Language Theory and Infinite Graphs

Colin Stirling
University of Edinburgh, UK

Automata and language theory study finitely presented mechanisms for generating languages. A
language is a family of words. The Chomsky hierarchy of languages can be generated using gram-
mars or using automata. At the lowest level are regular languages which are also generated by finite-
state automata. At the next level are context-free languages. These are generated by context-free
grammars and also by pushdown automata. Beyond this are the context-sensitive languages and
the recursively enumerable languages, generated by linear bounded Turing machines and Turing
machines.

A slight shift in focus is very revealing. Instead of grammars and automata as language generators,
one views them as propagators of possibly infinite labelled transition graphs. This is our starting
point. We shall examine various kinds of infinite graph, concentrating on pushdown automata and
context-free grammars and also consider bisimulation equivalence as an alternative to language
equivalence.

The main goal of the lectures is to provide decision procedures for infinite state graphs. We concen-
trate on proving decidability of language equivalence using both graph theoretic and combinatorial
arguments. The main result to be examined is decidability of the DPDA equivalence problem: that
language equivalence is decidable for deterministic context-free languages. Despite intensive work
throughout the late 1960s and 1970s, this problem remained unsolved until 1997 when Sénizergues
announced a positive solution. His proof consisted of two semi-decision procedures, and so there
was no complexity bound on the procedure.

In the lectures we provide a deterministic decision procedure with a primitive recursive upper
bound. We shall also briefly discuss the open problem whether language equivalence is decidable
for deterministic higher-order grammars. For background reading on the definitions of language
equivalence, context free grammars and (deterministic) pushdown automata see, for instance, [1].

References

1. J. Hopcroft, J. Ullman. Introduction to Automata Theory, Languages, and Computation,
Addison-Wesley, 1979

27



