsertSort

typedef struct list_cell { ListInsertSort(Listx) {
int data: If (x==NULL) return NULL

struct list_cell *n; pr=>x r=x->m
}*Ligt; while (r 1= NULL) {

pl =X; rn=r->n; | = x->n;

while (I '=r) {
pr->n=rn;
r->n=|I;
pl->n=r;
r=pr,
break;

Run Demo

Example: Reverse

typedef struct list_cell { :]
int data; List reverse (List X) {

struct list_cell *n; Listy, t;
yrLIst y = NULL,;
while (x I= NULL) {
t=y;
y =X
X =X — heXt;
y — next =t;

;
returny;

Run Demo ‘

Challenge 2

® Write a sorting C procedure on which TVLA fails
to prove sortedness or permutation

Interprocedural Analysis
(Noam Rinetzky)

® Model the stack as a linked list (CC 2001)

e Observe alias patterns
e Handles recursion with pointers from the stack to the
heap (but rather slow)
® Exploit referential transparency
e The part of the store modified by a procedure is limited
e Summarize irrelevant calling contexts

e Pre-analyze Abstract Data Types
[X]IAnalyzed parts of LEDA linked lists

Example: Mark and Sweep

void Mark(Node root) { void Sweep() {
It (root = NULL) { unexplored = Universe
pending=© collected = &
pencli'gdg = gendl ng v {root} while (unexplored # &) {
Vn\)ﬁ\ir le (pending = @) { X = Sel ectAndRemove(unexplored)
X = SelectAndRemove(pending) It (x ¢ marked)
marked = marked U {x} collected = collected U {x}
t=x — left }
If (t=NULL) assert(collected ==
If (t¢ marked) Universe — Reachset(root)
pending = pending U {t})
t=x— right
If (tNULL)
if (t e marked) pred.tvp
pending = pending U {t}

1 } Run Demo

assert(marked == Reachset(root))

Challenge 3

® Use TVLA to show termination of
markAndSweep

Mobile Ambients [Nielson’
ESOP’00]

® Algorithm for analyzing safety properties of
mobile ambients

® Example properties in a routing protocol:
e uniqueness of packet
e mutual exclusion

® Code the tree and the program logical structures

® Code the operational semantics using first order
logic
® Let TVLA do the rest

Establishing Local Temporal Heap Safety Properties
with Applications to
Compile-Time Memory Management

[Ran Shaham SAS’03, SCP]

Memory deallocation in a timely
manner is a hard problem

® Undecidable
® Premature deallocation =» Program errors

® Late deallocation = Memory leaks
Inefficient use of memory

(Old) Idea Compile-Time GC

® The compiler can issue free when objects are no
longer needed

® Zero cost
® No more memory leaks

® Difficult for imperative heap-manipulating
programs

Results

® A framework for developing static algorithms for
memory management

e Free analysis
e Assign-null (combined with GC)
® “reference” static algorithms

e Compile-time GC which handles destructive heap
updates

Free Analysis

® Free unneeded objects

® Insert “free x" after program point p

When can be inserted after
2

some reference to | is used

X references an object |

On all execution paths there are

Inserting after p iIs

When does inserting
afterp is

some reference to | is used

X refereces a location |

use ref

p,X

after p automaton

some reference to | is used

X references an object |

Automaton for an
object |

initial

A Concrete Semantics for
Deallocating Space

® Program state

e “Usual heap information”
[XIVariable values, Field Values

» Free x after p automaton state
[XIFor every object |
® Program statement effect
e “"Usual semantics”
e Trigger automaton events

Prototype Implementation

® Scalability issues due to

® Analysis of Java/JavaCard procedure calls
programs ® Model library code

® Generic Java Bytecode ® Number of automata
Frontend

® Precise analysis

More Scalable Solution
[Gilad Arnold]

® Combine backward and forward analysis
e Forward analysis determine the shape
e Backward analysis locates heap liveness
o Use I

Verification of Safety

Properties

The Canvas Project (IBM Watson and Tel Aviv)
(Component Annotation, Werification and Stuff)

Component
a library with cleanly
encapsulated state

Lightweight Specification
="correct usage" rules a client
must follow

="call open() before read()"

Client
a program that uses
the library

Certification

does the client program satisfy
the lightweight specification?

Verifying Safety Properties
using Separation
and Heterogeneous Abstractions
PLDI’04

E. Yahav
School of Computer Science
Tel-Aviv University

G. Ramalingam
IBM T.J. Watson Research Center

Quick Overview:
Fine Grained Heap Abstraction

Separation & Heterogeneous Abstraction

Fine-grained
bstraction

Coarse
- abstraction

\
-
A
\
T
S
v
i
A
—

Outline of Seperation

© Decompose verification problem into a set of
subproblems

® Adapt abstraction to each subproblem

Outline of Seperation

© Decompose verification problem into a set of
subproblems
e Analysis-user specifies a separation strategy

® Adapt abstraction to each subproblem
e Heterogeneous abstraction

Prototype Implementation

® Implemented over TVLA
® Correctness comes from the embedding theorem
® Applied to several example programs

e Up to 5000 lines of Java

® Used to verify
o Absence of concurrent modification exception (CME)
e JDBC API conformance
o IOStreams API conformance

® Improved performance
® In some cases improved precision

Resource - Simplel.java - Eclipse Platform

File

Edit Source Refactor Mavigabe Search Project Canwas Fun Window Help

F-DRalled| % -k-%-

B ¥ &

|® 2| e~ -

;=4

B

& Canvas Yiew * X

i|faeo

Eﬁj- Simplel
-G Simpled.java

x|
trvy { 5
Class.forName (dr iverName) ;
Connection conh = DriverMahager.getConnection(dblUrl) S iFlinele™
Jtatement = = Cohh.create3tatement():
int id = 43z;
String queryl = "IELECT balance FROM accounts WHERE id = ™ 4+ id:;
Fesultlet rsl = s.exXecuteQuery(queryl):
int aBalance = 0;
while (rsl.next()) {
abBalance = rsl.getInt (1) =
¥
Jtring querys = "IELECT credit FROM accounts WHERE id = ™ + id;
Result3et rsi = s.executeQuery(querya):;
int aCredit = 0;
while [(r=sl.nex 1 f¢ exception thrown, rsl is closed.

W

57| Tasks (1 ikem)

=+,
¥ RS v X

| nl"l H | Description | Fesource | In Folder | Location |
i possibly trving ko get next using a closed ResulkSet Simplel.java Simple1 line 39
Mavigator | Packag... lCanvas. a0
|'-.-'-.-'rita|:||e |Insert |4IZI i1

B vanilla

@ single

[singlesim
O multi

B incremental

Analysis Times

Benchmark

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

Time (sec)

Ongoing Work

® Assume guarantee reasoning [Yorsh]

® Correctness of collection implementation [Livshits]
® Refinement [Loginov]

® Sclalablity [Manevich, Lev-Ami]

® Heap modularity [Bauer & Rinetzky]

TVLA Design Mistakes

® The operational semantics is written in too
low level language

® TVP can be a high level language

® “instrumentation” = “derived”

® "Consistency Rules” = “Integrity Rules”
® Focus = Partial Concretization

® TVLA=3VLA

Conclusion

® FOT'C js expressive for defining semantics

® TVLA is a very useful research tool
e Try before you publish
e Easy to try new algorithms

® Sometimes faster than existing shape analyzers

® But has high interpretation overhead
e Currently improved

