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Course Outline

Lecture 1. Basis for trust: 

Elements of a Theory of Computing

Lecture 2. Programs, Processes, and Realizers

Lecture 3. A Theory of Events

Lecture 4. Formal Basis for Security Properties



Motivation: Provide the logical foundations necessary for 

a trusted information technology, specifically to:

• Formally validate system designs with respect to intent

• Synthesize systems provably faithful to intent

• Explain verified code and safely modify and maintain it

• Protect and secure systems and data

Series Introduction and Type Theory Basics



We must be able to express intent formally and then 

systematically refine the level of detail presented until we can

guarantee its correct execution on available hardware.  

These lectures will be about formalisms used at the highest 

levels of abstraction and about their translation to running code. 

For me the key formalism is type theory, as contrasted with 

category theory, set theory, algebra, or a high level programming 

language or informal specification language.  

Applied set theory is a closely related approach as in the 

B-Tool of Abrial. Type theory concepts are programming 

concepts and thus a basis for synthesis in which the conceptual 

distance between intent and action is the closest.  We exploit this 

advantage.



Focus of Lecture 1

Security, correctness and trust are related.  

To incorporate security services into software, 

they must first be understood in computing 

theory, e.g. cryptography.

Security services are effective only if elements 

of software are correct, and correctness must also 

be part of computer science theory . Computer 

Science itself is trusted in relation to the larger 

“organized scientific enterprise,” especially 

mathematics. So computing theory must connect 

to the appropriate mathematics, e.g. types to sets.



Focus of Lecture 1 continued

The security mechanism that we introduce in Lecture 4 

depends on type theory elements of computing theory.  

These elements are understood and trusted in 

relationship to set theory, and to programming 

language concepts.

This lecture lays the foundation for the security 

mechanisms and the distributed computing model in 

which they are used.  Lecture 2 presents the model and 

Lecture 3 its logic.



Computer Science Practice – “the stack”, translators

Models Code People

On-line banking 

model 

(logic book)

Secure aps

(thru provers)

banking sys

Aps programmer

Aps theory

(transaction design)

Protocols IOA, MA 

ASM

Middleware Syst. Prog. 

Distrib sys theory

Computable function 

models

Prog languages 

procedural, declarative

Computer writer

computer theory

Semantics

Concurrency, file syst Operating system

Virtual machines

Syst programmer 

Os theory

Modeling and 

simulation languages

Assembler

Handware

Computer engineer

architect

This is how we span levels of abstraction



How the stacks are grounded

Models Code People

CS Theory

Mathematics

(Set Theory)

Hardware

Physics

Computer

Science & 

Engineering



Refining the Questionaire

What is type?

What is a set?

What is a recursive function?

What is a computable function?

What is a finite automaton?

What is a regular expression?

Can you synthesize an automaton

from a regular expression?

Do you know Java, ML, Lisp, or Scheme?



Historical Perspective

John McCarthy

proposed a theory of computing in 1961 that has motivated many.

Scott Hoare

Dijkstra Milner

De Bruijn Girard

Martin-Löf

This theory has inspired the MOD series. It in turn was enabled by 

Alonzo Church’s work in the 30’s / 40’s.

e.g. Ȝ calculus ĺ Lisp

Simple Theory of Types ĺ HOL



Historical Perspective

McCarthy said in A Basis for a Mathematical 

Theory of Computation…

“Computation is sure to become one of the most 

important of the sciences.”

“This is because it is the science of how machines 

can be made to carryout intellectual processes.”



Historical Perspective

McCarthy’s Elements of a Theory of Computation

• Expressive notation for computable functions (including partial 

functions)

• Transforming non-computable specifications to computable 

ones (an MOD Blue theme)

• Notation for “data spaces” (Hoare)

• Study of equivalence of notations for (partial) functions –

recursion induction (Scott extended, Milner implemented)

• Integrating functional and imperative (Algol-like) notations 

(Hoare, Dijkstra Programming Logics)

• Proof checking and proof generation (Milner onward).



• Sample statement in a Logic of Events

Given a network of at least n processes, suppose           of them are 

organized into a ring R and requests are sent to elect a leader, then there 

will exist a unique process declared to be the leader in R.

• Compare this to 

Every positive number can be factored in to a product of prime 

powers, e.g.                                    etc.

• Compare to 

Every planar graph G can be colored by four colors.

The regions of any simple planar map can be colored with only four

colors in such a way that any two adjacent regions have different 

colors.

m n≤

0 1 11 2 ,6 2 3 ,= = ⋅

Expressing Tasks Declaratively



For formalization, detail matters – too much detail for most 

people.  Consider the simple examples above.

Factoring

:  . :  (PrimePower) List. ( )

or

:{ :   1 }. : (Prime) List. ( )

or

: . : (Prime)List. ( )

        where ( ) 1.

n F prod F n

n i i F prod F n

n F prod F n

prod nil

+∀ ∃ =

∀ < ∃ =

∀ ∃ =
=

`

`

`

Formalizing Tasks



The detail for the ring of processes example is 

much more extensive, especially for real code

– see Morrisett.  

How can we digest such detail and connect it to our 

intuitive thinking? We need computer assistance.  

How does formal detail of processes and events 

relate to detail about imperative programs, 

functional programs and functions?  

These are typical issues faced in my lectures.

Formalizing Complex Tasks



Consider the formal details about numbers.  

John Harrison connects such details to hardware 

implementations of floating point numbers.  

That detail is mainly for specialists.  

What about    , the numbers that God gave us, 

not Intel?

Natural Numbers

What are these?

`

{0,1,...,10,11,...,36,...100,...1000000,...}=`

Formalization Issues



Set Theory: they are sets, elements of the 

axiomatic inductive set, Inf, i.e.

 and if  then { }

Let     ( ) { },  then

             
( )

Inf x Inf x x Inf

s x x x

x Inf
Inf

s x Inf

∈ ∈ ∪ ∈
= ∪

∈
∈

∈

Numbers

Such a set is inductive.



Rules for computing are in a metalanguage

Justified in terms of set theory, but computation 

is external to set theory.

Computing with Numbers

  0 = = 0

  (n 1) = = (x  n) + x

x

x +
i
i i



Type Theory: the canonical numbers are elements 

of the axiomatic inductive type 

3

noncanoni

0  and if

cal numb

 then ( )

or the elements are 

{ : }  a decimal numeral

the  are expressions

that redu

ers

canonical numbce to ,

e.s.  2 2,3!, 2 ,  tc.

ers

e

n s n

nat n number n

∈ ∈ ∈

+

` ` `

This is an example of Per Martin-Löf’s semantic 

method.

For numbers in type theory, the theory tells us how to 

compute.  See Naïve Type Theory section 9.

Numbers



Formalization Continued - Functions

     The theorem : . : ( ) . ( )

     tells us that there is 

          : ( )

          (1)

          (2) {2}

          (3) {3}

          

a

(

 function

n F Prime List prod F n

factor Prime List

factor nil

factor

factor

factor

∀ ∃ =

→
=
=
=

`

`

4) {2,2}

What is a ?

     informal mathematics: a rule of corres

function from A to B

pondence from A to B

=



Set Theory:

(  x ) such that 

. : . , &

, :  if  ( ) ( )

then ( ) ( )

F P A B

x A y B x y F

p q F fst p fst q

snd p snd q

⊆
∀ ∈ ∃ < >∈
∀ =

=

A functional relation on           , i.e. a single-valued

set of ordered pairs 

x A B

Computation is external to ZFC set theory



Formalization of Functions Continued

Type theory

effective rule

: a lambda term ( . ) 

such that for all , [ / ]

The lambda term is the .

We can apply it to elements of ,

     ( ( . ); ) reduces to whatever    

     [ / ] reduces to.

N

x b

a A b a x B

A

ap x b a

b a x

∈ ∈

otice that such a definition is the operational 

definition in functional programming languages.



Here is multiplication in type theory,

A lambda term using a fixed point combinator

Computing in Type Theory

( . ( , .   0  0  ( 1, ) ))fix f x y x y f x y= + −if  then else fi



Questions

Is ( .1) ( . / ) in ( ) ?

Is ( . ( .0)) ( .0) ?

x x x x

x y y

= →
=

_ _



Formalization – Functions Continued

In Computational Type Theory (CTT) and Intuitionistic

Type Theory (ITT) functions are polymorphic.  This is a 

major departure from Set Theory.  For example,   

is the identity function in every function type ,

even if A is empty.  In Set Theory there is no such function.  

The function            taking the head of a list is polymorphic.  

We will see that this difference is important in defining data 

types and subtyping.

Note in CIC, the type theory of Coq, functions,    

are monomorphic.

A A→

( . )x x

( )hd L

:  . x A b



Questions

Does Java have polymorphic functions?

Is 0 polymorphic because it belongs to 

, , , ?

Is  a subset of ?

` ] _ \
` _



Set theory is easily able to make all functions total.  

For example, we can extend integer + to any set.   

n + A = n for any set A not an integer.

In type theory it is not possible to make every function 

total.

We can’t tell of an expression A whether it is an integer 

or not and trying to compute n + exp might diverge if 

exp diverges.  

It is very annoying when a set theory formalization uses 

the “totalizing trick” to make a theory look simple, 

because that approach does not work constructively.

Totalizing Functions



Formalizations Continued

The factorization theorem used A Lists, lists of 

elements of type A.  We can imagine theorems 

using other recursive data structures such as trees, 

queues, stacks, streams, etc.

How are these defined?



Set Theory:

In set theory, the poylmorphic list concept where A is any set 

requires the notion of an inductive class.  Typically these are 

defined as fixed points of monotonic functions over the class 

of all sets, and the fixed point is guaranteed by a cardinality 

argument.

or

These are monotone functions on set, so they have fixed 

points, e.g. the set

( ) (  x  ( ))List A A A List A= ∪

x  x (  x ) ...A A A A A A∪ ∪ ∪

( ) 1 (  x  ( ))List A A List A= ⊕



Type Theory:

Recursive types are built by a primitive construction, say 

where           is a type expression in x, e.g.  

It suffices for most purposes to use one inductive type, a 

W-type (Martin-Löf) to encode recursive ordinals

( ) .(1 x ).List A Y A Y= ⊕

. ( )x F x ( )F x

.( :  x ( ))xW x A B W→



Formalization
Recall the formulation 

The type                                seems like a normal set formed 

by separation, but in type theory it also has computational

significance, namely the function

factor:

does not take evidence for 1<i as input 

Otherwise, the separation type is like the 

corresponding subset of A.

:{ : 1 }. : (Pr ) . ( )n i N i F ime List prod F n∀ < ∃ =

{ : 1 } (Pr )i i ime List< →`

{ : 1 }i i<`

{ : }x A B



Equality

In Set Theory, equality on the natural numbers reduces to 

equality of sets.  Consider: 

This is also 0,{0},{0,1},{0,1,2}…

Notice                                   which is a bit more interesting 

than 2=2.

In Type Theory, two numbers are equal precisely when they 

have identical canonical forms.  So 2=2 is true and axiomatic.  

Where 1+1=2 is interesting.

0    1={ }    2={ ,{ }}    3={ ,{ },{ ,{ }}}...=

{ ,{ }} {{ }, }=



Type Theory has collections and objects not found in classical 

set theory.  For example, Top is the type of all closed 

constructions, considered equal.  So it has one element, on the 

other hand, it has all elements, e.g.                      , and

for any type A.  Top is a signature type for semantic 

polymorphism a feature exploited by CTT but not by ITT.  In 

CTT, terms with nonterminating reductions are members, such 

as 

A TopÆ

( . ).fix x x

A Top A∩ =

Top Type



Intersection

2 3 6 2 3

     In       { : }

     In :    

      in  if  in  and  in 

     { : } { : } { : & }

Notic

Set T

e that ,  e.g. 0 6 and 0= 6

It is easier to compute 

h

wit

eory

Type The

h /

ory

/E

A B x A x B

a b A B a b A a b B

x A P x A Q x A P Q

∩ = ∈

= ∩ = =

∩ =

∩ = =] ] ]
] 2 2 than with /E]

Dependent Intersection

    In Type Theory :  is the set of all elements

     of  such that 

x

x

x A B

x A x B

∩

∈



Subtyping

The type A is a subtype of B iff

1. Any element of A is an element of B.

2. I f two elements are equal in A then they are equal 

in B.

Examples:

A Top

Void A

{x:A | P[x}} A

A A//R

{1,2,3} Z Z6 Z2



Subtyping relations

I f A A’ and B B’ then:

A + B

A B

A’ B

{x:A | P(x)}

A B

A B

A

A

A

A’+ B’

A’ B’

A B’

A

A

B

A//E

A B

Top



Records Naïvely

There are many ways to capture the concept of a record.  For 

example,

can be defined as A ×(B × C) and the field selectors can 

be defined as functions on tuples, say

{x:A; y:B; z:C}

x == λ(r.1of(r))

y == λ(r.1of(2of(r)))

z == λ(r.2of(2of(r)))



Naïve Record Extension

We can provide for record extension by adding Top as a last 

component of any record

We build up the previous record as follows:

Records == T:Ui × Top

R1 == A × Top

R2 == A ×(B × Top)

R3 == A ×(B ×(C × Top))



Naïve Record Subtyping

Notice that:

R2 ๤ R1

R3 ๤ R2

R2 ∈ Records since  A ∈ Ui, (B × Top) ∈ Top 

since

since

A ๤ A,

A ๤ A,

B × Top ๤ Top

B ×(C × Top) ๤ B × Top 



Records Using Labels

Another approach to records is to take labels, L, as 

indexes into components.

Given

take

Define

Define the record type as x:L→ Sig(x).

{x:A; y:B; z:C}

L={x,y,z}, L ๤ Atom

Sig:L→ Ui by

if j=x then A

else if j=y then B else C



Records as Functions

We now take

{x:A; y:B; z:C} == x:L→ Sig(x).

r ∈ {x:A; y:B; z:C}, 

r.i == r(i)

r.x ∈ A, r.y ∈ B, r.z ∈ C

For

let

so



Records Extension Using Labels

Consider {x:A; y:B; z:C; w:D}. 

Is this a subrecord of {x:A; y:B; z:C}?

To examine this, let L’={x,y,z,w}.

Notice L ๤ L’.

Define Sig’(i)=if i=w then D else Sig(i). 

Notice x:L’→Sig’(x) ๤ x:L→Sig(x) 

because L ๤ L’ and Sig’(x) ๤ Sig(x) for x ∈ L.



Record Extension Depends on Function 

Polymorphism

x:L’→Sig’(x) ๤ x:L→Sig(x)

because any function r’ in x:L’→Sig’(x) is a function 

in x:L →Sig(x).

Given inputs from L, x and y, r’(x)∈ Sig’(x) and 

Sig’(x)=Sig(x), r’(y)∈ Sig’(y)=Sig(y).



Tension between Types and Computation

Lisp community like to say that Lisp is “typeless.”

More accurately, it is very polymorphic.





Reading for Lecture 1

On types

Working Material Chapter 1 Computational Type Theory

2.3    Intuitionistic Type Theory

2.4.1 Subset and Quotient Types

2.5.1 Subtyping

2.5.2 Top

2.5.3 Records

2.6.2 Dependent records

Also Naïve Computational Type Theory

9. Logic and the Peano Axioms

10. Structures, records, and classes



Exercises

• Use AxB, A//E to explain the difference between fractions

and rational numbers (   ).

•Can you define       so that             ?

•Call a type discrete if its equality is decidable.

•How can we say that           are discrete?

•Is                  discrete?

•Define: 

_

_ ] _Æ

,` _
→` `

1 2 3 1 2 3

@  a =nil  

             ( ) (t ( )@ )

Is         @( @ ) ( @ )@

a polymorphic fact or a typed fact?

if then

else fi

=
•

=

A A
A A

A A A A A A

a

hd a a





John Mitchell – Protocol Logic, verification and checking tools

Gilles Barthe – Coq certification of security protocols

Helmut Schwichtenberg – Proof with feasible computational content

John Harrison – Interactive and automatic theorem proving

Javier Esparza – Software model checking

Martin Hyland – Models of recursion and induction

Also ties to Greg Morrisett, Tobias Nipkow, Martin 

Hoffman, Orna Grumberg, and Stan Wainer

Other connections may unfold.

Relationship to Other Lectures



Standard Methodology

(basis for trusted semantics) 

Computational notations

Programming Language Programming Language

Set Theory

(ZFC)



Proposed Modification

Computational

Type Theory

(evaluation rules)

Set Theory

IZF + C

Computation

or



More About Types

Types rather than sets because of:
Computability

Constructive logic

Subtyping, inheritance

Openness (extensibility)

Computability requires access to 
Structure

Canonical values

Computation rules

Abstractness comes from equality.



Formal Logical Methods for System Security and Correctness

Logical Foundations of Computer Security

Lecture 2
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Robert L. Constable
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This lecture provides a basis for relating programs and processes to 

declarative statements.  

One relationship starts with a program, say a function

f: AĺB

And asserts properties of it, typically

Another relationship starts with a property and finds a function that has it, 

typically given 

Find the function that produces a value in B satisfying R given a value in 

A.  The function is part of a realizer for the formula

Programs, Processes, and Realizers

: . ( , ( ))x A R fx x

: . : . ( , )x A y B R yx



When we start with a property or a specification or a goal we say 

that the function realizes the specification or goal.

Consider:  In the logic literature

Realizers

: . ( , ( ))x A R fx x

: . : . ( , )x A y B R yx



We will see in detail how to construct realizers from proofs of 

logical formulas by examining an evidence semantics for formulas.  

This semantics for constructive logic is known as the 

Brouwer/Heyting/Kolmogorov (BHK) Semantics, and it is 

computational.  It can be presented in 

Computational Type Theory (CTT).

See Naïve Computational Type Theory section 9

MOD 88 Assigning Meaning to Proofs

Lecture 2 Plan



Semantics of Evidence

Constructive Semantics

Example

Semantics of Proof Objects

Imperative Realizers

Distributed Realizers

Lecture 2 - Outline



Given a formula A, we will define the set or type of objects that 

count as evidence that A is true in a model M, denote it 

Sometimes we suppress the model.

Truth and Evidence:

We expect that there is evidence if A is true in M, thus

Semantics of evidence

a bA
M

a b if    a A A∈
M M

If A is false, then      a b a b,  and if  is true, then A A A= ≠



Suppose that we have evidence sets for the atomic propositions 

A,B,C,…

Here is how to construct evidence for compound formulas:

Propositional Evidence

a b a b a b
a b a b a b
a b a b a b
a b a b

 & == x

 ==

==

     ==

A B A B

A B A B

A B A B

A A

∨ ⊕

⇒ →

¬ →



Evidence for Quantified Statements

a b a b a b

a b a b a b

 : .  : x

 : .  :

x x

x x

x A B x A B

x A B x A B

∃ ==

∀ == →



Semantics of Proof Terms

a b

A classical axiom - excluded middle

        BY  ( )

( )  P  P

P P Magic P

Magic P

∨ ¬

∈ ∨ ¬



Constructive Semantics

If we look only at constructive logic and use types 

instead of sets, then the semantics of evidence is 

constructive; it is the Brouwer/Heyting/Kolmogorov

semantics.

We recover a classical (Tarski) semantics using 

Magic(P) as an oracle.



Formulas and Problems

Here is how we interpret the statements of a typed predicate logic 

constructively. 

For atomic predicates to assert or solve P(t1, …, tn) means to provide a 

proof or a construction p(t1, …, tn) 

If P,Q are problem statements (predicate formulas), then to assert

P & Q means to find proofs or constructions p and q for P, Q 

respectively.

P v Q means to find a proof or construction p for P and mark it as 

applying to P or to find a proof or construction q for Q and   

mark it as applying to Q.



P      Q means to find an effective procedure f that takes a proof or 

construction p for P and computes p for P and computes f(p) a 

proof or construction for Q.

P means that there is no proof or construction for P.

means that there is an effective procedure f that takes any

element of type A, say a, and computes a proof or construction 

f(a) for P[a/x].

means that we can construct an object a of type A and find a 

proof or construction pa of P[a/x], taken together, <a,pa>

solves this problem or proves this formula.

Formulas and Problems, continued

⇒

 x:A.P∀

 x: A.P∃

¬



1 2 1 2:    : x . ( & )x A y B B R R∃

Finding realizers for a goal G can be accomplished by a 

refinement process.

1 2 1 2: . :  x . ( , ( )) & ( , ( ))x A y B B R x fst y R x snd y∀ ∃

1 1:     : .x A y B R∃

Programming by refinement

We might decompose this goal into two subgoals

2 2:     : .x A y B R∃



Integer Square Root

1           2             3           4            5           6            7            8             9          10          11          12         13         14          15           16

6

5

4

3

2

1



Proof of Root Theorem
( )

( )

( )

( )
( )

( )

22

22

22

2

2

2

22

1

1

0

1

0

1

1 1

1

1

allR

exis

n : . r : . r n r

n :

r : . r n r

.....

r : . r r

AtsR

Decide r

uto

.....

: , r : , r r

r : . r r

⎡ ⎤

∀ ∃ ≤ < +

∃ ≤ < +

∃ ≤ < +

≤ − < +

∃

⎢ ⎥

⎡ ⎤+ ≤⎢

≤ <

⎥

+

` `

`

`

`

` `

`

+

BYȱ

BYȱȱ
inductionȱcase.....

BYȱ THENȱ
inductionȱcase.....
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`

`
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( ) ( )
( )

( ) ( )( )
( )

2 22

22

2 22

22

1 1 1

1

1

1

1 1 1

+

+

Caseȱ1.....

BYȱ THENȱ
Caseȱ2.....

BYȱ THENȱ

≤ − < + + ≤

∃ ≤ < +

≤ − < + ¬ + ≤

∃

+⎡

≤

⎤⎢ ⎥

⎡ ⎤⎢

< +

⎥

.....

: , r : , r r , r

r : . r r

Auto'

.....

: , r : , r r , r

r : . r r

existsR r

existsR Autor

` `

`

` `

`

`

`

i i i

i

i i i

i

Proof of Root Theorem (cont.)



Here is the extract term for this proof in ML 

notation with proof terms (pf) included:

( )
( )

0

1

2

0 0

1

1 1

ȱletȱ ȱ ȱ
ȱ ifȱ ȱthen
ȱ elseȱletȱ

ȱ inȱifȱ ȱȱthen
elseȱ

−

=
= < >

< > =

+ ≤ < + >
< >

rec

,pf

r,pf -

r n

sqrt

s

r ,pf

r,pf'

qrti

i

i

i

i

i

The Root Program Extract



A Recursive Program for Integer Roots

0

2

0 0

0

r(n):=  n= 0  0

 let r r (n-1) 

(r 1) n  r 1

r  

=

+ ≤ +

if then

          else in

          if then

                                 else fi

          fi

Here is a very clean functional program

This program is close to a declarative 

mathematical description of roots given by the 

following theorem.



2 2

0 0 0 0

 :  . :  .  ( , )

 by induction

   Base    0  take    0,  clearly Root (0,0)

   Induction assume :  .  ( ,  -1)

   where ( , -1),  . .  -1  ( 1)

   

n r Root r n

n r

r Root r n

Choose r Root r n i e r n r

∀ ∃

= =
∃

≤ < +

` `

`

Theorem

Proof

       

2 2

0 0

2

0 0

2 2 2

0 0 0

2

0 0 0

    ( 1)     ( 1)

 case ( 1)  then   ( 1)

       ( 1)   (( 1)  ( 2) )

case   ( 1)  then      since  -1  .

r n n r

r n r r

r n r r

n r r r r n n

+ ≤ ∨ < +

+ ≤ = +

+ ≤ < + < +

< + = ≤ <

      

       

Qed



Deduction Systems

HOL, Nuprl and PVS all use a version of 

Gentzen’s sequents to organize proofs.

Typically, hypotheses are named; in Nuprl we use:

1 nH ,…,H G

H G

`

`

or 1 n 1 mH ,…,H G ,…,G

H G

`

`

( ) ( )1 1 n n 1 n 1 nx :H ,…,x :H G x ,…,x ext g x ,…,x`



Semantics of Proof Terms - Example

:     : . ( , ) BY (0, )

 :      ( ,0) BY  

n r R n r existsR pf

n R n pf

∃` `

`

The evidence for : . ( , ) should

be a pair which is what the proof provides

0,  written (0, )

r R n r

pf existsR pf

∃

〈 〉

`



Semantics of Proof Terms - Example

:     : . ( , ) BY (0, )

 :      ( ,0) BY  

n r R n r existsR pf

n R n pf

∃` `

`

The evidence for : . ( , ) should

be a pair which is what the proof provides

0,  written (0, )

r R n r

pf existsR pf

∃

〈 〉

`



Example

Semantics of Proof Terms

            &    BY and ,

                   

                   

A B R pfa pfb

A pfa

A pfb

Η 〈 〉
Η
Η

a b
The evidence for  &   should

be an element of  &  pair,

,  , the meaning of the proof

term  an ,  .( )d

A B

A B

pfa pf

R pfa

b

pfb

〈 〉



Example

Semantics of Proof Terms

            &    BY and ,

                    

                    

A B R pfa pfb

A pfa

A pfb

Η 〈 〉
Η
Η

a b
The evidence for  &   should

be an element of  &  pair,

,  , the meaning of the proof

term  an ,  .( )d

A B

A B

pfa pf

R pfa

b

pfb

〈 〉



Semantics of Proof Terms

           : . R( )  BY all ( . )

          , :      ( ) BY 

x A x R x pfb

x A R x pfb

Η

Η



Semantics of Proof Terms

       : . R( )  BY all ( . )

          :      ( ) BY 

x A x R x pfb

x A R x pfb,Η

Η



Constructive Semantics

Notice that the proof term corresponding to 

This should denote an element of 

namely 

In the constructive case, this function should be 

computable.  We get this result when the 

evidence sets are types.

: .   is  ( . )x A R allR x pf

a b a b: xx RΑ →

( . ).x pf



Semantics of Evidence

Constructive Semantics

Example

Semantics of Proof Objects

Imperative Realizers

Distributed Realizers

Lecture 2 - Outline



From functional realizers to imperative realizers

Mainstream programming uses state.  We need state for 

distributed computing.  Can we extend the realizability

interpretation to include state?   The simplest way to 

include state is to model it in the existing theory along 

the lines shown in Lecture 1 - use (dependent) records.



An Interative Program for Integer Roots

2

r :  0;
 (r 1) n  
       
        r :  r 1
        

     
    

=
+ ≤

= +

W h ile d o

od



An Interative Program 

for Integer Roots, continued

2

r :  0;
 (r 1) n  
       
        r :  r 1
        

     
    

 =
+ ≤

= +

2n

W h ile d o

o
 < (r + 1)
d



A Program for Integer Roots With Assertions

2

2

2

2

2

2

 r n

(r 1) n

r :  0;
 (r 1) n  
       
        r :  r 1
        r  n

r n
n (r 1)

=
+ ≤

=

≤

+ ≤

≤

≤
< +

+

W h ile d o

od

This program suggests a precise specification

2 2

2

Root (r, n)      iff      r  n < (r+1)

r  n i invs a a r tn ian

≤

≤



While loop realizer

: { : ;  : }. " :{ : ; : }. ( . ,  ". )∀ ∃` ` ` `s n r s n r Root s n s r

The proof will build the while loop root finder and 

apply it to a state  where Thus"s ". 0.=s r

". ( ').=s r root s



Semantics of Evidence

Constructive Semantics

Example

Semantics of Proof Objects

Imperative Realizers

Distributed Realizers

Lecture 2 - Outline



Computations with state: terminating, 

deterministic

0

1

2

17

S

S

S

S

17 1

17 2

17 4

17 0

…

:{ : ; : }iS n r` `



Computations with state: unbounded, 

deterministic

0

1

2

S

S

S

10 13

10 17

10 11

…

:{ : ; :{ : ( )}}iS n p x Prime x` `

…



Computations with state: reactive, nondeterministic

0

1

2

3

4

in: Input, S: State, out: Output

               [0],s ,nil

              , ,[15]

              , ,[3]

            [1,5], ,[3,7]

            [5,8], ,

nil s

nil s

s

s nil

…



inputs

outputs

state

action

Pi processes

Li communications channels

Computations with state: asynchronous, distributed

P1

P3P2

L1 L3

L2

L4

Pi



Processes are Message Automata

initial

action: receive; effect; send

action: guard; effect; send

frame condition



• =
•

=
•
•

•
n n

n

@ i x : T v

@ i k(v : t) x

x : f state f

@ i a(v t) P state v

k(v : T)

[tg, f state v; ...; tg , f state v]

@ i [k, ..., k ]

1 1

1

ȱ ȱ ȱȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ
ȱȱȱȱ ȱ ȱ ȱ
ȱ ȱ ȱ : ȱisȱ ȱ ȱ
ȱȱ ȱ ȱ

initially

effect on

precondition

sendsȱonȱlink l

only

ȱ
ȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱsendsȱo

• ⊕ 
tg

A B A,Bȱȱ ,ȱw
nȱ

hereȱ ȱareȱme
linkȱlȱwithȱta

ssageȱa
g

utomata

Message Automata Clauses



Message Automata – Guessing Roots

  , , : ,  :  ,  :

     2 , 0 , ,

      ( , " ? " , )

   * c o lle c t  g u e s s e s *

  : ( , " " , ) ; :

   * c h e c k  f o r  a  r o o t  a m o n g  g u e s s e s  s r

 

o  f a

i

x n r g L is t r d y B o o l

n r g n i l r d y t r u e

o u t r o o t n

I n g u e s s xn p u t g x g

= = = =

< < >

< < > > =

` `

i

b e g in

s e n d

r e

in i t ia

c e i e

l ly

v

2 2

*

 :    r d y = t r u e

             

                  n < ( 1)

                       :

                               :

                             

 

  :

   

 

i g

i i

r i

r d

c h

y f a l s e

g n i

e c k

l

≤ +

=

=

=

i f

 t h e n  f o r  a l l o n d o

 i f

 t h e n

                            ( , " " , , )

                               

                     

  

     * a s k  f o r  a n o th e r  r o o t*

 n e x t :        

o u t r o o t n r

s k ip

r d y f a l s e n

< < < > > >

=

s e n d

e x i t

  f i  e n d

             e l s e f i

i f t h e n : 1; :

                                   

n r d y t r u e

s k ip

= + =

e l s e f i

e n d



Picture of a Computation
1 2

3

4

5

loc(1) loc(2) loc(3) loc(4) loc(5)

@
ȇ ȇ ȇ
1 1 1<s ,a ,m > t+1 @

ȇ ȇ ȇ
2 2 2<s ,a ,m > t+1 @

ȇ ȇ ȇ
3 3 3<s ,a ,m > t+1 @

ȇ ȇ ȇ
4 4 4<s ,a ,m > t+1 @

ȇ ȇ ȇ
5 5 5<s ,a ,m > t+1

@1 1 1<s ,a ,m > t @2 2 2<s ,a ,m > t @3 3 3<s ,a ,m > t @4 4 4<s ,a ,m > t @5 5 5<s ,a ,m > t



Computational Rules for Distributed realizers

The reduction rules for Message Automata are 

not fully deterministic because other processes 

change the communication links, and a 

scheduler is needed to pick the action.

The semantics assumes a scheduler for each 

process and allows for an unbounded number 

of outcomes in one reduction step of a single 

action.
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Working Material

Chapter I Computational Type Theory

2.3.7  Propositions as types

Naïve Computational Type Theory

12 Computational Complexity

Reading for Lecture 2



1. Write a proof of:

Without using excluded middle, and produce the evidence.

2. Write a program that adds assertions to the state

such that when the while program halts type Root(n,r) has an 

element, the evidence for its truth

Exercise Lecture 2

: ; : ; : ; : , : }n r a A b B c C` `

: . : . ( , ) : . : . ( , )y B x A R x y x A y B R x y∀ ⇒ ∀



Propositions (cont.)

So (a=a in A) is true whenever it is well formed! As a 

proposition it cannot be denied as long as is sensible.  

So (x=x in A) is a curiosity as a proposition because 

it does not make sense to assume it, as in (x=x in 

A) P since to know that this is a sensible proposition 

is to already know that (x=x in A) is true.

So (x=x in A) behaves like x A. It is true as a 

proposition precisely when a A is a correct judgment.  

(In Nuprl x A abbreviates x=x in A.



Type

ax (a=b in A)

Proposition

– we know a equals b in A

It might seem strange that a proposition can also be a type and 

that a type can also be a proposition.  But we will see that all

propositions can naturally be construed as types.  This is the 

propositions-as-types principle.

empty   (0=1 in N)

ax (0 1 in N)

– there is no evidence that 0=1

– there is evidence that 0 is not 

equal to 1 in N

Propositions (cont.)



Efficient Root Program

The interactive code and the recursive program are both very inefficient.  

It is easy to make the recursive program efficient.

0
2

0

0

0

root(n) :   n=0    0
  r  = root (n/4) 

(2 r +1) n
2 r +1

 2 r

                  since if  n 0, n/4 n

=

⋅ ≤
⋅

⋅

≠ <

if then
else  let in

if  
                  then 
                  else  fi
                  fi

This is an efficient recursive function, but why is it correct?



A Theorem that Roots Exist (Can be Found)

2 2

0 0 0

Theorem :  . :  .  ( , )

Pf by 

   Base    0  let    0

   Induction case  assume :  .  ( ,  / 4)

   Choose     where       / 4  (   1)

 

efficient in

     note            

ductio

  4

n

n r Root r n

n r

r Root r n

r r n r

∀ ∃

= =
∃

≤ < +

` `

`

2 2 2

0 0 0 0

0 0

2

0

2 2

0 0 0

   4 ( 1) 4 8 4

       thus              2    ( )  2 ( 1)

          if  (2 1)    then    2   1

         since    (2 )   4 8 4

         else     2    since

r n r r r

r root n r

r n r r

r r r

r r

⋅ ≤ < ⋅ + = ⋅ + ⋅ +

⋅ ≤ < ⋅ +

⋅ + ≤ = × +

⋅ = ⋅ + ⋅ +

= × 2 2

0 0   (2 )   (2 1)r n r⋅ ≤ < ⋅ +

Qed



Exercise

2

2

r :  0; r n
(r 1) n  

        r :  r 1
    
    R oot( r

 

n , )

= ≤
+ ≤

= +
W h ile d o

od

Show how to create a realizer for Root(n,r)

in:



1

Lecture 3

A Theory of Events

Robert L. Constable

Marktoberdorf Lecture 3
July 2007
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The Challenge

The logic and technology of functional programs are 

elegant and useful.

So are high level procedural logics (no pointers), 

especially asserted programming logics (from the 

1970’s onward to industrial tools). 

Can we find an elegant theory of distributed 

processes with process extraction capability? What 

is the right specification language?
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Outline

1. Introduction

2. Event Structures

3. Process Extraction from Proofs
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Events in Space/Time
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Intro to Event Systems

We captured a semantics for processes in the standard 

asynchronous message passing distributed computing models.  

Our design of the Logic of Events was strongly informed by 

the systems group and partners. 

We captured the conceptual level at which the protocol 

designers worked. 

event based analysis

high level atomicity
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Intro to Event Systems, continued

We then abstracted many high level distributed 

system concepts into an accessible logic with practical 

value: many details can be automatically added back 

by the extractors.

to MA

to Java
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Intro to Event Systems, continued

The level of abstraction we achieved, reveals 

many interpretations, “good science stories,”

as well as good “technology stories.”

The general setting is observables in 

time/space.

Space: locations at which “things happen”

Time: events happening at locations.
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Relationship to Winskel, Lamport

As in Leslie Lamport’s papers, there is no 
global clock, only causal order on events
Events include

-local action
-send a message
-receive a message
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Outline

1. Introduction

2. Event Structures

3. Process Extraction from Proofs
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Events with Order (EOrder)

Here is the signature of events with order.  

We need the large type Dis of discrete

small types (those with decidable 

equality).  Let Dis be this large type.

E: Dis

Loc: Dis

pred?: E å E å E + Loc

sender?: E å E + Unit
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EOrder Axioms

Axiom 1: For any event e that emits a signal, we can find an 
event e’ by which e is received.

Axiom 2: The predecessor function, pred?, is injective

(one-to-one).

Axiom 3: The predecessor relation, x L y, is strongly well 
founded, where x L y iff for y not the first event

x = pred?(y) or x = sender?(y).  Namely, there is a function 
from E to Nat such that x L y implies f(x) < f(y).
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Progression of Event Structures

We progressively define the following richer structures

EOrder – events with causal order

EValue – events have values, val(e)

EState – locations have state, temporal operators

initially, when, after

ECom – communication topology is given by a graph

Etime – real time is added

ETrans – transition function (for security 

applications).
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Event Structures (with state)
Discrete types: Events (E), Loc, Actions (Act), 

Tag, Link (L)

{ } { }
{ }

→
→

→

¬ →

→
→ →

→
→

→ →
→ →

→ →

loc: E Loc

kind: E KND

first: E B

pred: e: x:E| first(x) x:E|loc(x)=loc(e)

snder: x:E|kind(x)=rcv E

<:E E B

Ty: E Type

val: x:E Ty(x)

T: x:Id i:Loc Type

: x : Id e : E T(loc(e), x)

: x : Id e : E T(loc(e), x)

when

after

initi → →: x : Id i : Loc T(i, x)al
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Example – Two-Phase Handshake

S R

{ }

{ }

{ }

,

,

: | ( )

: | ( , )

: | ( )

p

p l p

p l p

E e E loc e p

Snd e E sends e l nul

Rcv e E kind e is receive on l

= =

= ≠

=
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Deriving the Two-Phase Handshake

( )
1 21 2 1 2 1 21 ∀ < ⇒ < <S,l S,l() e ,e : Snd . r : Rcv . e e e r e฀ ූ

We illustrate this process by deriving a protocol for the two-phase 

handshake from a proof that its specification is realizable.

( )
2 11 2 1 2 1 2 1 1 2 22 ∀ < ⇒ < < <R,l R,l( ) e ,e : Snd . r,r : Rcv . e e r e r e฀ ූ

S R

e1

r

e2

e2

e1
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Picture of a Computation
1 2

3

4

5

loc(1) loc(2) loc(3) loc(4) loc(5)

@ȇ ȇ ȇ
1 1 1<s ,a ,m > t+1 @ȇ ȇ ȇ

2 2 2<s ,a ,m > t+1 @ȇ ȇ ȇ
3 3 3<s ,a ,m > t+1 @ȇ ȇ ȇ

4 4 4<s ,a ,m > t+1 @ȇ ȇ ȇ
5 5 5<s ,a ,m > t+1

@1 1 1<s ,a ,m > t @2 2 2<s ,a ,m > t @3 3 3<s ,a ,m > t @4 4 4<s ,a ,m > t @5 5 5<s ,a ,m > t
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Executions of Distributed Systems

Executions of distributed systems are event structures in a natural way.  

In Mark’s Feasibility Theorem, executions are:

( )
( )

( )

Atȱeachȱmomentȱofȱtime,ȱaȱprocessȱatȱ ȱis inȱaȱ ,ȱ ,ȱ
andȱtheȱlinksȱareȱlistsȱofȱtaggedȱmessages,ȱ . ȱAtȱeachȱ
locusȱ ȱandȱtimeȱ ,ȱthereȱisȱanȱaction,ȱ ,ȱtaken.ȱȱTheȱ
actionȱcanȱbeȱnull

stat

,

ȱ

ȱ

e

i.e

s i t

m l t

i t

i

t ai

,

,

,

.,ȱnoȱstateȱchange,ȱnoȱreceives,ȱ
henceȱnoȱsends.

The execution of a process (Message Automaton) is the set of all event 

structures consistent with it.
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Fair-Fifo Executions

We assume executions are fair: channels are loss-less; and fifo: messages 

are received in the order sent.

1. Onlyȱtheȱprocessȱatȱ ȱcanȱsendȱmessages onȱlinks
originatingȱatȱ .

i

i

2. Aȱreceiveȱactionȱatȱ ȱmustȱbeȱonȱaȱlinkȱwhoseȱdestination
isȱ ȱandȱwhoseȱmessageȱisȱatȱtheȱheadȱofȱtheȱqueueȱonȱthatȱlink.

i

i

1

3. Thereȱcanȱbeȱ ȱthatȱleaveȱaȱstateȱunchangedȱbetweennullȱac
ȱandȱ

tions

.+t t

4. Everyȱqueueȱisȱexaminedȱ ,ȱandȱifȱitȱis nonempty,

aȱmessag

infini

eȱisȱd
telyȱ

elive

often

red.

5. Theȱ ȱofȱeveryȱlocalȱactionȱisȱexamined infinitely

oftenȱandȱifȱtrueȱtheȱactio
prec

nȱis
ondition

taken.
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Outline

• Introduction

• Event Structures

• Process Extraction from Proofs
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Recall Functional Program 

Synthesis

ȱ : ȱȱ : ȱȱ ȱȱȱȱȱ ȱȱȱȱȱ∀ ∃
1 2

| x A. y B. R(x, y) ex (gt , gC )

1 11
H | G , e t gx ȱȱ ȱȱ

22 2
H | G ex gt
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Refinements for Programs
( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( )
( )

( )( )

( )

1

2

x : A. y : B. R x,y ext x.

x : A y : B. R x,y ext cut x,z. ;

by cut L

.x : A,z : L y : B. R x,y ext

by D g x,

g x,z

z

cut x,

x : A

z.g x,z

,z :

l x

g

L R x,g x,z

.x : A L ext

b

x,z

l x

y

;l xλA

A

A

7 9

A

A

ී ූ

ූ

ූ
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Refinements for Systems
( )

( ) ( ) ( )( )

( )
( ) ( ) ( )

( )
( ) ( ) ( )

1 1 1

1 1 1

2 2 2

2 2

1

1 1 1 1

2

2 2 2 2 2

1

2

System. es : ES D .

R es ext Comp ,

by Comp

.D : System G,Loc,Lnk

es : ES D R es ext

.D : System G,Loc,Lnk

es : ES D

pf pf D ,eD ,es

pf

R es

s

pf D ,esext

D ,es

A

A

A

ූD : ී
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Two-Phase Handshake Theorem

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
Theo

<

er m:

s se,e :Snd .e e r : Rcv .e r e∀ < ⇒ ∃ <1 2 1 2 1 2

Whatȱareȱtheȱconsequencesȱofȱ ?<e e1 2

S  sent two messages

Can we infer further consequences?

Relate send events to knowledge, create a boolean variable rdy

•Require rdy to be true when a send event occurs

•Require rdy to be false after a send event e
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Two-Phase Handshake

ȱȱ ȱ ȱ ȱ ȱ ȱ ȱ
Theorem:

Howȱtoȱestablishȱthisȱbyȱreas
ȱ ȱ

o

ȱ
g

ȱ
nin ?

s se,e :Snd .e e r : Rcv .e r e∀ < ⇒ ∃ < <1 2 1 2 1 2

1

2

Supposeȱ ȱareȱsendsȱonȱlinkȱ ȱfromȱS
Thenȱbyȱ ȱ ȱafterȱ )ȱȱ=ȱfalse.
ȱȱSinceȱ ȱisȱaȱsend,ȱ ȱmustȱbeȱtrueȱatȱ ȱbyȱ
ȱȱThereforeȱsomeȱeventȱ beforeȱ ȱandȱafterȱ ȱ
ȱȱmustȱsetȱ ȱtoȱtrue.
ȱ

<

′ 
.

e e ,

(rdy e

e rdy e

e e e

rdy

L

L

1

2

1 2

2

2 1

`

ȱByȱ ȱtheȱeventȱ mustȱbeȱreceivedȱfromȱ ȱon linkȱ
ȱȱLetȱ ȱbeȱthisȱ
fȱweȱhaveȱtheȱlemmas,ȱthenȱtheȱtheoremȱisȱtrue.

′ ′.
′.

Ι

e R

r e

L3 `
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Lemmas

ȱ

L1.ȱȱIfȱ ȱsendsȱonȱlinkȱ ȱthenȱitȱwaitsȱ
ȱȱȱȱȱȱȱ

L2.ȱȱ ȱsendsȱonȱlinkȱ ȱonlyȱwhenȱ trueȱ
ȱȱȱȱȱȱȱ

L3.ȱȱAfterȱ ȱonȱlinkȱ ȱsendsȱitȱisȱr

: ȱ( ȱafterȱ )ȱ=ȱfalse

:ȱ ( ȱwhenȱ )ȱ=ȱt

eadyȱon

rue

=

∀

∀

s,

s,

eSnd rdy e

e Snd r

S

S rdy

S

dy e

`

`

`

`

`

ȱȱȱ ȱchangesȱ

lyȱafterȱan

ȱ
ȱȱȱȱȱȱȱȱackn

toȱtrueȱ ȱ
owledgementȱonȱlinkȱ

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱisȱaȱreceiveȱfromȱ ȱonȱlinkȱȱ

′
    ∀ :   ⇒

′.
s,e Snd e rdy

e R

`

`

`



27

Realizing the Lemmas - 1
L1.ȱȱ ȱ ȱ( ȱafterȱ )ȱ=ȱfalse
ȱȱȱȱȱȱȱWeȱcanȱrequireȱthatȱtheȱsendsȱonȱ ȱareȱcausedȱ
ȱȱȱȱȱȱȱȱbyȱtheȱactionȱofȱsettingȱ ȱtoȱfalse.ȱ
ȱȱȱȱȱȱ

rdy

a:ȱrdy:=ȱfalse;ȱsendȱ(ȱȱȱȱȱȱȱ ȱ<ȱȱȱ
ȱȱȱȱȱȱȱWeȱals

>

∀ s,

, t

e : Snd . rdy

ag, m )

e`

`

`

oȱrequireȱthatȱ
ȱȱȱȱȱȱȱThisȱisȱaȱframeȱcondition.
L2.ȱȱ : ȱ.ȱ( ȱwhenȱ )ȱ=ȱtrue
ȱȱȱȱȱȱWeȱrequireȱtheȱ ȱonȱ

onlyȱa

th

a

eȱactionȱaȱ
ȱȱȱȱȱȱȱthatȱrdyȱ=ȱtrue
ȱȱȱȱȱȱȱ

ctionȱaȱcanȱsendȱonȱ

precondition

ȱȱȱ ȱȱȱ :ȱ

∀ s,

.

e Snd rdy e`

`

ȱpre(rdyȱ=ȱtrue)ȱ ȱrdy:=ȱfalse;ȱsendȱ(⇒ < >, tag, m )`
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Realizing the Lemmas - 2

L3:ȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱkind( ȱonȱ

Weȱstipulateȱthatȱaȱreceiveȱsetsȱ ȱtoȱtrueȱ
ȱȱȱȱȱȱȱȱandȱthatoȱ .ȱ
ȱȱȱȱȱȱȱȱȱȱȱȱȱ

nlyȱaȱrcvȱorȱaȱcanȱchangeȱr
rdy

dy

s,e:Snd .(e rdy) true)

e) rcv

∀ Δ = ⇒
= ′

         

`

`

b:ȱrcv( ,ȱm)ȱ ȱrdy:=ȱfalse
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱ onlyȱ[a,b]ȱaffeȱȱȱȱ ȱȱ(fra

ȱȱȱȱȱ
mectȱrd ȱcon on)y diti

′ ⇒`
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Handshake Message Automation

2

1

1

actionȱlocalȱ(a)ȱsendsȱonȱ ȱ<ȱ
onlyȱ[a]ȱsendsȱonȱ
stateȱ ȱ ;ȱinitiallyȱrdyȱ=ȱtrue
preconditionȱaȱisȱrdyȱ=ȱtrue
ȱȱȱȱȱȱȱȱeffectȱlocalȱ(a)ȱrdyȱ:=ȱfalse
actionȱ ȱ :ȱ ȱ
ȱȱȱȱȱȱȱȱeffectȱrd

tag,v

rdy :

rcv ack Atom

>

< >`

`
`

B฀ 

2

yȱ:=ȱtrue
onlyȱ[localȱ(a),ȱ ȱ<ack>]ȱaffectȱrdyrcv`
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Question

Is the theorem true,

if we extend the automaton?
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Outline

1. Introduction

2. Event Structures

3. Process Extraction from Proof

Examples – two phase handshake

-- leader election in a ring

Realizers

Realizability Theorems



32

Specification for Leader Election in a Ring

Leader Election

In a Ring R of Processes with Unique Identifiers (uid’s)

Specification

Let R be a non-empty list of locations linked in a ring

2

6

1

3

45

Ȭ1

k

Let ȱn( )ȱ= ȱdst(ou t( )) ȱthe ȱ
Let ȱp( )ȱ= ȱn ( ) ȱthe ȱ
Let ȱd( ,j)Ȭ k 1.ȱn ( )ȱ= ȱj,ȱth

next ȱlocation
predecessor ȱlocation

d istancee ȱ
ȱȱȱȱȱȱȱNote

ȱ
ȱ

fr

p (j) d ( ,p (j))ȱ= ȱd( ,j)Ȭl
om ȱ ȱto ȱj

.

i i ,

i i ,

i i

i i i

iμ ≥
≠ ⇒
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Specification, continued

( )
( )

Leaderȱ(R,es)ȱ==ȱ ȱldr:ȱR.ȱ e@ldr.ȱkind(e)=leader &

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱ i:R.ȱ e@i.ȱkind(e)=leader i=ldr

∃ ∃

∀ ∀ ⇒

Theoremȱȱȱȱȱȱȱȱ ȱR:List(Loc).ȱRing(R)
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱD:Dsys(R).ȱFeasible(D)ȱ&
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ es:ȱES.ȱConsistent(D,es).ȱLeader(R,es)

∀
∃
∀
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Logically Decomposing the Leader Election Task

( )( )

[

LetȱLE(R,es)ȱ==ȱ i:R.

ȱȱȱȱȱȱȱ1.ȱ e.ȱkind(e)=rcv(out(i),ȱ<vote,uid(i)>)

ȱȱȱȱȱȱȱ2.ȱ e.ȱkind(e)=rcvȱ(in(i),ȱ<vote,u>)

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ u>uid(i) e .kind(e )=rcv out(i),<vote,u>

ȱȱȱȱȱȱȱ3.ȱ e .ȱ kind(e )=rcv(o

∀
∃

∀ ⇒

′ ′⇒ ∃

′ ′∀ ( )
( )( ) ]

ut(i),ȱ<vote,uid(i)>)

ȱȱȱȱȱȱȱȱȱȱȱ e. kind(e)=rcv(in(i),ȱ<vote,u>)& eȱ<ȱe ȱ& ȱu>ȱuid(i)

ȱȱȱȱȱȱȱ4.ȱ e@i.ȱkind(e)=rcv(in(i),uid(i)) ȱ e @i.ȱkind(e )=leader

ȱȱȱȱȱȱȱ5.ȱ e@i.ȱkind(e)=leader.ȱ e@i.ȱkind(e)=rcv in(

∨

′∃

′ ′∀ ∃

∀ ∃

.

( )i),ȱ<vote,uid(i)>
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Realizing Leader Election

( )

Theoremȱȱȱȱȱȱȱȱ : ȱ
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ : ȱ
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ : ȱ

∀
∃

∀ ⇒

R List(Loc).Ring(R)

D Dsys(R).Feasible(D).

esConsistent(D,es). LE(R,es) Leader(R,es)

{ } 1

1

Proof:ȱȱȱȱȱȱȱȱLetȱ thenȱ .

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱWeȱproveȱthatȱ ȱusingȱthreeȱsimpleȱlemmas.

= ∈ =

=

-

-

m max uid(i)| i R , ldr uid (m)

ldr uid (m)
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Intuitive argument that a leader is elected

1. Every i will get a vote from predecessor for the 

predecessor. 

2. When a process i gets a vote u from its predecessor with u

with u > uid(i) it sends it on.

3. Every rcv is either vote of predecessor rcvin(i) for itself or 

itself or a vote larger than process id before.

4. If a processor sets a vote for itself, it declares itself ldr.

ldr.

5. If a processor declares ldr it got a vote for itself.

p(i)

i

in(i) = 

out(p(i))

out(i)

n(i)
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Lemmas
( )

( )
inductionȱonȱdistanceȱofȱ ȱ

Lemmaȱ1.ȱȱȱȱȱȱȱ ȱ ȱ < ȱ >

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱByȱ .

Lemmaȱ2.ȱȱȱȱȱȱȱ ȱ ȱ < >

ȱȱ

toȱ

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ

∀ ∃ =

∀ ∀ =

i l

i : R. e @ i.kind(e) rcv in(i), vote, ldr

i,j : R. e @ i.kind(e) rcv in(i), vote,j .

dr

( )

( )

ȱȱȱȱȱȱȱȱ
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱByȱ .

Le

inductionȱonȱcausalȱorderȱofȱ ȱeven
mmaȱ3.ȱȱȱȱȱȱȱȱ ȱ ȱ

Ifȱ ,ȱthenȱbyȱpropertyȱ5,ȱ

ts

= ∨ <

′ ′∀ ∀ = ⇒ =

′ = ∃

j ldr d(ldr,j) d(ldr,i)

i : R. e @ i. kind(e) leader i ldr

kind(e) leader v @ i.r

rcv

cv in(( )
( )

( )

< >

Hence,ȱbyȱLemmaȱ2ȱȱ
butȱtheȱrightȱdisjunctȱisȱimpossible.

Finally,ȱfromȱpropertyȱ4,ȱitȱisȱenoughȱtoȱknow
ȱ < ȱ >

whichȱfollowsȱfromȱ

= ∨ <

∃ =

i), vote,uid(i) .

i ldr d(ldr,i) d(ldr,i)

e.kind(e) rcv in(ldr), vote, uid(ldr)

Lemmaȱ1.

QED
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Realizing the clauses of LE(R,es)

We need to show that each clause of LE(R,es) can be 

implemented by a piece of a distributed system, and then show 

the pieces are compatible and feasible.

We can accomplish this very logically using these Lemmas:

̇Constant Lemma

̇Send Once Lemma

̇Recognizer Lemma

̇Trigger Lemma
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Implementing Clause 1 of LE(R,es)

( )1.ȱȱȱ < >∃ =e.kind(e) rcv out(i), vote,uid(i)

We need to send <vote,uid(i)> from each                           location 

i.

∀ =e @ i.(me e) uid(i) when 

The Send Once Lemma lets the process at i send uid(i)

( )< >∃ =e.kind(e) rcv out(i), vote,uid(i)

i

n(i)

out(i)

The Constant Lemma allows us to create a state variable me at each 

i with me=uid(i)
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Implementing Clauses 4, 5 of LE(R,es)

We can instantiate the Trigger Lemma to obtain

( )
ȱȱȱȱȱ
ȱȱȱȱȱȱȱȱȱȱȱȱ ȱ ȱ < >

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱ < >

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱ

∀
′ ′∀ =

′∃ < =
∀ = ⇒

′ ′∃ =

i : Loc.

e @ i.kind(e) leader.

e @ i.e e.kind(e) rcv(in(i), vote,uid(i))

e @ i.kind(e) rcv(in(i), vote,uid(i) )

e @ i.kind(e) leader
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Leader Election Message Automaton

( )

stateȱ ;ȱinitiallyȱ ( )

stateȱ ;ȱinitiallyȱ
stateȱ ;ȱinitiallyȱ
actionȱ ;ȱpreconditionȱ
ȱȱȱȱȱeffectȱ =ȱ
ȱȱȱȱȱsendsȱ[ ( ),ȱ , ]

actionȱ ( )( ) ;

ȱȱȱȱȱ
in( i )

me : uid i

done : B false

x : B false

vote done

done : true

msg out i vote me

rcv vote v :

¬

’

’

( )

{ }

sendsȱifȱ ȱthenȱȱ[ ( ),ȱ , ]ȱelse[]
ȱȱȱȱȱeffectȱ =ȱifȱ ȱthenȱ ȱelseȱ
actionȱ ;ȱpreconditionȱ
onlyȱ ( )ȱaffectsȱ
onlyȱ ȱaffectsȱ

onlyȱ ,ȱ ( ) send

in( i )

in( i )

v me msg out i vote v

x : me v true x

leader x true

rcv vote x

vote done

vote rcv vote

>

=
=

sȱ ȱ( ),ȱout i vote
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Outline

• Introduction

• Event Structures

• Process Extraction from Proof

Examples – two phase handshake

-- leader election in a ring

Realizers

Realizability Theorems
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Realizable specifications

initial -- gives the value of a variable

effect -- defines a change of state based on an action

frame -- limits actions that can change a variable

pre -- takes an action if a precondition is true

sends -- sends tagged messages on a specified link

sframe -- limits actions that can send
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Realizing Primitive Event Specifications

initial (usingȱMessageȱAutomata)

p(initialȱ(x,i))

frame

Defineȱx eȱasȱxȱafterȱ

ȱ
ȱȱȱȱȱȱȱȱȱ@iȱstateȱx:T;ȱinitiallyȱp(x)
realizesȱ:ȱ

ȱȱȱȱȱȱȱȱȱ
ȱȱȱȱȱȱȱȱȱ@iȱonlyȱLȱaffectsȱx
realizesȱ:ȱ

eȱ ȱxȱwhenȱe

e@i.ȱ(x e kind(e

≠

∀ ⇒

J

J ) ȱL)∈
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Effect lemma

1 2ȱȱ@iȱȱȱȱstateȱȱx:T ;ȱȱactionȱk:T
ȱȱȱȱȱȱȱȱȱȱk(v)ȱeffectȱx:ȱ=ȱf(sȱwhenȱe,ȱvalȱ(

e@i.ȱkind(e)=kȱ
ȱȱȱȱȱȱȱȱȱȱȱȱ

e))

realizes

ȱȱȱȱȱȱȱȱȱxȱ

effectȱȱȱȱȱȱ

afterȱeȱ=ȱf(sȱwhenȱe,ȱvalȱ(e))

ȱȱȱ

ȱȱȱȱȱȱȱȱȱȱ

;

∀ ⇒
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ȱ ȱ ȱ ȱ ȱ
ȱȱȱȱ ȱ ȱ ȱ ȱ
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ
ȱȱȱ ȱ

pre

ȱȱȱȱ@iȱactionȱk:T;ȱk(v)ȱpreconditionȱp(s,v)
realizes:

ȱȱȱȱ

ȱ

e@i.(kind(e) k p(swhere, val(e)))

& e@i. e'@i.e e' &

(kind(e') k v : T. p(safter e',v))

& v : T.p(init

∀ = ⇒
∀ ∃ ≤

= ∨ ∀ ¬
∃

Theȱskolemȱfunctionȱinȱtheȱ ȱ ȱclause
givesȱaȱȈscheduleȈȱforȱtheȱaction

ȱ ȱ

ȱk

ȱ ȱȱ

.

(es)(i), v) e

e e'

: E. loc(e) i

∀ ∃

⇒ ∃ =
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Compound Realizers

Realizers are built by combining the six basic clauses. In the concrete case 

of Message Automata, the clauses are just joined by union. In the 

abstract setting, there is a combining operator, 

⊕
1 2

R R .
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es-realizer

def

Realizer

ȱrec( .Unit

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ+ ×

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ+Id× :Type×Id×

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ+Id×Type×ID×(KndList)
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ+IdLnk×Id×(KndList)
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ+Id× : :Idȱfp Type×Knd

≡

→

X

X X

T T

ds x ( )× :Type× :Id× State DeclaredType ;

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ+ : :Idȱfp Type

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ×Knd
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ× :Type

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ×IdLnk
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ× : :Idȱfp Type

ȱȱȱȱȱ

→ →

→

→

T x (ds) T (ds x)

ds x

T

dt x

( )ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ× ( :Id (State( ) (DeclaredType( ; )ȱList)))ȱList
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ+Id : :Idȱfp Type×Id× :Type×(State Prop)

× → →

× → → →

tg ds T dt tg

ds x T (ds) T
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Compatibility
Arbitrary compositions,                 might not be compatible. For 

example, R1 might be a frame condition that says 

R1: only action k can change x and

R2: action       changes x for some 

1 2
R R⊕

Also compatible realizers must have compatible types

R1: declares x to be of type T1

R2: declares x to be of type T2

We must have

k k'≠k'

ȱȱȱȱ ȱȱorȱȱ ȱȱȱȱȱ
1 2 2 1
T T T T๤ ๤
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Compatibility, continued

Compatibility is defined by 15 conditions from the 6 by 6 matrix of 

possibilities (half minus the diagonal). They are not decidable in 

theory but are in practice.
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Outline

• Introduction

• Event Structures

• Process Extraction from Proof

Examples – two phase handshake

-- leader election in a ring

Realizers

Realizability Theorems
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Consistency
If P is any event specification, then the type theory expression of the goal 

is this

ȱȱ ȱ :∃ ∀
⇒

| D : DSyst.Feasible(D)& esES.

Consistent(D,es) P(es)

We say that Feasible(D) if D has at least one execution.

We say Consistent(D,es) provided es is an event system that arises 

from a possible execution of D.
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Feasibility

A realizer R is feasible if it has an execution. For this to be possible, the 

clauses of R must be compatible and the types of variables, event 

values, and message content must be nonempty.
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Computability 

One of the main theorems of Bickford’s massive library is that if 

distributed system D is feasible, then we can construct the possible 

executions, worlds, of it.

Moreover, from a world W of D, we can construct event systems for D, 

es(D), consistent with it. 

Consistent(D,es)

This is a constructive proof, as are all in the library. So it defines the 

computational rules for the realizers given a schedule.
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Running Distributed Systems Generate Event 

Structures

Theorem 1

ForȱallȱDSysȱD,ȱȱFeasible(D) w:World.ȱPossible(D,w)⇒ ∃

Theorem 2

( )
ForȱallȱDSysȱDȱandȱallȱPossibleȱWorldsȱwȱofȱD,
weȱcan eȱ sbu (wildȱanȱEventStructureȱ ȱConsistent D,ȱes) (w) .
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Logic of Events, circa 2007

What distinguishes our event structures approach?

-based directly on Leslie Lamport’s insights; 

type theory captures them naturally

-used by distributed computing researchers, matches their 
their intuitions

-integrated into LPE, hence into procedural programming

-completely formalized

-supports proofs-as-processes of synthesis and programming
programming

-widely applicable: verification, optimization, documentation, 
documentation, security, performance

-organizes a fundamental set of concepts
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Exercise

Specify that a group of processes all have 

the same function for integer root in their 

state.  
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• =
•

=
•
•

•
n n

n

@ i x : T v

@ i k(v : t) x

x : f state f

@ i a(v t) P state v

k(v : T)

[tg, f state v; ...; tg , f state v]

@ i [k, ..., k ]

1 1

1

ȱ ȱ ȱȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ
ȱȱȱȱ ȱ ȱ ȱ
ȱ ȱ ȱ : ȱisȱ ȱ ȱ
ȱȱ ȱ ȱ

initially

effect on

precondition

sendsȱonȱlink l

only

ȱ
ȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱsendsȱo

• ⊕ 
tg

A B A,Bȱȱ ,ȱw
nȱ

hereȱ ȱareȱme
linkȱlȱwithȱta

ssageȱa
g

utomata

Message Automata Clauses
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Reliability, Correctness, and Security

Reliability and correctness are properties of software 

that make sense in even the simplest computer models 

– functional code on one processor.

Security is a sensible property for the distributed 

computing model of which the Internet is an instance.



Secure Communication

A building block concept for security properties on 

Internet computing systems is secure communications, 

i.e. process A can send content in messages to process B

that no other process learns.

Typically this property is achieved by encrypting the 

messages in such a way that only B can encrypt them, 

thus a process C that intercepts the message does not 

learn the content.



Agents

Protected information content

Learning content

Essential Elements of Security Models



Outline

Motivation

security models

a new model

Unguessable Atoms

Type Atom (Urelements)

Properties

Permutation Rule

Independence

Content does not involve Atom a 

Rules

Applications (nonces)

Conclusion to Series



Bickford’s Analysis

There are two kinds of security models

Analytic Algebraic

learning    

Acquiring

to learn is to 

acquire

general 

computation

restricted 

computation

≠



Analytic Model

Computation system includes all computer 

programs.

Agents can guess content, so learning is not 

the same as acquiring. Learning definitions 

can depend on resource bounds of agents, 

thus on computational complexity, and on 

probability assumptions about “cracking a 

code.”



Algebraic Model (Dolev-Yao ’83)

To learn the content is to acquire it or 

generate it – guessing is disallowed.

Protected information is a finitely generated 

algebra over atomic pieces (keys, nonces, 

atomic messages).



New Security Model

Mark Bickford proposed a way to use elements of Type 

Theory inspired by our digital library work to create a new 

security model which combines a generally model of 

computation with a simple model of learning protected 

information, namely 

learning is acquiring.

all programs



In a general model of computation, agents 

can guess secrets by enumerating all 

possible content.  

How to prevent that!

Answer: protected content is built from 

unguessable atoms.

How is this possible?



Here are the properties we want.

They are elements of a primitive type, in fact the 

CTT type Atom, included since 1984 but with an 

additional rule. (A major advantage of the open-

ended nature of CTT.)  The only operations on 

atoms is to 

compare them for identity

They cannot be generated or constructed from other 

elements.  Otherwise, they behave as ordinary data 

elements.

What is an unguessable atom?



In the working material, the paper by Stuart Allen 

entitled: An Abstract Semantics for Atoms in 

Nuprl, provides the semantics for Atoms and 

explains why they are “unguessable.”

It is only 10 pages of content.  

I hope you will read pages 4 – 7.

Reading about Atoms in Nuprl



The closest concept in Set Theory to Atoms 

is the notion of urelement.  These are atomic 

non-set primitive elements.  Some accounts 

of them might be useful in a classical 

account of security.

Atoms and Urelements

Sets Types

Urelements Atoms



On urelements in computation

Andreas Blass, Yuri Gurevich, and 

Saharori Shelah, Choiceless Polynomial

Time, Annals of Puter and Applied Logic, 

100, 1999, 141-187.

Citation



• Atoms are not enumerable, not infinite.  Yet they 

are not of a fixed finite cardinality.

• The canonical elements are token{i:ut} where 

the class assigned to an unhideable token is a 

parameter D, some discrete class.

• The semantics quantifies over all possible values 

for a discrete D (this is a supervaluation

semantics).  

• token{i:ut} reduces to itself, i.e. is canonical.

• Equality is decidable on Atom

• For any k, we can pick out k atoms from Atom.

Properties of Atoms



• For any character string a, token{a:ut} is 

a possible instance of the semantics (see 

Allen p.6, True+).

• If the elements of D are unhideable in 

definitions (occur on both left and right 

sides) and if the evaluation rules respect 

permutation of the names in D, then any 

sequent J true of k atoms, J (a,b,c,…), is 

true for any permutation a to a1, b to b1, 

…, i.e. J(a1,b1,c1,…).

Properties of Atoms continued



f(x)= = if x=1 then token(a) else token(b) fi

is not a legal definition because a, b do not appear 

on the left hand side.  

f{a,b}(x)= = …would be legal.

It is illegal to introduce a term, say oups, and have a 

rule oups Ļ token(a).

Examples
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Tracking atoms in a distributed computation

We want to track when a process acquires an 

unguessable atom.  It does so when its state depends 

on that atom.  This happens only because the state 

initially has the atom or because it was received in a 

message since it is not possible for a process to 

construct an atom it does not already have.

We express this idea by talking about a state being 

independent of an atom up to some receive event.



Independence Rules

Here are the key rules for the proposition (x:tŒa) which 

expresses “x of type T is independent of atom a.”

Triviality (t has no atoms)

HŌ (t:T Œa)

HŌ t ɽT
HŌ a ɽ Atom

t is closed and mentions 

no tokens



Independence Rules

Base (t is a different atom)

H Ō (t: AtomŒa)

H Ō ¬(t=a in Atom)

Application (key rule)

H Ō (f(t):B[t/ȣ] Œa )

H Ō( f:(ȣ:AĺB Œa )

H Ō (t:AŒa)



Independence Rules

Absurdity (a depends on a)

H Ō ¬ (a:Atom Œa)

Set (separating predicate is irrelevant)

H Ō (t:{x:T|P}Œa)

H Ō (t:TŒa)

H Ō t in {x:T | P}



Independence Rules

Equality

H Ō (t1:T1Œa1) = (t2:T2 Œa2)

H Ō T1=T2 in Type

H Ō t1=t2 in T

H Ō a1 = a2 in Atom

This allows us to build up independence 

from pieces.



Basic Facts

We can prove general facts such as 

Theorem

We proceed by induction on I (upwards and 

downwards) starting from the fact that 0 is a 

closed term with no atoms.  Going upwards, 

if             , then                     since         is( : )z a¦ ( 1: )z a+ ¦ 1z +

( . 1)( ) and ( . 1) 
     is a closed term with no atoms 
     and the application rule applies

x x z x x+ +

Qed.

: . : .( : )a Atom z z a∀ ∀ ¦ ¦
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Here is a way to specify security properties depending 

on a  cryptographic service.  First we specify the service 

with a predicate Pcrypto and the security property with 

Qsecure.  Then we show that some message automaton M 

realizes  Pcrypto Qsecure.

Ō (Pcrypto Qsecure) extract M

Specifying Security Properties

⇒

⇒



A Security Property

Suppose we want to say that a group of agents will share a 

common secret.  Let the agents be at locations on the list L.

The safety specification is that the state of any agent not on 

L is always independent of a secret a.

The liveness part is that eventually all agents on L receive 

the secret.

The full specification is

1( ) .[ ( ) (( ( ( ))  e) )]Q a e loc e L state loc e when a== ∀ ∈ ∨

2 ( ) . .( ( ) & (  when ) )Q a i i L e loc e i x e a== ∀ ∈ ⇒ ∃ = =

1 2: . ( ) & ( )a Atom Q a Q a∃



Cryptographic Services

Mark Bickford and Robbert van Rennesse have modeled a 

Public Key Cryptography service in the Logic of Events using 

atoms.  It is sketched in a forthcoming article by Bickford:

Unguessable Atoms: A Logical Foundation for 

Security Supported by the Information Assurance 

Institute at Cornell.

We will look at a simpler service, providing nonces.



A simple nonce service

We can equip Message Automata to choose nonces by taking 

a nonce to be a distinct unguessable value, an atom.  One way 

to do this is to assume that every agent has a supply of atoms 

unique to itself.  We call this the 

Nonce Assumption

, : .  : . (Nonces initially ) ( )i j Loc i j a Atoma i j a∀ ≠ ⇒∀ ∈ ⇒



Implementing Atoms

To generate real code from the Message Automata that 

use Atoms to provide cryptographic services, we would 

resort to the standard technique of using random bit 

strings or RSA style public key that depend on 

computational complexity results and one-way functions.



We have shown how public trust in information technology relies 

on a partnership between computer scientists and mathematicians -

especially logicians.

The computer scientist must abstract away detail to present  

concepts that are mathematically tractable yet faithful to computing 

practice and capable of information and guiding the technology. 

For example: 

•The digital abstraction

•Automata and state machines

•Induction and recursion 

•Computability

•Data and types

•Formal correctness

•Asynchronous distributed computing 

•Event structures

Series Conclusion



Computer Science Practice – “the stack”, translators

Models Code People

On-line banking 

model 

(logic book)

Secure aps

(thru provers)
banking sys

Aps programmer

Aps theory

(transaction design)

Protocols IOA, MA 
ASM

Middleware Syst. Prog. 

Distrib sys theory

Computable function 

models

Prog languages 

procedural, declarative

Computer writer

computer theory

Semantics

Concurrency, file syst Operating system

Virtual machines

Syst programmer 

Os theory

Modeling and 
simulation languages

Assembler

Handware

Computer engineer

architect

This is how we span levels of abstraction



Series Conclusion Continued

We have presented a correct-by-construction 

refinement methodology for distributed 

computing, a long standing challenge, and a 

capability more critical than in the functional 

case.

We have integrated a logic for the event 

structure abstraction into the comprehensive 

theory of computing serving computer science, 

and have shown how to include security 

properties in a novel and formally tractable way.
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