
Compilation of certificates

Gilles Barthe

INRIA Sophia-Antipolis Méditerranée, France

Marktoberdorf, August 2007 Compilation of certificates

Motivation

Mobile code is ubiquitous
Large distributed networks of JVM devices

aimed at providing a global and uniform access to services

Security is a central concern:
applications manipulate sensitive data stored on devices
communications must be secured

Issues:
uniform access to services vs. heterogeneity of devices
flexibility of computational infrastructure vs. rigid security
architecture
platform must be correct (VM, API,. . .)
lack of appropriate security mechanisms to guarantee security on
consumer side

Marktoberdorf, August 2007 Compilation of certificates

Security challenge

Bytecode program

Compiler

Network
Runtime

Bytecode program

Source program

Code producer Code consumer

Marktoberdorf, August 2007 Compilation of certificates

Proof Carrying Code

Downloaded components come equipped with certificates, where
certificates:

are condensed and formalized mathematical proofs/hints
are self-evident and unforgeable
can be checked efficiently

Marktoberdorf, August 2007 Compilation of certificates

Proof Carrying Code

Downloaded components come equipped with certificates, where
certificates:

are condensed and formalized mathematical proofs/hints
are self-evident and unforgeable
can be checked efficiently

pgflastimage

Marktoberdorf, August 2007 Compilation of certificates

Proof Carrying Code

Downloaded components come equipped with certificates, where
certificates:

are condensed and formalized mathematical proofs/hints
are self-evident and unforgeable
can be checked efficiently

pgflastimage

Marktoberdorf, August 2007 Compilation of certificates

Flavors of Proof Carrying Code

Type-based PCC

Compiler
Certifying
Compiler

BCV

Runtime environment
Program Cert.

Program

Widely deployed in KVM
Application to JVM typing
On-device checking possible

Logic-based PCC

Compiler

Certifying

Compiler

Runtime environment
Program

Program
VC

generator

Checker

Cert.

Original scenario
Application to type safety and
memory safety

Marktoberdorf, August 2007 Compilation of certificates

Contents

The objective of the course is to present verification methods for
bytecode and relate them to verification methods for source code

Type system for information flow based confidentiality policies
Verification condition generator for logical specifications

Virtual machine

Source program
Jif type
checker

API

Bytecode program

Jif types

Operating system

Information flow
types

Security env
Regions

BCV

Inf flow

Virtual machine
Operating system

Source program

Bytecode program

Interactive
proofs

API

JML specification

specification
Bytecode

Certificate

Certificate

Certificate
checker

Marktoberdorf, August 2007 Compilation of certificates

Contents

The objective of the course is to present verification methods for
bytecode and relate them to verification methods for source code

Type system for information flow based confidentiality policies
Verification condition generator for logical specifications

Virtual machine

Source program
Jif type
checker

API

Bytecode program

Jif types

Operating system

Information flow
types

Security env
Regions

BCV

Inf flow

Virtual machine
Operating system

Source program

Bytecode program

Interactive
proofs

API

JML specification

specification
Bytecode

Certificate

Certificate

Certificate
checker

Marktoberdorf, August 2007 Compilation of certificates

Contents

The objective of the course is to present verification methods for
bytecode and relate them to verification methods for source code

Type system for information flow based confidentiality policies
Verification condition generator for logical specifications

Virtual machine

Source program
Jif type
checker

API

Bytecode program

Jif types

Operating system

Information flow
types

Security env
Regions

BCV

Inf flow

Virtual machine
Operating system

Source program

Bytecode program

Interactive
proofs

API

JML specification

specification
Bytecode

Certificate

Certificate

Certificate
checker

Marktoberdorf, August 2007 Compilation of certificates

Mobius: Mobility, Ubiquity, Security

Main goals:
develop basic technologies (type systems
and logics) for static enforcement of
expressive policies at application level:

confidentiality, integrity, resource usage
logical specifications

build a Proof Carrying Code infrastructure
that integrates these basic technologies
use proof assistants to achieve the highest
guarantees for security mechanisms

INRIA
ETH Zürich
LMU Münich
RU Nijmegen
U. Edinburgh
Chalmers U.
Tallinn U.
Imperial College
UC Dublin
U. Warsaw
UP Madrid
TLS
SAP Research
France Telecom
Trusted Logic
TU Darmstadt

Marktoberdorf, August 2007 Compilation of certificates

The Mobius view

Source program

Source Specification
(types + logics)

Runtime environment

Bytecode program

Bytecode Specification

Certificate

R
eq

ui
re

m
en

ts

Certificate
checker

Certificate
generation

Certificate
Certificate

Bytecode program

Bytecode Specification

Interactive
proofs

Java
compiler

Spec
compiler

Proof
compiler

Code producer

Code consumer

Marktoberdorf, August 2007 Compilation of certificates

Part 1: Information flow typing
G. Barthe, D. Naumann and T. Rezk, Deriving an Information Flow
Checker and Certifying Compiler for Java, Security and Privacy 2006
G. Barthe, D. Pichardie and T. Rezk, A Certified Lightweight
Non-Interference Java Bytecode Verifier, ESOP’07
G. Barthe, T. Rezk, A. Russo and A. Sabelfeld, Security of
Multi-Threaded Programs by Compilation, ESORICS’07

Marktoberdorf, August 2007 Compilation of certificates

Non-interference

”Low-security behavior of the program is not affected by any
high-security data.” Goguen & Meseguer 1982

H1 L

H ′1 L ′

H2 L

H ′2 L ′

∼L

∼L

∀s1, s2, s1 ∼L s2 ∧ P, s1 ⇓ s ′1 ∧ P, s2 ⇓ s ′2 =⇒ s ′1 ∼L s ′2

High = confidential Low = public

Marktoberdorf, August 2007 Compilation of certificates

Non-interference

”Low-security behavior of the program is not affected by any
high-security data.” Goguen & Meseguer 1982

H1 L

H ′1 L ′

H2 L

H ′2 L ′

∼L

∼L

∀s1, s2, s1 ∼L s2 ∧ P, s1 ⇓ s ′1 ∧ P, s2 ⇓ s ′2 =⇒ s ′1 ∼L s ′2

High = confidential Low = public

Marktoberdorf, August 2007 Compilation of certificates

Non-interference

”Low-security behavior of the program is not affected by any
high-security data.” Goguen & Meseguer 1982

H1 L

H ′1 L ′

H2 L

H ′2 L ′

∼L

∼L

∀s1, s2, s1 ∼L s2 ∧ P, s1 ⇓ s ′1 ∧ P, s2 ⇓ s ′2 =⇒ s ′1 ∼L s ′2

High = confidential Low = public

Marktoberdorf, August 2007 Compilation of certificates

Examples of insecure programs

Direct flow

load yH
store xL
return

Indirect flow

load yH
if 5
push 0
store xL
return

Flow via return

load yH
if 5
push 1
return
push 0
return

Flow via operand stack

push 0
push 1
load yH
if 6
swap
store xL
return 0

Marktoberdorf, August 2007 Compilation of certificates

Programs

A program is an array of instructions:

instr ::= prim op primitive operation
| push v push value on top of stack
| load x load value of x on stack
| store x store top of stack in x
| ifeq j conditional jump
| goto j unconditional jump
| return return

where:
j ∈ P is a program point
v ∈ V is a value
x ∈ X is a variable

Marktoberdorf, August 2007 Compilation of certificates

Semantics

States are of the form 〈i, ρ, s〉where:
i : P is the program counter
ρ : X→ V maps variables to values
s : V? is the operand stack

Operational semantics is given by rules are of the form

P[i] = ins constraints
s{ s ′

Evaluation semantics: P,µ ⇓ ν, v iff 〈1,µ, ε〉{? 〈ν, v〉, where{?

is the reflexive transitive closure of{

Marktoberdorf, August 2007 Compilation of certificates

Semantics: rules

P[i] = prim op n1 op n2 = n

〈i, ρ, n1 :: n2 :: s〉{ 〈i + 1, ρ, n :: s〉
P[i] = push n

〈i, ρ, s〉{ 〈i + 1, ρ, n :: s〉
P[i] = load x

〈i, ρ, s〉{ 〈i + 1, ρ, ρ(x) :: s〉
P[i] = store x

〈i, ρ, v :: s〉{ 〈i + 1, ρ(x := v), s〉
P[i] = ifeq j

〈i, ρ, 0 :: s〉{ 〈j, ρ, s〉
P[i] = ifeq j n , 0
〈i, ρ, n :: s〉{ 〈i + 1, ρ, s〉

P[i] = goto j
〈i, ρ, s〉{ 〈j, ρ, s〉

P[i] = return
〈i, ρ, v :: s〉{ 〈ρ, v〉

Marktoberdorf, August 2007 Compilation of certificates

Policy

A lattice of security levels S = {H, L} with L 6 H
Each program is given a security signature: Γ : X→ S and kret.
Γ determines an equivalence relation ∼L on memories: ρ ∼L ρ

′ iff

∀x ∈ X.Γ(x) 6 L⇒ ρ(x) = ρ ′(x)

Program P is non-interfering w.r.t. signature Γ , kret iff for every
µ,µ ′,ν,ν ′, v, v ′,

P,µ ⇓ ν, v
P,µ ′ ⇓ ν ′, v ′

µ ∼L µ
′

⇒ ν ∼L ν
′ ∧ (kret 6 L⇒ v = v ′)

Marktoberdorf, August 2007 Compilation of certificates

Type system

Transfer rules of the form

P[i] = ins constraints
i ` st⇒ st ′

P[i] = ins constraints
i ` st⇒

where st, st ′ ∈ S?.
Types assign stack of security levels to program points

S : P→ S?

S ` P iff S1 = ε and for all i, j ∈ P

i 7→ j⇒ ∃st ′. i ` Si ⇒ st ′ ∧ st ′ 6 Sj;
i 7→⇒ i ` Si ⇒

The transfer rules and typability relation are implicitly parametrized
by a signature Γ , kret and additional information (next slide)

Marktoberdorf, August 2007 Compilation of certificates

Control dependence regions
Approximating the scope of branching statements

A program point j is in a control dependence region of a branching point
i if

j is reachable from i,
there is a path from i to a return point which does not contain j

CDR can be computed using post-dominators of branching points.

Example :
a must belong to
region(i)
b does not necessary
belong to region(i)

exit

i

a

b

exit

exit

i

a

Marktoberdorf, August 2007 Compilation of certificates

CDR usage : tracking implicit flows

In a typical type system for a structured language:

` exp : k [k1] ` c1 [k2] ` c2 k 6 k1 k 6 k2

[k] ` if exp then c1 else c2

In our context
se: a security environment that attaches a security level to each
program point
for each branching point i, we constrain se(j) for all j ∈ region(i)

P[i] = ifeq i ′ ∀j ∈ region(i), k 6 se(j)
i ` k :: st⇒ · · ·

Marktoberdorf, August 2007 Compilation of certificates

CDR soundness
SOAP (Safe Over Approximation Properties)

CDR soundness is ensured by local conditions (instead of path
properties) using region ∈ P→ ℘(P) and jun ∈ P ⇀ P.

SOAP1: for all program points i and all
successors j, k of i (i 7→ j and i 7→ k)
such that j , k (i is hence a
branching point), k ∈ region(i) or
k = jun(i);

SOAP2: for all program points i, j, k, if
j ∈ region(i) and j 7→ k, then either
k ∈ region(i) or k = jun(i);

SOAP3: for all program points i, j, if
j ∈ region(i) and j 7→ then jun(i) is
undefined.

Marktoberdorf, August 2007 Compilation of certificates

CDR soundness
SOAP (Safe Over Approximation Properties)

CDR soundness is ensured by local conditions (instead of path
properties) using region ∈ P→ ℘(P) and jun ∈ P ⇀ P.

SOAP1: for all program points i and all
successors j, k of i (i 7→ j and i 7→ k)
such that j , k (i is hence a
branching point), k ∈ region(i) or
k = jun(i);

SOAP2: for all program points i, j, k, if
j ∈ region(i) and j 7→ k, then either
k ∈ region(i) or k = jun(i);

SOAP3: for all program points i, j, if
j ∈ region(i) and j 7→ then jun(i) is
undefined.

exit

i
j k

jun(i)

Marktoberdorf, August 2007 Compilation of certificates

CDR soundness
SOAP (Safe Over Approximation Properties)

CDR soundness is ensured by local conditions (instead of path
properties) using region ∈ P→ ℘(P) and jun ∈ P ⇀ P.

SOAP1: for all program points i and all
successors j, k of i (i 7→ j and i 7→ k)
such that j , k (i is hence a
branching point), k ∈ region(i) or
k = jun(i);

SOAP2: for all program points i, j, k, if
j ∈ region(i) and j 7→ k, then either
k ∈ region(i) or k = jun(i);

SOAP3: for all program points i, j, if
j ∈ region(i) and j 7→ then jun(i) is
undefined.

exit

i

j

k

jun(i)

Marktoberdorf, August 2007 Compilation of certificates

CDR soundness
SOAP (Safe Over Approximation Properties)

CDR soundness is ensured by local conditions (instead of path
properties) using region ∈ P→ ℘(P) and jun ∈ P ⇀ P.

SOAP1: for all program points i and all
successors j, k of i (i 7→ j and i 7→ k)
such that j , k (i is hence a
branching point), k ∈ region(i) or
k = jun(i);

SOAP2: for all program points i, j, k, if
j ∈ region(i) and j 7→ k, then either
k ∈ region(i) or k = jun(i);

SOAP3: for all program points i, j, if
j ∈ region(i) and j 7→ then jun(i) is
undefined.

exit

i

j

k
jun(i)

Marktoberdorf, August 2007 Compilation of certificates

CDR soundness
SOAP (Safe Over Approximation Properties)

CDR soundness is ensured by local conditions (instead of path
properties) using region ∈ P→ ℘(P) and jun ∈ P ⇀ P.

SOAP1: for all program points i and all
successors j, k of i (i 7→ j and i 7→ k)
such that j , k (i is hence a
branching point), k ∈ region(i) or
k = jun(i);

SOAP2: for all program points i, j, k, if
j ∈ region(i) and j 7→ k, then either
k ∈ region(i) or k = jun(i);

SOAP3: for all program points i, j, if
j ∈ region(i) and j 7→ then jun(i) is
undefined.

exit

exit

i

j

Marktoberdorf, August 2007 Compilation of certificates

Transfer rules

P[i] = push n
i ` st⇒ se(i) :: st

P[i] = binop op
i ` k1 :: k2 :: st⇒ (k1 t k2) :: st

P[i] = load x
i ` st⇒ (Γ(x) t se(i)) :: st

P[i] = store x se(i) t k 6 Γ(x)

i ` k :: st⇒ st

P[i] = goto j
i ` st⇒ st

P[i] = return se(i) t k 6 kr

i ` k :: st⇒

P[i] = ifeq j ∀j ′ ∈ region(i), k 6 se(j ′)
i ` k :: ε⇒ ε

Marktoberdorf, August 2007 Compilation of certificates

Soundness
If S ` P (w.r.t. se and cdr) then P is non-interfering.

Proof:
Low (locally respects) unwinding lemma:
If s ∼L s ′ and s{ t and s ′ { t ′ and transitions are typable, then
t ∼L t ′, provided s · pc = s ′ · pc
High (step consistent) unwinding lemma:
If s ∼L s ′ and s{ t and transition is typable then t ∼L s ′, provided
s · pc = i is a high program point and Si is high
Gluing lemmas for combining high and low unwinding lemmas
(extensive use of SOAP properties)

pgflastimage

Marktoberdorf, August 2007 Compilation of certificates

Soundness
If S ` P (w.r.t. se and cdr) then P is non-interfering.

Proof:
Low (locally respects) unwinding lemma:
If s ∼L s ′ and s{ t and s ′ { t ′ and transitions are typable, then
t ∼L t ′, provided s · pc = s ′ · pc
High (step consistent) unwinding lemma:
If s ∼L s ′ and s{ t and transition is typable then t ∼L s ′, provided
s · pc = i is a high program point and Si is high
Gluing lemmas for combining high and low unwinding lemmas
(extensive use of SOAP properties)

pgflastimage

Marktoberdorf, August 2007 Compilation of certificates

Lightweight checking algorithm

Code provided with:
regions (verified by a region checker),
security environment
type annotations for junction points (most often empty)

Program entry point is typed with the empty stack
Propagation

Pick a program point i annotated with st
Compute st ′ such that i ` st⇒ st ′. If there is no st ′, then reject
program.
If st ′ exists, then for all successors j of i

if j is not yet annotated, annotated it with st ′
if j is annotated with st ′′, check that st ′ 6 st ′′. If not, reject program

Marktoberdorf, August 2007 Compilation of certificates

Type-preserving compilation

Source information flow type system offers a tool for developing
secure applications, but does not directly address mobile code
Bytecode verifier provides information flow assurance to users
Reconcile both views by showing that typable programs are
compiled into typable programs

∀P,` P =⇒ ∃S. S ` [[P]]

Must also compile regions and security environment

Marktoberdorf, August 2007 Compilation of certificates

Source language

Programs are commands

c ::= x := e | if(e){c}{c} | while(e){c} | c; c | skip | return e

Security policy Γ : X→ S and kret

Volpano-Smith security type system

e : k k t pc 6 Γ(x)

[pc] ` x := e
[pc] ` c [pc] ` c ′

[pc] ` c; c ′ [pc] ` skip

e : pc [pc] ` c1 [pc] ` c2

[pc] ` if(e){c1}{c2}

e : pc [pc] ` c
[pc] ` while(e){c}

e : k k t pc 6 kret

[pc] ` return e

[pc] ` c pc ′ 6 pc
[pc ′] ` c ′

e : k k 6 k ′

e : k ′

Marktoberdorf, August 2007 Compilation of certificates

Compiler

[[x]] = load x
[[v]] = push v

[[e1 op e2]] = [[e2]]; [[e1]]; binop op

k : [[x := e]] = [[e]]; store x
k : [[i1; i2]] = k : [[i1]]; k2 : [[i2]]

where k2 = k + |[[i1]]|

k : [[return e]] = [[e]]; return

k : [[if(e1 cmp e2){i1}{i2}]] = [[e2]]; [[e1]]; if cmp k2; k1 : [[i1]]; goto l; k2 : [[i2]]
where k1 = k + |[[e2]]| + |[[e1]]| + 1

k2 = k1 + |[[i1]]| + 1
l = k2 + |[[i2]]|

k : [[while(e1 cmp e2){i}]] = [[e2]]; [[e1]]; if cmp k2; k1 : [[i]]; goto k
where k1 = k + |[[e2]]| + |[[e1]]| + 1

k2 = k1 + |[[i]]| + 1

Marktoberdorf, August 2007 Compilation of certificates

Semantics-preserving compilation

Compiler correctness

P,µ ⇓ ν, v implies [[P]],µ ⇓ ν, v

Consequences:
Source programs non-interfering iff their compilation is
non-interfering

∀P, P is non-interfering⇐⇒ [[P]] is non-interfering

Type-preservation entails soundness of source type system:

∀P, ` P =⇒ P is non-interfering

However, preservation of typing is not a consequence of compiler
correctness

Marktoberdorf, August 2007 Compilation of certificates

Compiling regions and security environment

Regions are compiled by induction on structure of programs
Security environment and type annotations computed from
typing derivation

if(yH){x := 1}{x := 2};
x ′ := 3;
return 2

load yH L ε

ifeq 6 L H : ε
push 1 H ∈ region(2) ε

store x H ∈ region(2) H : ε
goto 8 H ∈ region(2) ε

push 2 H ∈ region(2) ε

store x H ∈ region(2) H : ε
push 3 L = jun(2) ε

store x ′ L L : ε
push 2 L ε

return L L : ε

Marktoberdorf, August 2007 Compilation of certificates

Preservation of information flow types

For our (non-optimizing) compiler:
If P is typable, then [[P]] is typable wrt security environment,
regions, and type annotations generated by extended compiler.
Furthemore, generated regions satisfy SOAP.
For optimizing compilers, type preserving compilation may fail:

xH := n1 ∗ n2; yL := n1 ∗ n2 =⇒ xH := n1 ∗ n2; yL := xH

There may be easy fixes

Marktoberdorf, August 2007 Compilation of certificates

Concurrency

Mobile code applications often exploit concurrency
Concurrent execution of secure sequential programs is not
necessarily secure:

if(yH > 0){skip; skip}{skip}; xL := 1||skip; skip; xL := 2

Using round robin scheduler with time slice one:
if yH > 0 then xL := 1
if not yH > 0 then xL := 2

Security of multi-threaded programs can be achieved:
by imposing strong security conditions on programs
by relying on secure schedulers

Marktoberdorf, August 2007 Compilation of certificates

Secure schedulers

A secure scheduler selects the thread to be executed in function of the
security environment:

the thread pool is partitioned into low, high, and hidden threads
if a thread is hidden (currently executing under the scope of a
high branching instruction), then only high threads are
scheduled
if the program counter of the last executed thread becomes high
(resp. low), then the thread becomes hidden or high (resp. low)

Round-robin schedulers are secure, provided they take over control
when threads become high/low/hidden

Marktoberdorf, August 2007 Compilation of certificates

Multi-threaded language

Instruction for dynamic thread creation start i
States 〈ρ, λ〉where λ associates to each active thread a pair 〈i, s〉.
Semantics lifted from sequential fragment

pickt(〈ρ, λ〉, h) = ctid λ(ctid) = 〈i, s〉
P[i] , start k 〈i, ρ, s〉{seq 〈i ′, ρ ′, s ′〉

〈ρ, λ〉{ 〈ρ ′, λ ′〉
where

λ ′(tid) =

{
〈i ′, s ′〉 if tid = ctid
λ(tid) otherwise

Marktoberdorf, August 2007 Compilation of certificates

Policy and type system

Policy and type system similar to sequential fragment
Transfer rules inherited from sequential fragment

P[i] , start j i `seq st⇒ st ′

i ` st⇒ st ′
P[i] = start j se(i) 6 se(j)

i ` st⇒ st

Assume the scheduler is secure, type soundness and type
preservation can be lifted from sequential language:

Type soundness: same proof techniques (using extended SOAP
properties)
Type preservation: parallel composition typed in the naive way

[pc] ` P [pc] ` Q
[pc] ` P||Q

compiler generates security environment that prevents internal
timing leaks

Marktoberdorf, August 2007 Compilation of certificates

Adding objects, exceptions and methods

We have formally proved in Coq the soundness of information flow
type system for a sequential JVM-like language, and extracted an
information flow checker.

Main issue is with exceptions:

loss of precision due to explosion of control flow
regions are parametrized by exceptions
more complex signatures and typing rules
for type-preserving compilation, loss of structure at source level

There are also interesting issues wrt dynamic object creation:
heap L-equivalence
allocator may leak information

Marktoberdorf, August 2007 Compilation of certificates

Adding objects, exceptions and methods

We have formally proved in Coq the soundness of information flow
type system for a sequential JVM-like language, and extracted an
information flow checker.

Main issue is with exceptions:

loss of precision due to explosion of control flow
regions are parametrized by exceptions
more complex signatures and typing rules
for type-preserving compilation, loss of structure at source level

There are also interesting issues wrt dynamic object creation:
heap L-equivalence
allocator may leak information

Marktoberdorf, August 2007 Compilation of certificates

A three-stage typing system

1 preliminary analysis in order to
reduce control flow graph

null pointers
array accesses
. . .

2 CDR analyser computes control
dependence regions

3 IF (Information Flow) analyser
computes a security environment
and a type

TCB

program

PA analyser

CDR analyser

IF analyser

PA checker

CDR checker

IF checker

diagnostic

annots.

annots.

annots.

Marktoberdorf, August 2007 Compilation of certificates

Information flow type system

Type annotations required on programs:
ft : F → S attaches security levels to fields,
each method posseses one (or several) signature(s):

~kv
kh−→ ~kr

~kv provides the security level of the method parameters
kh: effect of the method on the heap
~kr is a record of security levels of the form {n : kn, e1 : ke1 , . . . en : ken }

kn is the security level of the return value (normal termination),
ki is the security level of each exception ei that might be propagated by
the method

Marktoberdorf, August 2007 Compilation of certificates

Typing judgment

General form
P[i] = ins constraints

Γ , ft, region, se, sgn, i `τ st⇒ st ′

Invokation

Pm[i] = invokevirtual mID ΓmID [k] = ~k′
a

k′h−→ ~k′
r

kt kh t se(i) 6 k′
h k 6 ~k′

a [0] ∀i ∈ [0, length(st1) − 1], st1[i] 6 ~k′
a [i + 1]

e ∈ excAnalysis(mID)∪ {np} ∀j ∈ region(i, e), kt ~k′
r [e] 6 se(j) Handler(i, e) = t

Γ , region, se, ~ka
kh−→ ~kr, i `e st1 :: k :: st2 ⇒ (kt ~k′

r [e]) :: ε

other 60 typing rules...

Marktoberdorf, August 2007 Compilation of certificates

Example of typable program

i n t m(boolean x ,C y) throws C {

i f (x) { throw new C () ; }
e l s e {y . f = 3 ; } ;
re turn 1 ;

}

1 load x
2 ifeq 5
3 new C
4 throw
5 load y
6 push 3
7 putfield f
8 push 1
9 return

m : (x : L, y : H)
H−→ {n : H, C : L, np : H}

kh = H: no side effect on low fields
~kr[n] = H: result depends on y
termination by an exception C does not depend on y
but termination by a null pointer exception does

Marktoberdorf, August 2007 Compilation of certificates

Justifying fine grain treatment of exceptions

try {z = o.m(x,y);} catch (NullPointerException z) {}; t = 1;

0 : load oL
1 : load yH
2 : load xL
3 : invokevirtual m
4 : store zH
5 : push 1
6 : store tL

handler : [0, 3], NullPointer→ 4

0 1 2

3

4

5

6

np

∅ ∅

∅
C

∅

∅

∅

Marktoberdorf, August 2007 Compilation of certificates

Justifying fine grain treatment of exceptions

try {z = o.m(x,y);} catch (NullPointerException z) {}; t = 1;

0 : load oL
1 : load yH
2 : load xL
3 : invokevirtual m
4 : store zH
5 : push 1
6 : store tL

handler : [0, 3], NullPointer→ 4

0 1 2

3

4

5

6

np

∅ ∅

∅
C

∅

∅

∅

Naive treatment of exceptions
[4,5,6] is a high region (depends on yH): tL = 1 is rejected

Marktoberdorf, August 2007 Compilation of certificates

Justifying fine grain treatment of exceptions

try {z = o.m(x,y);} catch (NullPointerException z) {}; t = 1;

0 : load oL
1 : load yH
2 : load xL
3 : invokevirtual m
4 : store zH
5 : push 1
6 : store tL

handler : [0, 3], NullPointer→ 4

0 1 2

3

4

5

6

np

∅ ∅

∅
C

∅

∅

∅

Treating each exception separately
[4,5,6] is a low region: tL = 1 is accepted

Marktoberdorf, August 2007 Compilation of certificates

Summary

We have developed:
Sound information flow
bytecode verifier for
sequential fragment of JVM
Type-preserving compiler
for Java

Next goal is to provide
support for realistic
applications:

more flexible type system
more flexible policies

Trusted declassifier
Cryptography

Other goals
certifying compilation
distribution by compilation

Virtual machine

Source program
Jif type
checker

API

Bytecode program

Jif types

Operating system

Information flow
types

Security env
Regions

BCV

Inf flow

Marktoberdorf, August 2007 Compilation of certificates

Declassification (from A. Sabelfeld)

Marktoberdorf, August 2007 Compilation of certificates

Final remarks on machine-checked proofs

Implementing an information flow type checker for JVM is a
non-trivial task
Do you trust your implementation? Do you trust the
non-interference proof?

We have used the Coq proof assistant
to formally define non-interference,
to formally specify information flow type system,
to mechanically prove that typability enforces non-interference,
to program a type checker and prove it enforces typability,
to extract an Ocaml implementation of this type checker.

Marktoberdorf, August 2007 Compilation of certificates

Machine-checked proof: structure

1 Basis : JVM program and small-step semantics formalisation
(Bicolano)

2 Intermediate semantics:
operates on annotated programs
method calls are big-step (simpler definition of ∼L without
callstacks; inappropriate for multi-threading)

3 Implementation and correctness proof of the CDR checker
4 Implementation and correctness proof of the information flow

type system

Human effort
about 20,000 lines of definitions and proofs with a reasonable
Coq style programming,
about 3,000 lines are only there to define the JVM semantics

Marktoberdorf, August 2007 Compilation of certificates

Architecture revisited

Since we prove these checkers in Coq,
TCB is in fact relegated to Coq and the
formal definition of non-interference.

Similar to Appel’s Foundational
PCC
We exploit reflection to achieve
small certificates

TCB

program

PA analyser

CDR analyser

IF analyser

PA checker

CDR checker

IF checker

diagnostic

annots.

annots.

annots.

Coq
+

NI definition

TCB

proof

Marktoberdorf, August 2007 Compilation of certificates

Architecture revisited

Since we prove these checkers in Coq,
TCB is in fact relegated to Coq and the
formal definition of non-interference.

Similar to Appel’s Foundational
PCC
We exploit reflection to achieve
small certificates

program

PA analyser

CDR analyser

IF analyser

PA checker

CDR checker

IF checker

diagnostic

annots.

annots.

annots.

Coq
+

NI definition

TCB

proof

Marktoberdorf, August 2007 Compilation of certificates

Architecture revisited

Since we prove these checkers in Coq,
TCB is in fact relegated to Coq and the
formal definition of non-interference.

Similar to Appel’s Foundational
PCC
We exploit reflection to achieve
small certificates

program

PA analyser

CDR analyser

IF analyser

PA checker

CDR checker

IF checker

diagnostic

annots.

annots.

annots.

Coq
+

NI definition

TCB

proof

Marktoberdorf, August 2007 Compilation of certificates

Compilation of certificates

Gilles Barthe

INRIA Sophia-Antipolis Méditerranée, France

Marktoberdorf, August 2007 Compilation of certificates

Part 2: Verification condition generation
G. Barthe, T. Rezk and A. Saabas, Preservation of proof
obligations, FAST’05
G. Barthe, B. Grégoire and M. Pavlova, Preservation of proof
obligations for Java, 2007
G. Barthe, B. Grégoire, C. Kunz and T. Rezk, Certificate
translation for optimizing compilers, SAS’06

Marktoberdorf, August 2007 Compilation of certificates

Motivation: source code verification

Traditional PCC

Producer Consumer

Proof
Checker OK

Source Program Compiler

VCGen

Verification
Conditions

Prover Certificate

Execution

VCGen

Verification
Conditions

Compiled
Program

Marktoberdorf, August 2007 Compilation of certificates

Motivation: source code verification

Source Code Verification

VCGen

Verification
Conditions

Prover Certificate

Producer Consumer

Proof
Checker OK

Source Program Compiler Execution

VCGen

Verification
Conditions

Compiled
Program

Marktoberdorf, August 2007 Compilation of certificates

Motivation: source code verification

Certificate Translation

VCGen

Verification
Conditions

Prover CertificateCertificate

Certificate
Translator

Producer Consumer

Proof
Checker OK

Source Program Compiler Execution

VCGen

Verification
Conditions

Compiled
Program

Marktoberdorf, August 2007 Compilation of certificates

Certificate translation vs certifying compilation

Program
Source Compiler

VCGen

Verification
Conditions

Prover Proof
CheckerCertificate

VCGen

Verification
Conditions

Compiled
Program

OK

Execution
Program
Source

VCGen

Verification
Conditions

Prover CertificateCertificate

Compiler

Proof
Checker

VCGen

Verification
Conditions

Compiled
Program

OK

Execution

Certificate
Translator

Conventional PCC Certificate Translation

Automatically inferred
invariants

Specification Interactive

Automatic certifying
compiler

Verification Interactive source
verification

Safety Properties Complex functional
properties

Marktoberdorf, August 2007 Compilation of certificates

Certificate translation vs certified compilation

Certified compilation aims at producing a proof term H such that

H : ∀P µ ν, P, µ ⇓ ν =⇒ [[P]], µ ⇓ ν

Thus, we can build a proof term H ′ : {φ}[[P]]{ψ} from H and
H0 : {φ}P{ψ}

Program
Source

Proof
Checker OKCompilation

Certificate
Producer Consumer

Compiled
Program

ExecutionCompiler

* encapsulating

source program

* limited to input output properties

compiler definition

must be available

Marktoberdorf, August 2007 Compilation of certificates

Program Specification

{pre}
ins1
{ϕ1}
ins2
...
{ϕ2}
insk
{post}

Assertions: formulae attached to a program point,
characterizing the set of execution states at that point.
Instructions are possibly annotated:

Possibly annotated instructions

ins ::= ins | 〈ϕ, ins〉

A partially annotated program is a triple 〈P,Φ,Ψ〉 s.t.
Φ is a precondition and Ψ is a postcondition
P is a sequence of possibly annotated instructions

Marktoberdorf, August 2007 Compilation of certificates

Program Specification

{pre}
ins1
{ϕ1}
ins2
...
{ϕ2}
insk
{post}

Assertions: formulae attached to a program point,
characterizing the set of execution states at that point.
Instructions are possibly annotated:

Possibly annotated instructions

ins ::= ins | 〈ϕ, ins〉

A partially annotated program is a triple 〈P,Φ,Ψ〉 s.t.
Φ is a precondition and Ψ is a postcondition
P is a sequence of possibly annotated instructions

Marktoberdorf, August 2007 Compilation of certificates

Program Specification

{pre}
ins1
{ϕ1}
ins2
...
{ϕ2}
insk
{post}

Assertions: formulae attached to a program point,
characterizing the set of execution states at that point.
Instructions are possibly annotated:

Possibly annotated instructions

ins ::= ins | 〈ϕ, ins〉

A partially annotated program is a triple 〈P,Φ,Ψ〉 s.t.
Φ is a precondition and Ψ is a postcondition
P is a sequence of possibly annotated instructions

Marktoberdorf, August 2007 Compilation of certificates

Program Specification

{pre}
ins1
{ϕ1}
ins2
...
{ϕ2}
insk
{post}

Assertions: formulae attached to a program point,
characterizing the set of execution states at that point.
Instructions are possibly annotated:

Possibly annotated instructions

ins ::= ins | 〈ϕ, ins〉

A partially annotated program is a triple 〈P,Φ,Ψ〉 s.t.
Φ is a precondition and Ψ is a postcondition
P is a sequence of possibly annotated instructions

Marktoberdorf, August 2007 Compilation of certificates

Program Specification

{pre}
ins1
{ϕ1}
ins2
...
{ϕ2}
insk
{post}

Assertions: formulae attached to a program point,
characterizing the set of execution states at that point.
Instructions are possibly annotated:

Possibly annotated instructions

ins ::= ins | 〈ϕ, ins〉

A partially annotated program is a triple 〈P,Φ,Ψ〉 s.t.
Φ is a precondition and Ψ is a postcondition
P is a sequence of possibly annotated instructions

Marktoberdorf, August 2007 Compilation of certificates

VCGen

A verification Condition Generator (VCGen):
1 fully annotates a program
2 extracts a set of proof obligations

Specification Theorem Prover

VCGen Proof Obligations Certificate

Program+

Marktoberdorf, August 2007 Compilation of certificates

Weakest precondition calculus

Computes an assertion for a given program node only if the corresponding
assertion has been already computed for all successor nodes

Sufficiently annotated program

All infinite paths must go through an annotated program point

Weakest precondition wpL(k) of program
point k

wpL(k) = φ if P[k] = 〈φ, i〉
wpL(k) = wpi (k) otherwise

Marktoberdorf, August 2007 Compilation of certificates

Weakest precondition calculus

Computes an assertion for a given program node only if the corresponding
assertion has been already computed for all successor nodes

Sufficiently annotated program

All infinite paths must go through an annotated program point

Weakest precondition wpL(k) of program
point k

wpL(k) = φ if P[k] = 〈φ, i〉
wpL(k) = wpi (k) otherwise

Marktoberdorf, August 2007 Compilation of certificates

Weakest precondition calculus

Computes an assertion for a given program node only if the corresponding
assertion has been already computed for all successor nodes

Sufficiently annotated program

All infinite paths must go through an annotated program point

Weakest precondition wpL(k) of program
point k

wpL(k) = φ if P[k] = 〈φ, i〉
wpL(k) = wpi (k) otherwise

Marktoberdorf, August 2007 Compilation of certificates

Weakest precondition calculus

Computes an assertion for a given program node only if the corresponding
assertion has been already computed for all successor nodes

Sufficiently annotated program

All infinite paths must go through an annotated program point

Weakest precondition wpL(k) of program
point k

wpL(k) = φ if P[k] = 〈φ, i〉
wpL(k) = wpi (k) otherwise

Marktoberdorf, August 2007 Compilation of certificates

Weakest precondition calculus

Computes an assertion for a given program node only if the corresponding
assertion has been already computed for all successor nodes

Sufficiently annotated program

All infinite paths must go through an annotated program point

Weakest precondition wpL(k) of program
point k

wpL(k) = φ if P[k] = 〈φ, i〉
wpL(k) = wpi (k) otherwise

Marktoberdorf, August 2007 Compilation of certificates

Weakest precondition calculus

Computes an assertion for a given program node only if the corresponding
assertion has been already computed for all successor nodes

Sufficiently annotated program

All infinite paths must go through an annotated program point

Weakest precondition wpL(k) of program
point k

wpL(k) = φ if P[k] = 〈φ, i〉
wpL(k) = wpi (k) otherwise

Marktoberdorf, August 2007 Compilation of certificates

Weakest precondition calculus

Computes an assertion for a given program node only if the corresponding
assertion has been already computed for all successor nodes

Sufficiently annotated program

All infinite paths must go through an annotated program point

Weakest precondition wpL(k) of program
point k

wpL(k) = φ if P[k] = 〈φ, i〉
wpL(k) = wpi (k) otherwise

Marktoberdorf, August 2007 Compilation of certificates

Weakest precondition calculus

Computes an assertion for a given program node only if the corresponding
assertion has been already computed for all successor nodes

Sufficiently annotated program

All infinite paths must go through an annotated program point

Weakest precondition wpL(k) of program
point k

wpL(k) = φ if P[k] = 〈φ, i〉
wpL(k) = wpi (k) otherwise

Marktoberdorf, August 2007 Compilation of certificates

Assertions

Annotations do not refer to stacks
Intermediate assertions may do so

{true}
push 5 5 = 5
store x os[>] = 5
{x = 5}

Stack indices

k ::= > | > − i

Expressions

e ::= res | x? | x | c | e op e | os[k]

Assertions

φ ::= e cmp e | ¬φ | φ ∧ φ | φ ∨ φ | φ⇒ φ
∀x . φ | ∃x . φ

Marktoberdorf, August 2007 Compilation of certificates

Assertions

Annotations do not refer to stacks
Intermediate assertions may do so

{true}
push 5 5 = 5
store x os[>] = 5
{x = 5}

Stack indices

k ::= > | > − i

Expressions

e ::= res | x? | x | c | e op e | os[k]

Assertions

φ ::= e cmp e | ¬φ | φ ∧ φ | φ ∨ φ | φ⇒ φ
∀x . φ | ∃x . φ

Marktoberdorf, August 2007 Compilation of certificates

Assertions

Annotations do not refer to stacks
Intermediate assertions may do so

{true}
push 5

5 = 5

store x

os[>] = 5

{x = 5}

Stack indices

k ::= > | > − i

Expressions

e ::= res | x? | x | c | e op e | os[k]

Assertions

φ ::= e cmp e | ¬φ | φ ∧ φ | φ ∨ φ | φ⇒ φ
∀x . φ | ∃x . φ

Marktoberdorf, August 2007 Compilation of certificates

Assertions

Annotations do not refer to stacks
Intermediate assertions may do so

{true}
push 5

5 = 5

store x os[>] = 5
{x = 5}

Stack indices

k ::= > | > − i

Expressions

e ::= res | x? | x | c | e op e | os[k]

Assertions

φ ::= e cmp e | ¬φ | φ ∧ φ | φ ∨ φ | φ⇒ φ
∀x . φ | ∃x . φ

Marktoberdorf, August 2007 Compilation of certificates

Assertions

Annotations do not refer to stacks
Intermediate assertions may do so

{true}
push 5 5 = 5
store x os[>] = 5
{x = 5}

Stack indices

k ::= > | > − i

Expressions

e ::= res | x? | x | c | e op e | os[k]

Assertions

φ ::= e cmp e | ¬φ | φ ∧ φ | φ ∨ φ | φ⇒ φ
∀x . φ | ∃x . φ

Marktoberdorf, August 2007 Compilation of certificates

Assertions

Annotations do not refer to stacks
Intermediate assertions may do so

{true}
push 5 5 = 5
store x os[>] = 5
{x = 5}

Stack indices

k ::= > | > − i

Expressions

e ::= res | x? | x | c | e op e | os[k]

Assertions

φ ::= e cmp e | ¬φ | φ ∧ φ | φ ∨ φ | φ⇒ φ
∀x . φ | ∃x . φ

Marktoberdorf, August 2007 Compilation of certificates

Weakest precondition

if P[k] = push n then

wpi (k) = wpL(k + 1)[n/os[>],>/>− 1]

if P[k] = binop op then

wpi (k) = wpL(k + 1)[os(>− 1) op os[>]/os[>],>− 1/>]

if P[k] = load x then

wpi (k) = wpL(k + 1)[x/os[>],>/>− 1]

if P[k] = store x then

wpi (k) = wpL(k + 1)[os[>]/x ,>− 1/>]

if P[k] = if cmp l then

wpi (k) = (os[>− 1] cmp os[>]⇒ wpL(k + 1)[>− 2/>])
∧(¬(os[>− 1] cmp os[>])⇒ wpL(l)[>− 2/>])

if P[k] = goto l then wpi (k) = wpL(l)
if P[k] = return then wpi (k) = Ψ[os[>]/res]

Marktoberdorf, August 2007 Compilation of certificates

Verification conditions

Proof obligations PO(P,Φ,Ψ)

Precondition implies the weakest precondition of entry point:

Φ⇒ wpL(1)

For all annotated program points (P[k] = 〈ϕ, i〉), the annotation ϕ
implies the weakest precondition of the instruction at k :

ϕ⇒ wpi (k)

An annotated program is correct if its verification conditions are valid.

Marktoberdorf, August 2007 Compilation of certificates

Soundness

Define validity of assertions:
s |= φ

µ, s |= φ (shorthand µ, ν |= φ if φ does not contain stack indices)

If (P,Φ,Ψ) is correct, and
P, µ ⇓ ν, v
µ |= Φ

then
µ, ν |= Ψ[v/res]

Furthermore, all intermediate assertions are verified

Proof idea: if s s′ and s · pc = k and s′ · pc = k ′,

µ, s |= wpi (k) =⇒ µ, s′ |= wpL(k ′)

Marktoberdorf, August 2007 Compilation of certificates

Source language

Same assertions, without stack expressions
Annotated programs (P,Φ,Ψ), with all loops annotated
whileI(t){s}
Weakest precondition

wpS(skip, ψ) = ψ, ∅ wpS(x := e, ψ) = ψ[e/x], ∅

wpS(it , ψ) = φt , θt wpS(if , ψ) = φf , θf
wpS(if(t){it}{if}, ψ) = (t ⇒ φt) ∧ (¬t ⇒ φt), θt ∪ θf

wpS(i , I) = φ, θ
wpS(whileI(t){i}, ψ) = I, {I ⇒ ((t ⇒ φ) ∧ (¬t ⇒ ψ))} ∪ θ

wpS(i2, ψ) = φ2, θ2 wpS(i1, φ2) = φ1, θ1

wpS(i1; i2, ψ) = φ1, θ1 ∪ θ2

Marktoberdorf, August 2007 Compilation of certificates

Preservation of proof obligations
Non-optimizing compiler

Syntactically equal proof obligations

PO(P, φ, ψ) = PO([[P]], φ, ψ)

Marktoberdorf, August 2007 Compilation of certificates

Preservation of proof obligations
Non-optimizing compiler

Syntactically equal proof obligations

PO(P, φ, ψ) = PO([[P]], φ, ψ)

VCGen

Verification
Conditions

Prover Certificate

Producer Consumer

Proof
Checker OK

Source Program Compiler Execution

VCGen

Verification
Conditions

Compiled
Program

Marktoberdorf, August 2007 Compilation of certificates

Preservation of proof obligations
Non-optimizing compiler

Syntactically equal proof obligations

PO(P, φ, ψ) = PO([[P]], φ, ψ)

VCGen

Verification
Conditions

Prover CertificateCertificate

Producer Consumer

Proof
Checker OK

Source Program Execution

VCGen

Verification
Conditions

Compiled
Program

Preservation of
Proof Obligations

Compiler
Non−optimizing

Marktoberdorf, August 2007 Compilation of certificates

Preservation of proof obligations
Non-optimizing compiler

Syntactically equal proof obligations

PO(P, φ, ψ) = PO([[P]], φ, ψ)

VCGen

Verification
Conditions

Prover CertificateCertificate

Producer Consumer

Proof
Checker OK

Source Program Execution

VCGen

Verification
Conditions

Compiled
Program

Preservation of
Proof Obligations

Compiler
Non−optimizing

Marktoberdorf, August 2007 Compilation of certificates

Adding objects, exceptions, methods

We have formally proved in Coq the soundness of VC generator for a
sequential JVM-like language, and proved (almost) PPO for Java

Main points:
Methods:

pre- and post-conditions to ensure modular reasoning
behavioral subtyping: method overriding should preserve spec

Exceptions:
loss of precision due to explosion of control flow: preliminary
analyses (as in information flow)
exceptional postconditions must be considered

For PPO: renaming, booleans, simple optimizations
However:

many challenges in verification of sequential OO programs
concurrency (semantics and verification) is another challenge

Marktoberdorf, August 2007 Compilation of certificates

Remark on machine-checked proof

Implementing a verification condition generator for JVM is a
non-trivial task
Do you trust your implementation? And the soundness proof?

We have used the Coq proof assistant
to formally specify the verification condition generator,
to mechanically prove that valid proof obligations imply validity of
annotations.

The development is structured in two layers:
1 Basis : JVM program and small-step semantics formalisation

(Bicolano)
2 Intermediate semantics:

operates on annotated programs
method calls are big-step

Marktoberdorf, August 2007 Compilation of certificates

Tools: Java Modeling Language

There is a range of tools that support deductive verification of Java
applications. Many tools use JML as specification language.

Annotation language for Java
pre- and post-conditions and invariants written as special
comments
Uses Java-like notation
Annotations are side-effect-free Java expressions + some extra
keywords (\exists, \forall, \old(−), \result. . .)
Developed by Leavens et.al., Iowa State University
Different tools available to validate, reason or generate JML
annotations

Marktoberdorf, August 2007 Compilation of certificates

Example

/*@ exceptional_behavior
@ requires arg == null;
@ signals (NullPointerException) true;
@ also
@ behavior
@ requires arg != null;
@ ensures \result == arg[0];
@ signals (IndexOutOfBoundsException)
@ arg.length == 0;
@*/

Object firstElement (Object [] arg) {
return arg[0];

}

Marktoberdorf, August 2007 Compilation of certificates

Tools: verification

Many tools to validate Java applications annotated with JML: testing,
run-time checking, model-checking. . .
and deductive verification tools:

ESC/Java: extended static checking, uses intermediate language
(guarded commands)
JACK: backwards propagation of invariants, support for native
methods, support for bytecode (BML)
Krakatoa/Why: uses intermediate language, also supports C
(Caduceus)
Jive: uses Hoare logic

Also relevant: JSR 308, Spec# for C#

Marktoberdorf, August 2007 Compilation of certificates

Summary

We have developed:
Sound VC generator for
sequential fragment of JVM
PPO for Java

Next goal is to provide
support for realistic
applications:

more specification
constructs
link with JML-based tools

Other goals
certificate generation
optimisations
concurrency

Virtual machine
Operating system

Source program

Bytecode program

Interactive
proofs

API

JML specification

specification
Bytecode

Certificate

Certificate

Certificate
checker

Marktoberdorf, August 2007 Compilation of certificates

Optimizing Compilers

VCGen

Verification
Conditions

Prover CertificateCertificate

Producer Consumer

Proof
Checker OK

Source Program Execution

VCGen

Verification
Conditions

Compiled
Program

Preservation of
Proof Obligations

Compiler
Non−optimizing

Proofs obligations might not be preserved

annotations might need to be modified (e.g. constant propagation)

certificates for analyzers might be needed (certifying analyzer)

analyses might need to be modified (e.g. dead variable elimination)

Marktoberdorf, August 2007 Compilation of certificates

Optimizing Compilers

VCGen

Verification
Conditions

Prover CertificateCertificate

VCGenCompiled
Program Optimizer

Producer Consumer

Proof
Checker OK

Source Program Execution

Verification
Conditions

Preservation of
Proof Obligations

Compiler
Non−optimizing Optimized

Program

Proofs obligations might not be preserved

annotations might need to be modified (e.g. constant propagation)

certificates for analyzers might be needed (certifying analyzer)

analyses might need to be modified (e.g. dead variable elimination)

Marktoberdorf, August 2007 Compilation of certificates

Optimizing Compilers

VCGen

Verification
Conditions

Prover CertificateCertificate

VCGenCompiled
Program Optimizer

Producer Consumer

Proof
Checker OK

Source Program Execution

Verification
Conditions

Preservation of
Proof Obligations

Compiler
Non−optimizing Optimized

Program

Proofs obligations might not be preserved

annotations might need to be modified (e.g. constant propagation)

certificates for analyzers might be needed (certifying analyzer)

analyses might need to be modified (e.g. dead variable elimination)

Marktoberdorf, August 2007 Compilation of certificates

Certificate Translation with Certifying Analyzers

Specification of f

Program f

Specification of fA

(RESA)

Certificate for f̄

Certificate for fACertificate for f

Program f̄
Optimized

Analyzer

Verification
Interactive

Certificate
Translator

Analyzer
Certifying

Compiler
Optimizing

TCB

VC Gen

Proof
Checker

Marktoberdorf, August 2007 Compilation of certificates

Motivating example

{j = 0}
{j = (b + 0) ∗ 0 ∧ b ≤ (b + 0) ∧ 0 ≤ 0}
i := 0;
{j = (b + i) ∗ i ∧ b ≤ (b + i) ∧ 0 ≤ i}
x := b + i;
{Inv : j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
while(i! = n)
{x ∗ (c + i) = x ∗ (c + i) ∧ b ≤ x ∧ 0 ≤ c + i}
i := c + i
{x ∗ i = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
j := x ∗ i;
{j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
endwhile;
{n ∗ b ≤ j}

Program
+

Specification

Weakest
Precondition
(no fixpoint to compute)

Fully Annotated
Program

Marktoberdorf, August 2007 Compilation of certificates

Motivating example

{j = 0}
{j = (b + 0) ∗ 0 ∧ b ≤ (b + 0) ∧ 0 ≤ 0}
i := 0;
{j = (b + i) ∗ i ∧ b ≤ (b + i) ∧ 0 ≤ i}
x := b + i;
{Inv : j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
while(i! = n)
{x ∗ (c + i) = x ∗ (c + i) ∧ b ≤ x ∧ 0 ≤ c + i}
i := c + i
{x ∗ i = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
j := x ∗ i;
{j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
endwhile;
{n ∗ b ≤ j}

Program
+

Specification

Weakest
Precondition
(no fixpoint to compute)

Fully Annotated
Program

Marktoberdorf, August 2007 Compilation of certificates

Motivating example

{j = 0}
{j = (b + 0) ∗ 0 ∧ b ≤ (b + 0) ∧ 0 ≤ 0}
i := 0;
{j = (b + i) ∗ i ∧ b ≤ (b + i) ∧ 0 ≤ i}
x := b + i;
{Inv : j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
while(i! = n)
{x ∗ (c + i) = x ∗ (c + i) ∧ b ≤ x ∧ 0 ≤ c + i}
i := c + i
{x ∗ i = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
j := x ∗ i;
{j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
endwhile;
{n ∗ b ≤ j}

Program
+

Specification

Weakest
Precondition
(no fixpoint to compute)

Fully Annotated
Program

Marktoberdorf, August 2007 Compilation of certificates

Motivating example

{j = 0}
{j = (b + 0) ∗ 0 ∧ b ≤ (b + 0) ∧ 0 ≤ 0}
i := 0;
{j = (b + i) ∗ i ∧ b ≤ (b + i) ∧ 0 ≤ i}
x := b + i;
{Inv : j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
while(i! = n)
{x ∗ (c + i) = x ∗ (c + i) ∧ b ≤ x ∧ 0 ≤ c + i}
i := c + i
{x ∗ i = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
j := x ∗ i;
{j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
endwhile;
{n ∗ b ≤ j}

Program
+

Specification

Weakest
Precondition
(no fixpoint to compute)

Fully Annotated
Program

Marktoberdorf, August 2007 Compilation of certificates

Motivating example

{j = 0}
{j = (b + 0) ∗ 0 ∧ b ≤ (b + 0) ∧ 0 ≤ 0}
i := 0;
{j = (b + i) ∗ i ∧ b ≤ (b + i) ∧ 0 ≤ i}
x := b + i;
{Inv : j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
while(i! = n)
{x ∗ (c + i) = x ∗ (c + i) ∧ b ≤ x ∧ 0 ≤ c + i}
i := c + i
{x ∗ i = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
j := x ∗ i;
{j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
endwhile;
{n ∗ b ≤ j}

Program
+

Specification

Weakest
Precondition
(no fixpoint to compute)

Fully Annotated
Program

Marktoberdorf, August 2007 Compilation of certificates

Motivating example

{j = 0}
{j = (b + 0) ∗ 0 ∧ b ≤ (b + 0) ∧ 0 ≤ 0}
i := 0;
{j = (b + i) ∗ i ∧ b ≤ (b + i) ∧ 0 ≤ i}
x := b + i;
{Inv : j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
while(i! = n)
{x ∗ (c + i) = x ∗ (c + i) ∧ b ≤ x ∧ 0 ≤ c + i}
i := c + i
{x ∗ i = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
j := x ∗ i;
{j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
endwhile;
{n ∗ b ≤ j}

Program
+

Specification

Weakest
Precondition
(no fixpoint to compute)

Fully Annotated
Program

Marktoberdorf, August 2007 Compilation of certificates

Motivating example

{j = 0}
{j = (b + 0) ∗ 0 ∧ b ≤ (b + 0) ∧ 0 ≤ 0}
i := 0;
{j = (b + i) ∗ i ∧ b ≤ (b + i) ∧ 0 ≤ i}
x := b + i;
{Inv : j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
while(i! = n)
{x ∗ (c + i) = x ∗ (c + i) ∧ b ≤ x ∧ 0 ≤ c + i}
i := c + i
j := x ∗ i;

endwhile;
{n ∗ b ≤ j}

Set of Proof Obligations:

j = 0⇒ j = (b + 0) ∗ 0 ∧ b ≤ (b + 0) ∧ 0 ≤ 0

j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i ∧ i 6= n⇒
x ∗ (c + i) = x ∗ (c + i) ∧ b ≤ x ∧ 0 ≤ c + i

j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i ∧ i = n⇒ n ∗ b ≤ j

Marktoberdorf, August 2007 Compilation of certificates

Constant propagation analysis

{j = 0}
{j = b ∗ 0 ∧ b ≤ b ∧ 0 ≤ 0}
i := 0;
{j = b ∗ i ∧ b ≤ b ∧ 0 ≤ i}

(i , 0)→ x := b + i;
{Inv : j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}

(x , b)→ while(i! = n)
{b ∗ (c + i) = x ∗ (c + i) ∧ b ≤ x ∧ 0 ≤ c + i}

(x , b)→ i := c + i
{b ∗ i = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}

(x , b)→ j := x ∗ i;
{j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
endwhile;
{n ∗ b ≤ j}

Marktoberdorf, August 2007 Compilation of certificates

Program transformation

{j = 0}
{j = b ∗ 0 ∧ b ≤ b ∧ 0 ≤ 0}
i := 0;
{j = b ∗ i ∧ b ≤ b ∧ 0 ≤ i}

(i , 0)→ x := b;
{Inv : j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}

(x , b)→ while(i! = n)
{b ∗ (c + i) = x ∗ (c + i) ∧ b ≤ x ∧ 0 ≤ c + i}

(x , b)→ i := c + i
{b ∗ i = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}

(x , b)→ j := x ∗ i;
{j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
endwhile;
{n ∗ b ≤ j}

Marktoberdorf, August 2007 Compilation of certificates

Program transformation

{j = 0}
{j = b ∗ 0 ∧ b ≤ b ∧ 0 ≤ 0}
i := 0;
{j = b ∗ i ∧ b ≤ b ∧ 0 ≤ i}

(i , 0)→ x := b;
{Inv : j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}

(x , b)→ while(i! = n)
{b ∗ (c + i) = x ∗ (c + i) ∧ b ≤ x ∧ 0 ≤ c + i}

(x , b)→ i := c + i
{b ∗ i = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}

(x , b)→ j := b ∗ i;
{j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
endwhile;
{n ∗ b ≤ j}

Marktoberdorf, August 2007 Compilation of certificates

WP Computation of optimized program

{j = 0}
{j = b ∗ 0 ∧ b ≤ b ∧ 0 ≤ 0}
i := 0;
{j = b ∗ i ∧ b ≤ b ∧ 0 ≤ i}

(i , 0)→ x := b;
{Inv : j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}

(x , b)→ while(i! = n)
{b ∗ (c + i) = x ∗ (c + i) ∧ b ≤ x ∧ 0 ≤ c + i}

(x , b)→ i := c + i
{b ∗ i = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}

(x , b)→ j := b ∗ i;
{j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
endwhile;
{n ∗ b ≤ j}

Marktoberdorf, August 2007 Compilation of certificates

WP Computation of optimized program

{j = 0}
{j = b ∗ 0 ∧ b ≤ b ∧ 0 ≤ 0}
i := 0;
{j = b ∗ i ∧ b ≤ b ∧ 0 ≤ i}

(i , 0)→ x := b;
{Inv : j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}

(x , b)→ while(i! = n)
{b ∗ (c + i) = x ∗ (c + i) ∧ b ≤ x ∧ 0 ≤ c + i}

(x , b)→ i := c + i
{b ∗ i = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}

(x , b)→ j := b ∗ i;
{j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
endwhile;
{n ∗ b ≤ j}

Marktoberdorf, August 2007 Compilation of certificates

WP Computation of optimized program

{j = 0}
{j = b ∗ 0 ∧ b ≤ b ∧ 0 ≤ 0}
i := 0;
{j = b ∗ i ∧ b ≤ b ∧ 0 ≤ i}

(i , 0)→ x := b;
{Inv : j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}

(x , b)→ while(i! = n)
{b ∗ (c + i) = x ∗ (c + i) ∧ b ≤ x ∧ 0 ≤ c + i}

(x , b)→ i := c + i
{b ∗ i = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}

(x , b)→ j := b ∗ i;
{j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
endwhile;
{n ∗ b ≤ j}

Marktoberdorf, August 2007 Compilation of certificates

WP Computation of optimized program

{j = 0}
{j = b ∗ 0 ∧ b ≤ b ∧ 0 ≤ 0}
i := 0;
{j = b ∗ i ∧ b ≤ b ∧ 0 ≤ i}

(i , 0)→ x := b;
{Inv : j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}

(x , b)→ while(i! = n)
{b ∗ (c + i) = x ∗ (c + i) ∧ b ≤ x ∧ 0 ≤ c + i}

(x , b)→ i := c + i
{b ∗ i = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}

(x , b)→ j := b ∗ i;
{j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
endwhile;
{n ∗ b ≤ j}

Marktoberdorf, August 2007 Compilation of certificates

WP Computation of optimized program

{j = 0}
{j = b ∗ 0 ∧ b ≤ b ∧ 0 ≤ 0}
i := 0;
{j = b ∗ i ∧ b ≤ b ∧ 0 ≤ i}

(i , 0)→ x := b;
{Inv : j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}

(x , b)→ while(i! = n)
{b ∗ (c + i) = x ∗ (c + i) ∧ b ≤ x ∧ 0 ≤ c + i}

(x , b)→ i := c + i
{b ∗ i = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}

(x , b)→ j := b ∗ i;
{j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
endwhile;
{n ∗ b ≤ j}

Marktoberdorf, August 2007 Compilation of certificates

Proof Obligations

{j = 0}
{j = b ∗ 0 ∧ b ≤ b ∧ 0 ≤ 0}
i := 0;
{j = b ∗ i ∧ b ≤ b ∧ 0 ≤ i}
x := b;
{Inv : j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
while(i! = n)
{b ∗ (c + i) = x ∗ (c + i) ∧ b ≤ x ∧ 0 ≤ c + i}
i := c + i
{b ∗ i = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
j := b ∗ i;
{j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
endwhile;
{n ∗ b ≤ j}

Proof Obligations:

1 j = 0⇒ j = b ∗ 0 ∧ b ≤ b ∧ 0 ≤ 0

2
j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i ∧ i 6= n
⇒ b ∗ (c + i) = x ∗ (c + i) ∧ b ≤ x ∧ 0 ≤ c + i

3 j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i ∧ i = n⇒ n ∗ b ≤ j

Marktoberdorf, August 2007 Compilation of certificates

Proof Obligations

{j = 0}
{j = b ∗ 0 ∧ b ≤ b ∧ 0 ≤ 0}
i := 0;
{j = b ∗ i ∧ b ≤ b ∧ 0 ≤ i}
x := b;
{Inv : j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
while(i! = n)
{b ∗ (c + i) = x ∗ (c + i) ∧ b ≤ x ∧ 0 ≤ c + i}
i := c + i
{b ∗ i = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
j := b ∗ i;
{j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
endwhile;
{n ∗ b ≤ j}

Proof Obligations:

1 j = 0⇒ j = b ∗ 0 ∧ b ≤ b ∧ 0 ≤ 0

2
j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i ∧ i 6= n Unprovable

without
knowing
x = b

⇒ b ∗ (c + i) = x ∗ (c + i) ∧ b ≤ x ∧ 0 ≤ c + i

3 j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i ∧ i = n⇒ n ∗ b ≤ j

Marktoberdorf, August 2007 Compilation of certificates

Proof Obligations

{j = 0}
{j = b ∗ 0 ∧ b ≤ b ∧ 0 ≤ 0}
i := 0;
{j = b ∗ i ∧ b ≤ b ∧ 0 ≤ i}
x := b;
{Inv : j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i∧x = b}
while(i! = n)
{b ∗ (c + i) = x ∗ (c + i) ∧ b ≤ x ∧ 0 ≤ c + i}
i := c + i
{b ∗ i = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
j := b ∗ i;
{j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i}
endwhile;
{n ∗ b ≤ j}

Proof Obligations:

1 j = 0⇒ j = b ∗ 0 ∧ b ≤ b ∧ 0 ≤ 0

2
j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i∧x = b ∧ i 6= n Solution:

strengthen
annotations

⇒ b ∗ (c + i) = x ∗ (c + i) ∧ b ≤ x ∧ 0 ≤ c + i

3 j = x ∗ i ∧ b ≤ x ∧ 0 ≤ i ∧ i = n⇒ n ∗ b ≤ j

Marktoberdorf, August 2007 Compilation of certificates

Strengthening annotations

allows to verify proof obligations of original program

but also introduces new proof obligations

S1
{ϕ1}
S2
{ϕ2}
S3
{ϕ3}

ϕ1 ⇒ wp(S1, ϕ2)

ϕ2 ⇒ wp(S2, ϕ3)

S1
{ϕ1∧ψ1}
S2
{ϕ2∧ψ2}
S3
{ϕ3∧ψ3}

ϕ1∧ψ1 ⇒ wp(S1, ϕ2∧ψ2)

ϕ2∧ψ2 ⇒ wp(S2, ϕ3∧ψ3)

If the analysis is correct,

ψ1 ⇒ wp(S1, ψ2)

ψ2 ⇒ wp(S2, ψ3)

are valid proof obligations.

Marktoberdorf, August 2007 Compilation of certificates

Strengthening annotations

allows to verify proof obligations of original program

but also introduces new proof obligations

S1
{ϕ1}
S2
{ϕ2}
S3
{ϕ3}

ϕ1 ⇒ wp(S1, ϕ2)

ϕ2 ⇒ wp(S2, ϕ3)

S1
{ϕ1∧ψ1}
S2
{ϕ2∧ψ2}
S3
{ϕ3∧ψ3}

ϕ1∧ψ1 ⇒ wp(S1, ϕ2∧ψ2)

ϕ2∧ψ2 ⇒ wp(S2, ϕ3∧ψ3)

If the analysis is correct,

ψ1 ⇒ wp(S1, ψ2)

ψ2 ⇒ wp(S2, ψ3)

are valid proof obligations.

Marktoberdorf, August 2007 Compilation of certificates

Strengthening annotations

allows to verify proof obligations of original program

but also introduces new proof obligations

S1
{ϕ1}
S2
{ϕ2}
S3
{ϕ3}

ϕ1 ⇒ wp(S1, ϕ2)

ϕ2 ⇒ wp(S2, ϕ3)

S1
{ϕ1∧ψ1}
S2
{ϕ2∧ψ2}
S3
{ϕ3∧ψ3}

ϕ1∧ψ1 ⇒ wp(S1, ϕ2∧ψ2)

ϕ2∧ψ2 ⇒ wp(S2, ϕ3∧ψ3)

If the analysis is correct,

ψ1 ⇒ wp(S1, ψ2)

ψ2 ⇒ wp(S2, ψ3)

are valid proof obligations.

Marktoberdorf, August 2007 Compilation of certificates

Strengthening annotations

allows to verify proof obligations of original program

but also introduces new proof obligations

S1
{ϕ1}
S2
{ϕ2}
S3
{ϕ3}

ϕ1 ⇒ wp(S1, ϕ2)

ϕ2 ⇒ wp(S2, ϕ3)

S1
{ϕ1∧ψ1}
S2
{ϕ2∧ψ2}
S3
{ϕ3∧ψ3}

ϕ1∧ψ1 ⇒ wp(S1, ϕ2∧ψ2)

ϕ2∧ψ2 ⇒ wp(S2, ϕ3∧ψ3)

If the analysis is correct,

ψ1 ⇒ wp(S1, ψ2)

ψ2 ⇒ wp(S2, ψ3)

are valid proof obligations.

Marktoberdorf, August 2007 Compilation of certificates

Strengthening annotations

allows to verify proof obligations of original program

but also introduces new proof obligations

S1
{ϕ1}
S2
{ϕ2}
S3
{ϕ3}

ϕ1 ⇒ wp(S1, ϕ2)

ϕ2 ⇒ wp(S2, ϕ3)

S1
{ϕ1∧ψ1}
S2
{ϕ2∧ψ2}
S3
{ϕ3∧ψ3}

ϕ1∧ψ1 ⇒ wp(S1, ϕ2)∧wp(S1, ψ2)

ϕ2∧ψ2 ⇒ wp(S2, ϕ3)∧wp(S2, ψ3)

If the analysis is correct,

ψ1 ⇒ wp(S1, ψ2)

ψ2 ⇒ wp(S2, ψ3)

are valid proof obligations.

Marktoberdorf, August 2007 Compilation of certificates

Strengthening annotations

allows to verify proof obligations of original program

but also introduces new proof obligations

S1
{ϕ1}
S2
{ϕ2}
S3
{ϕ3}

ϕ1 ⇒ wp(S1, ϕ2)

ϕ2 ⇒ wp(S2, ϕ3)

S1
{ϕ1∧ψ1}
S2
{ϕ2∧ψ2}
S3
{ϕ3∧ψ3}

ϕ1∧ψ1 ⇒ wp(S1, ϕ2)∧wp(S1, ψ2)

ϕ2∧ψ2 ⇒ wp(S2, ϕ3)∧wp(S2, ψ3)

If the analysis is correct,

ψ1 ⇒ wp(S1, ψ2)

ψ2 ⇒ wp(S2, ψ3)

are valid proof obligations.

Marktoberdorf, August 2007 Compilation of certificates

Certifying/Proof producing analyzer

A certifying analyzer extends a standard analyzer with a procedure
that generates a certificate for the result of the analysis

Certifying analyzers exist under mild hypotheses:
results of the analysis expressible as assertions
abstract transfer functions are correct w.r.t. wp
. . .

Ad hoc construction of certificates yields compact certificates

Marktoberdorf, August 2007 Compilation of certificates

Certifying/Proof producing analyzer

A certifying analyzer extends a standard analyzer with a procedure
that generates a certificate for the result of the analysis

Certifying analyzers exist under mild hypotheses:
results of the analysis expressible as assertions
abstract transfer functions are correct w.r.t. wp
. . .

Ad hoc construction of certificates yields compact certificates

Marktoberdorf, August 2007 Compilation of certificates

Certifying/Proof producing analyzer

A certifying analyzer extends a standard analyzer with a procedure
that generates a certificate for the result of the analysis

Certifying analyzers exist under mild hypotheses:
results of the analysis expressible as assertions
abstract transfer functions are correct w.r.t. wp
. . .

Ad hoc construction of certificates yields compact certificates

Marktoberdorf, August 2007 Compilation of certificates

Certifying analysis for constant propagation

{true}
{b = b}
i := 0;
{b = b}
x := b;
{Inv : x = b}
while(i! = n)
{x = b}
i := c + i
{x = b}
j := b ∗ i;
{x = b}
endwhile;
{true}

Marktoberdorf, August 2007 Compilation of certificates

Certifying analysis for constant propagation

{true}
{b = b}
i := 0;
{b = b}
x := b;
{Inv : x = b}
while(i! = n)
{x = b}
i := c + i
{x = b}
j := b ∗ i;
{x = b}
endwhile;
{true}

With proof obligations:
x = b ∧ i = n⇒ true
x = b ∧ i 6= n⇒ x = b
true⇒ b = b

Marktoberdorf, August 2007 Compilation of certificates

{φ1} + {φA
1} → {φ1 ∧ φA

1} {φ′1 ∧ φA
1}

S1 S1 S1 → SO
1

{φ2} + {φA
2} → {φ2 ∧ φA

2} {φ′2 ∧ φA
2}

S2 S2 S2 → SO
2

... +
... →

...
...

Sn−1 Sn−1 Sn−1 → SO
n−1

{φn} + {φA
n} → {φn ∧ φA

n} {φ′n ∧ φA
n}

Sn Sn Sn → SO
n

Translation consists of:
1 Specifying and certifying automatically the result of the analysis
2 Merging annotations (trivial)
3 Merging certificates

Marktoberdorf, August 2007 Compilation of certificates

{φ1} + {φA
1} → {φ1 ∧ φA

1} {φ′1 ∧ φA
1}

S1 S1 S1 → SO
1

{φ2} + {φA
2} → {φ2 ∧ φA

2} {φ′2 ∧ φA
2}

S2 S2 S2 → SO
2

... +
... →

...
...

Sn−1 Sn−1 Sn−1 → SO
n−1

{φn} + {φA
n} → {φn ∧ φA

n} {φ′n ∧ φA
n}

Sn Sn Sn → SO
n

Translation consists of:
1 Specifying and certifying automatically the result of the analysis
2 Merging annotations (trivial)
3 Merging certificates

Marktoberdorf, August 2007 Compilation of certificates

{φ1} + {φA
1} → {φ1 ∧ φA

1} {φ′1 ∧ φA
1}

S1 S1 S1 → SO
1

{φ2} + {φA
2} → {φ2 ∧ φA

2} {φ′2 ∧ φA
2}

S2 S2 S2 → SO
2

... +
... →

...
...

Sn−1 Sn−1 Sn−1 → SO
n−1

{φn} + {φA
n} → {φn ∧ φA

n} {φ′n ∧ φA
n}

Sn Sn Sn → SO
n

Translation consists of:
1 Specifying and certifying automatically the result of the analysis
2 Merging annotations (trivial)
3 Merging certificates

Marktoberdorf, August 2007 Compilation of certificates

{φ1} + {φA
1} → {φ1 ∧ φA

1} {φ′1 ∧ φA
1}

S1 S1 S1 → SO
1

{φ2} + {φA
2} → {φ2 ∧ φA

2} {φ′2 ∧ φA
2}

S2 S2 S2 → SO
2

... +
... →

...
...

Sn−1 Sn−1 Sn−1 → SO
n−1

{φn} + {φA
n} → {φn ∧ φA

n} {φ′n ∧ φA
n}

Sn Sn Sn → SO
n

Translation consists of:
1 Specifying and certifying automatically the result of the analysis
2 Merging annotations (trivial)
3 Merging certificates

Marktoberdorf, August 2007 Compilation of certificates

Certificates

Merging of certificates is not tied to a particular certificate format, but
to the existence of functions to manipulate them.

Proof algebra

axiom : P(Γ; A; ∆ ` A)
ring : P(Γ ` n1 = n2) if n1 = n2 is a ring equality
intro⇒ : P(Γ; A ` B)→ P(Γ ` A⇒ B)
elim⇒ : P(Γ ` A⇒ B)→ P(Γ ` A)→ P(Γ ` B)
elim= : P(Γ ` e1 = e2)→ P(Γ ` A[e1/r])→ P(Γ ` A[e2/r])
subst : P(Γ ` A)→ P(Γ[e/r] ` A[e/r])

Marktoberdorf, August 2007 Compilation of certificates

Merging certificates
We need to build from the original and analysis certificates:

φ1 ⇒ wp(S, φ2)
———————
{φ1}S{φ2}

a1 ⇒ wp(S, a2)
——————
{a1}S{a2}

the certificate for the optimized program:

φ1 ∧ a1 ⇒ wp(S′, φ2 ∧ a2)
———————————
{φ1 ∧ a1}S′{φ2 ∧ a2}

by using the gluing lemma

∀φ,wp(ins, φ) ∧ a⇒ wp(ins′, φ)

where ins′ is the optimization of ins, and a is the result of the analysis

We really construct by well-founded induction a proof term of

wpP(k) ∧ a(k) =⇒ wpP′(k)

Marktoberdorf, August 2007 Compilation of certificates

Merging certificates
We need to build from the original and analysis certificates:

φ1 ⇒ wp(S, φ2)
———————
{φ1}S{φ2}

a1 ⇒ wp(S, a2)
——————
{a1}S{a2}

the certificate for the optimized program:

φ1 ∧ a1 ⇒ wp(S′, φ2 ∧ a2)
———————————
{φ1 ∧ a1}S′{φ2 ∧ a2}

by using the gluing lemma

∀φ,wp(ins, φ) ∧ a⇒ wp(ins′, φ)

where ins′ is the optimization of ins, and a is the result of the analysis

We really construct by well-founded induction a proof term of

wpP(k) ∧ a(k) =⇒ wpP′(k)

Marktoberdorf, August 2007 Compilation of certificates

Merging certificates
We need to build from the original and analysis certificates:

φ1 ⇒ wp(S, φ2)
———————
{φ1}S{φ2}

a1 ⇒ wp(S, a2)
——————
{a1}S{a2}

the certificate for the optimized program:

φ1 ∧ a1 ⇒ wp(S′, φ2 ∧ a2)
———————————
{φ1 ∧ a1}S′{φ2 ∧ a2}

by using the gluing lemma

∀φ,wp(ins, φ) ∧ a⇒ wp(ins′, φ)

where ins′ is the optimization of ins, and a is the result of the analysis

We really construct by well-founded induction a proof term of

wpP(k) ∧ a(k) =⇒ wpP′(k)

Marktoberdorf, August 2007 Compilation of certificates

Merging certificates
We need to build from the original and analysis certificates:

φ1 ⇒ wp(S, φ2)
———————
{φ1}S{φ2}

a1 ⇒ wp(S, a2)
——————
{a1}S{a2}

the certificate for the optimized program:

φ1 ∧ a1 ⇒ wp(S′, φ2 ∧ a2)
———————————
{φ1 ∧ a1}S′{φ2 ∧ a2}

by using the gluing lemma

∀φ,wp(ins, φ) ∧ a⇒ wp(ins′, φ)

where ins′ is the optimization of ins, and a is the result of the analysis

We really construct by well-founded induction a proof term of

wpP(k) ∧ a(k) =⇒ wpP′(k)

Marktoberdorf, August 2007 Compilation of certificates

Illustrating: ∀φ,wp(ins, φ) ∧ a⇒ wp(ins′, φ)

If the value of e is known to be n, then

. . .
y := e
. . .

n=e−→
. . .
y := n
. . .

The gluing lemma states in this case:

Under the hypothesis that the result of the analysis is valid n = e

the weakest precondition applied to the transformed instruction

wp(y := n, ϕ) (≡ ϕ[n/y])

can be derived from the original one:

wp(y := e, ϕ) (≡ ϕ[e/y])

Marktoberdorf, August 2007 Compilation of certificates

Illustrating: ∀φ,wp(ins, φ) ∧ a⇒ wp(ins′, φ)

If the value of e is known to be n, then

. . .
y := e
. . .

n=e−→
. . .
y := n
. . .

The gluing lemma states in this case:

Under the hypothesis that the result of the analysis is valid n = e

the weakest precondition applied to the transformed instruction

wp(y := n, ϕ) (≡ ϕ[n/y])

can be derived from the original one:

wp(y := e, ϕ) (≡ ϕ[e/y])

Marktoberdorf, August 2007 Compilation of certificates

Illustrating: ∀φ,wp(ins, φ) ∧ a⇒ wp(ins′, φ)

If the value of e is known to be n, then

. . .
y := e
. . .

n=e−→
. . .
y := n
. . .

The gluing lemma states in this case:

Under the hypothesis that the result of the analysis is valid n = e

the weakest precondition applied to the transformed instruction

wp(y := n, ϕ) (≡ ϕ[n/y])

can be derived from the original one:

wp(y := e, ϕ) (≡ ϕ[e/y])

Marktoberdorf, August 2007 Compilation of certificates

Illustrating: ∀φ,wp(ins, φ) ∧ a⇒ wp(ins′, φ)

If the value of e is known to be n, then

. . .
y := e
. . .

n=e−→
. . .
y := n
. . .

The gluing lemma states in this case:

Under the hypothesis that the result of the analysis is valid n = e

the weakest precondition applied to the transformed instruction

wp(y := n, ϕ) (≡ ϕ[n/y])

can be derived from the original one:

wp(y := e, ϕ) (≡ ϕ[e/y])

Marktoberdorf, August 2007 Compilation of certificates

Illustrating: ∀φ,wp(ins, φ) ∧ a⇒ wp(ins′, φ)

If the value of e is known to be n, then

. . .
y := e
. . .

n=e−→
. . .
y := n
. . .

The gluing lemma states in this case:

Under the hypothesis that the result of the analysis is valid n = e

the weakest precondition applied to the transformed instruction

wp(y := n, ϕ) (≡ ϕ[n/y])

can be derived from the original one:

wp(y := e, ϕ) (≡ ϕ[e/y])

Marktoberdorf, August 2007 Compilation of certificates

Illustrating: ∀φ,wp(ins, φ) ∧ a⇒ wp(ins′, φ)

If the value of e is known to be n, then

. . .
y := e
. . .

n=e−→
. . .
y := n
. . .

The gluing lemma states in this case:

Under the hypothesis that the result of the analysis is valid n = e

the weakest precondition applied to the transformed instruction

wp(y := n, ϕ) (≡ ϕ[n/y])

can be derived from the original one:

wp(y := e, ϕ) (≡ ϕ[e/y])

Marktoberdorf, August 2007 Compilation of certificates

Illustrating: ∀φ,wp(ins, φ) ∧ a⇒ wp(ins′, φ)

{ϕ1}
x := 5;
{ϕ2}
y := x
{ϕ3}

{true}
x := 5;
{x = 5}
y := x
{x = 5}

{ϕ1 ∧ true}
x := 5;
{ϕ2 ∧ x = 5}
y := 5
{ϕ3 ∧ x = 5}

Original PO’s:

ϕ1 ⇒ ϕ2[5/x]

ϕ2 ⇒ ϕ3[x/y]

Analysis PO’s :

true⇒ 5 = 5

x = 5⇒ x = 5

Final PO’s:

ϕ1 ∧ true⇒ ϕ2[5/x] ∧ 5 = 5

ϕ2∧x = 5⇒ ϕ3[5/y]∧x = 5

Original and new proof obligations differ

With the gluing lemma (∀φ, e.x = e ∧ φ[x/y]⇒ φ[e/y]), the original PO
entails the new PO

Marktoberdorf, August 2007 Compilation of certificates

Illustrating: ∀φ,wp(ins, φ) ∧ a⇒ wp(ins′, φ)

{ϕ1}
x := 5;
{ϕ2}
y := x
{ϕ3}

{true}
x := 5;
{x = 5}
y := x
{x = 5}

{ϕ1 ∧ true}
x := 5;
{ϕ2 ∧ x = 5}
y := 5
{ϕ3 ∧ x = 5}

Original PO’s:

ϕ1 ⇒ ϕ2[5/x]

ϕ2 ⇒ ϕ3[x/y]

Analysis PO’s :

true⇒ 5 = 5

x = 5⇒ x = 5

Final PO’s:

ϕ1 ∧ true⇒ ϕ2[5/x] ∧ 5 = 5

ϕ2∧x = 5⇒ ϕ3[5/y]∧x = 5

Original and new proof obligations differ

With the gluing lemma (∀φ, e.x = e ∧ φ[x/y]⇒ φ[e/y]), the original PO
entails the new PO

Marktoberdorf, August 2007 Compilation of certificates

Illustrating: ∀φ,wp(ins, φ) ∧ a⇒ wp(ins′, φ)

{ϕ1}
x := 5;
{ϕ2}
y := x
{ϕ3}

{true}
x := 5;
{x = 5}
y := x
{x = 5}

{ϕ1 ∧ true}
x := 5;
{ϕ2 ∧ x = 5}
y := 5
{ϕ3 ∧ x = 5}

Original PO’s:

ϕ1 ⇒ ϕ2[5/x]

ϕ2 ⇒ ϕ3[x/y]

Analysis PO’s :

true⇒ 5 = 5

x = 5⇒ x = 5

Final PO’s:

ϕ1 ∧ true⇒ ϕ2[5/x] ∧ 5 = 5

ϕ2∧x = 5⇒ ϕ3[5/y]∧x = 5

Original and new proof obligations differ

With the gluing lemma (∀φ, e.x = e ∧ φ[x/y]⇒ φ[e/y]), the original PO
entails the new PO

Marktoberdorf, August 2007 Compilation of certificates

Illustrating: ∀φ,wp(ins, φ) ∧ a⇒ wp(ins′, φ)

{ϕ1}
x := 5;
{ϕ2}
y := x
{ϕ3}

{true}
x := 5;
{x = 5}
y := x
{x = 5}

{ϕ1 ∧ true}
x := 5;
{ϕ2 ∧ x = 5}
y := 5
{ϕ3 ∧ x = 5}

Original PO’s:

ϕ1 ⇒ ϕ2[5/x]

ϕ2 ⇒ ϕ3[x/y]

Analysis PO’s :

true⇒ 5 = 5

x = 5⇒ x = 5

Final PO’s:

ϕ1 ∧ true⇒ ϕ2[5/x] ∧ 5 = 5

ϕ2∧x = 5⇒ ϕ3[5/y]∧x = 5

Original and new proof obligations differ

With the gluing lemma (∀φ, e.x = e ∧ φ[x/y]⇒ φ[e/y]), the original PO
entails the new PO

Marktoberdorf, August 2007 Compilation of certificates

Illustrating: ∀φ,wp(ins, φ) ∧ a⇒ wp(ins′, φ)

{ϕ1}
x := 5;
{ϕ2}
y := x
{ϕ3}

{true}
x := 5;
{x = 5}
y := x
{x = 5}

{ϕ1 ∧ true}
x := 5;
{ϕ2 ∧ x = 5}
y := 5
{ϕ3 ∧ x = 5}

Original PO’s:

ϕ1 ⇒ ϕ2[5/x]

ϕ2 ⇒ ϕ3[x/y]

Analysis PO’s :

true⇒ 5 = 5

x = 5⇒ x = 5

Final PO’s:

ϕ1 ∧ true⇒ ϕ2[5/x] ∧ 5 = 5

ϕ2∧x = 5⇒ ϕ3[5/y]∧x = 5

Original and new proof obligations differ

With the gluing lemma (∀φ, e.x = e ∧ φ[x/y]⇒ φ[e/y]), the original PO
entails the new PO

Marktoberdorf, August 2007 Compilation of certificates

Illustrating: ∀φ,wp(ins, φ) ∧ a⇒ wp(ins′, φ)

Optimizing compilers try to avoid duplication of computations.

If x already stores the value of e, then

. . .
y := e
. . .

x=e−→
. . .
y := x
. . .

The gluing lemma states in this case:

Under the hypothesis that the result of the analysis is valid x = e

the weakest precondition applied to the transformed instruction

wp(y := x , ϕ) (≡ ϕ[x/y])

can be derived from the original one:

wp(y := e, ϕ) (≡ ϕ[e/y])

Marktoberdorf, August 2007 Compilation of certificates

Illustrating: ∀φ,wp(ins, φ) ∧ a⇒ wp(ins′, φ)

Optimizing compilers try to avoid duplication of computations.

If x already stores the value of e, then

. . .
y := e
. . .

x=e−→
. . .
y := x
. . .

The gluing lemma states in this case:

Under the hypothesis that the result of the analysis is valid x = e

the weakest precondition applied to the transformed instruction

wp(y := x , ϕ) (≡ ϕ[x/y])

can be derived from the original one:

wp(y := e, ϕ) (≡ ϕ[e/y])

Marktoberdorf, August 2007 Compilation of certificates

Illustrating: ∀φ,wp(ins, φ) ∧ a⇒ wp(ins′, φ)

Optimizing compilers try to avoid duplication of computations.

If x already stores the value of e, then

. . .
y := e
. . .

x=e−→
. . .
y := x
. . .

The gluing lemma states in this case:

Under the hypothesis that the result of the analysis is valid x = e

the weakest precondition applied to the transformed instruction

wp(y := x , ϕ) (≡ ϕ[x/y])

can be derived from the original one:

wp(y := e, ϕ) (≡ ϕ[e/y])

Marktoberdorf, August 2007 Compilation of certificates

Illustrating: ∀φ,wp(ins, φ) ∧ a⇒ wp(ins′, φ)

Optimizing compilers try to avoid duplication of computations.

If x already stores the value of e, then

. . .
y := e
. . .

x=e−→
. . .
y := x
. . .

The gluing lemma states in this case:

Under the hypothesis that the result of the analysis is valid x = e

the weakest precondition applied to the transformed instruction

wp(y := x , ϕ) (≡ ϕ[x/y])

can be derived from the original one:

wp(y := e, ϕ) (≡ ϕ[e/y])

Marktoberdorf, August 2007 Compilation of certificates

Illustrating: ∀φ,wp(ins, φ) ∧ a⇒ wp(ins′, φ)

Optimizing compilers try to avoid duplication of computations.

If x already stores the value of e, then

. . .
y := e
. . .

x=e−→
. . .
y := x
. . .

The gluing lemma states in this case:

Under the hypothesis that the result of the analysis is valid x = e

the weakest precondition applied to the transformed instruction

wp(y := x , ϕ) (≡ ϕ[x/y])

can be derived from the original one:

wp(y := e, ϕ) (≡ ϕ[e/y])

Marktoberdorf, August 2007 Compilation of certificates

Illustrating: ∀φ,wp(ins, φ) ∧ a⇒ wp(ins′, φ)

Optimizing compilers try to avoid duplication of computations.

If x already stores the value of e, then

. . .
y := e
. . .

x=e−→
. . .
y := x
. . .

The gluing lemma states in this case:

Under the hypothesis that the result of the analysis is valid x = e

the weakest precondition applied to the transformed instruction

wp(y := x , ϕ) (≡ ϕ[x/y])

can be derived from the original one:

wp(y := e, ϕ) (≡ ϕ[e/y])

Marktoberdorf, August 2007 Compilation of certificates

Applicability of method

Certificate translators for constant propagation, common sub-expression
elimination. . .

However, representing the result of the analysis as assertions is only
possible for analyses that focus on state properties

Several program analyses focus on execution traces, e.g. dead variable
elimination. We have developed ad-hoc techniques for those.

Marktoberdorf, August 2007 Compilation of certificates

Applicability of method

Certificate translators for constant propagation, common sub-expression
elimination. . .

However, representing the result of the analysis as assertions is only
possible for analyses that focus on state properties

Several program analyses focus on execution traces, e.g. dead variable
elimination. We have developed ad-hoc techniques for those.

Marktoberdorf, August 2007 Compilation of certificates

Applicability of method

Certificate translators for constant propagation, common sub-expression
elimination. . .

However, representing the result of the analysis as assertions is only
possible for analyses that focus on state properties

Several program analyses focus on execution traces, e.g. dead variable
elimination. We have developed ad-hoc techniques for those.

Marktoberdorf, August 2007 Compilation of certificates

Ongoing work

Prototype
Source language: imperative language with functions and arrays
Target language: RTL with functions and arrays
Compiler: performs common optimizations
Verification condition generator: interfaced with Coq

Certificates
Size of certificates does not seem to explode, provided one does
local normalization of certificates
Type checking modulo selected isomorphisms of types could limit
certificate growth

Abstract framework to prove the existence and correctness of
certicate translators
More expressive languages, more complete compilation chains

Marktoberdorf, August 2007 Compilation of certificates

Concluding remarks

Marktoberdorf, August 2007 Compilation of certificates

Contents

Two verification methods for bytecode and their relation to verification
methods for source code

Type system for information flow based confidentiality policies
Verification condition generator for logical specifications

Virtual machine

Source program
Jif type
checker

API

Bytecode program

Jif types

Operating system

Information flow
types

Security env
Regions

BCV

Inf flow

Virtual machine
Operating system

Source program

Bytecode program

Interactive
proofs

API

JML specification

specification
Bytecode

Certificate

Certificate

Certificate
checker

Marktoberdorf, August 2007 Compilation of certificates

Contents

Two verification methods for bytecode and their relation to verification
methods for source code

Type system for information flow based confidentiality policies
Verification condition generator for logical specifications

Virtual machine

Source program
Jif type
checker

API

Bytecode program

Jif types

Operating system

Information flow
types

Security env
Regions

BCV

Inf flow

Virtual machine
Operating system

Source program

Bytecode program

Interactive
proofs

API

JML specification

specification
Bytecode

Certificate

Certificate

Certificate
checker

Marktoberdorf, August 2007 Compilation of certificates

Contents

Two verification methods for bytecode and their relation to verification
methods for source code

Type system for information flow based confidentiality policies
Verification condition generator for logical specifications

Virtual machine

Source program
Jif type
checker

API

Bytecode program

Jif types

Operating system

Information flow
types

Security env
Regions

BCV

Inf flow

Virtual machine
Operating system

Source program

Bytecode program

Interactive
proofs

API

JML specification

specification
Bytecode

Certificate

Certificate

Certificate
checker

Marktoberdorf, August 2007 Compilation of certificates

Deployment of secure mobile code can benefit from:
advanced verification mechanisms at bytecode level
methods to “compile” evidence from producer to consumer
machine checked proofs of verification mechanisms on
consumer side (use reflection)

Many challenges ahead e.g.:
proof carrying code in distributed setting (result certification)
combination of language-based and cryptographic-based
security

http://mobius.inria.fr

Marktoberdorf, August 2007 Compilation of certificates

	day1
	main

