Formal Logical Methods for System Security and Correctness

Logical Foundations of Computer Security

Lecture 1
Robert L. Constable

Cornell University
Department of Computer Science

Marktoberdorf, Germany — Summer 2007

Lecture 1.

Lecture 2.

Lecture 3.

Lecture 4.

Course Outline

Basis for trust:
Elements of a Theory of Computing

Programs, Processes, and Realizers

A Theory of Events

Formal Basis for Security Properties

Series Introduction and Type Theory Basics

Motivation: Provide the logical foundations necessary for
a trusted information technology, specifically to:

Formally validate system designs with respect to intent
Synthesize systems provably faithful to intent
Explain verified code and safely modify and maintain 1t

Protect and secure systems and data

We must be able to express intent formally and then
systematically refine the level of detail presented until we can
guarantee 1ts correct execution on available hardware.

These lectures will be about formalisms used at the highest
levels of abstraction and about their translation to running code.
For me the key formalism 1s type theory, as contrasted with
category theory, set theory, algebra, or a high level programming
language or informal specification language.

Applied set theory is a closely related approach as in the

B-Tool of Abrial. Type theory concepts are programming
concepts and thus a basis for synthesis in which the conceptual
distance between intent and action is the closest. We exploit this
advantage.

Focus of Lecture 1

Security, correctness and trust are related.

To incorporate security services into software,
they must first be understood in computing

theory, e.g. cryptography.

Security services are effective only 1f elements
of software are correct, and correctness must also
be part of computer science theory . Computer
Science 1tself 1s trusted in relation to the larger
“organized scientific enterprise,” especially
mathematics. So computing theory must connect
to the appropriate mathematics, e.g. types to sets.

Focus of Lecture 1 continued

The security mechanism that we introduce 1n Lecture 4
depends on type theory elements of computing theory.
These elements are understood and trusted in
relationship to set theory, and to programming

language concepts.

This lecture lays the foundation for the security
mechanisms and the distributed computing model in
which they are used. Lecture 2 presents the model and
Lecture 3 1ts logic.

Computer Science Practice — *‘the stack”, translators

Models Code

People

On-line banking
model
(logic book)

Secure aps
(thru provers)
banking sys

Aps programmer
|:Aps theory
(transaction design)

Protocols IOA, MA
ASM

Middleware

#

[Syst. Prog.
Distrib sys theory

|

Computable function
models

Prog languages

procedural, declarative computer theory

|:Computer writer
Semantics

Concurrency, file syst Operating system

Virtual machines

Syst programmer
Os theory

Assembler
Handware

Modeling and

Computer engineer
simulation languages [

architect

S S -
.____«._________«._________

This 1s how we span levels of abstraction

How the stacks are grounded

Models Code People

ol

CS Theory Hardware Computer
Mathematics Physics Science &

(Set Theory) Engineering

Refining the Questionaire

What 1s type?
What is a set?

What 1s a recursive function?
What is a computable function?
What 1s a finite automaton?
What 1s a regular expression?

Can you synthesize an automaton
from a regular expression?
Do you know Java, ML, Lisp, or Scheme?

Historical Perspective

John McCarthy

proposed a theory of computing in 1961 that has motivated many.

Scott Hoare
Dijkstra Milner
De Bruijn Girard
Martin-Lof

This theory has inspired the MOD series. It in turn was enabled by
Alonzo Church’s work in the 30’s / 40’s.

e.g. A calculus — Lisp

Simple Theory of Types — HOL

Historical Perspective

McCarthy said in A Basis for a Mathematical
Theory of Computation...

“Computation 1s sure to become one of the most
important of the sciences.”

“This 1s because 1t 1s the science of how machines
can be made to carryout intellectual processes.”

Historical Perspective

McCarthy’s Elements of a Theory of Computation

. Expressive notation for computable functions (including partial
functions)

. Transforming non-computable specifications to computable
ones (an MOD Blue theme)

. Notation for “data spaces” (Hoare)

. Study of equivalence of notations for (partial) functions —

recursion induction (Scott extended, Milner implemented)

. Integrating functional and imperative (Algol-like) notations
(Hoare, Dijkstra Programming Logics)

. Proof checking and proof generation (Milner onward).

Expressing Tasks Declaratively

- Sample statement in a Logic of Events

Given a network of at least n processes, suppose m <n of them are
organized into a ring R and requests are sent to elect a leader, then there
will exist a unique process declared to be the leader in R.

- Compare this to

Every positive number can be factored in to a product of prime
powers,e.g. 1=2"6=2".3" etc.

- Compare to

Every planar graph G can be colored by four colors.

The regions of any simple planar map can be colored with only four
colors in such a way that any two adjacent regions have different
colors.

Formalizing Tasks

For formalization, detail matters — too much detail for most
people. Consider the simple examples above.
Factoring

Vn: N."3F : (PrimePower) List. prod (F)=n

or

Vn:{i:N ‘ 1<i} AF : (Prime) List. prod (F)=n

or

Vn :N.3JF : (Prime)List. prod (F)=n

where prod (nil) =1.

Formalizing Complex Tasks

The detail for the ring of processes example i1s
much more extensive, especially for real code
— see Morrisett.

How can we digest such detail and connect 1t to our
intuitive thinking? We need computer assistance.

How does formal detail of processes and events
relate to detail about imperative programs,
functional programs and functions?

These are typical 1ssues faced in my lectures.

Formalization Issues

Consider the formal details about numbers.
John Harrison connects such details to hardware
implementations of floating point numbers.
That detail 1s mainly for specialists.

What about Iy, the numbers that God gave us,
not Intel?

Natural Numbers
N=1{0,1,...,10,11,...,36,...100,...1000000,...}

What are these?

Numbers

Set Theory: they are sets, elements of the
axiomatic inductive set, Inf, 1.e.

¢ € Inf and if x € Inf then x U {x} € Inf
Let s(x)=xuU{x}, then

x € Inf

g < Inf s(x) e Inf

Such a set 1s inductive.

Computing with Numbers

Rules for computing are in a metalanguage

xe(0==

Xe(n+l)==(XxXen)+x

Justified in terms of set theory, but computation
1s external to set theory.

Numbers

Type Theory: the canonical numbers are elements
of the axiomatic inductive type

Oe N andifn e N thens(n) e N

or the elements are

nat{n :number} n a decimal numeral

the noncanonical numbers are expressions

that reduce to canonical numbers,

e.s. 2+2,31,2° etc.

This is an example of Per Martin-L6f’s semantic
method.

For numbers in type theory, the theory tells us how to
compute. See Naive Type Theory section 9.

Formalization Continued - Functions

The theorem Vn : N3F : (Prime)List.prod(F)=n
tells us that there 1s a function
factor :N — (Prime) List
factor(1) = nil
Jactor(2) =1{2}
Jactor(3) = {3}
factor(4) ={2,2}
What 1s a function from A to B?

informal mathematics: a rule of correspondence from A to B

Set Theory:

A functional relation on A x B, 1.¢€. a single-valued
set of ordered pairs

I — P(A x B) such that
VxeA.dy.:B.<x,y>eF &
Vp.q:F 1t fst(p)= Jst(q)
then snd(p) =snd(q)

Computation 1s external to ZFC set theory

Formalization of Functions Continued

Type theory: a lambda term A(x.b)

such that for alla € A,bla/x] e B

The lambda term 1s the effective rule.

We can apply 1t to elements of A,
ap(A(x.b);a) reduces to whatever
bla / x] reduces to.

Notice that such a definition 1s the operational

definition in functional programming languages.

Computing in Type Theory

Here 1s multiplication 1n type theory,

A lambda term using a fixed point combinator

fix(f. A(x,y. if x=0then O else y + f(x —1, y)fi))

Questions

IsAx.])=A(x.x/x) n(Q— Q)?
IsA(x.A(y.0))=A4(y.0)?

Formalization — Functions Continued

In Computational Type Theory (CTT) and Intuitionistic
Type Theory (ITT) functions are polymorphic. This 1s a
major departure from Set Theory. For example, A(x.x)

is the identity function in every function type A > A |

even 1f A 1s empty. In Set Theory there 1s no such function.
The function hd (L)taking the head of a list 1s polymorphic.
We will see that this difference 1s important in defining data
types and subtyping.

Note in CIC, the type theory of Coq, functions,Ax:A . b

are monomorphic.

Questions

Does Java have polymorphic functions?

Is 0 polymorphic because it belongs to
N, Z, Q, R?
Is N a subset of Q?

Totalizing Functions

Set theory 1s easily able to make all functions total.

For example, we can extend integer + to any set.
n + A =n for any set A not an integer.

In type theory i1t is not possible to make every function
total.

We can’t tell of an expression A whether it 1s an integer
or not and trying to compute n + exp might diverge 1f
exp diverges.

[t 1s very annoying when a set theory formalization uses
the “totalizing trick” to make a theory look simple,
because that approach does not work constructively.

Formalizations Continued

The factorization theorem used A Lists, lists of
clements of type A. We can imagine theorems
using other recursive data structures such as trees,
queues, stacks, streams, etc.

How are these defined?

Set Theory:

In set theory, the poylmorphic list concept where A 1s any set
requires the notion of an inductive class. Typically these are
defined as fixed points of monotonic functions over the class
of all sets, and the fixed point is guaranteed by a cardinality
argument.

List(A)= AU (A x List(A))
or
List(A)=1® (A x List(A))

These are monotone functions on set, so they have fixed
points, €.g. the set

AUAXAUAX(AXA)U...

Type Theory:

Recursive types are built by a primitive construction, say
ux.F(x) where F(x) 1s a type expression in x, €.g.

List(A) = uY .(1® AxY).

It suffices for most purposes to use one inductive type, a

W-type (Martin-Lof) to encode recursive ordinals

uW.(x:Ax (B, ->W))

Formalization
Recall the formulation

Vn:{i:N ‘1 <i}.dF :(Prime)List.prod(F)=n

The type {i:N ‘1 <i} seems like a normal set formed

by separation, but in type theory it also has computational

significance, namely the function

factor: {i:N ‘1 <i}— (Prime)List
does not take evidence for 1<i as input

Otherwise, the separation type {x : A ‘B} is like the
corresponding subset of A.

Equality

In Set Theory, equality on the natural numbers reduces to
equality of sets. Consider:

O0=¢ 1={g; 2={9,i9}} 3={9.i9}.10.10}}}..
This 1s also 0,{0},{0,1},{0,1,2}...

Notice {@,{d}} = {{@}, ¢} which is a bit more interesting
than 2=2.

In Type Theory, two numbers are equal precisely when they
have identical canonical forms. So 2=2 is true and axiomatic.
Where 1+1=2 1s interesting.

Top Type

Type Theory has collections and objects not found in classical
set theory. For example, Top 1s the type of all closed
constructions, considered equal. So it has one element, on the
other hand, it has all elements, e.g. ANTop=A and

A C Top for any type A. Top is a signature type for semantic
polymorphism a feature exploited by CTT but not by ITT. In
CTT, terms with nonterminating reductions are members, such
as fix(x.x).

Intersection

In Set Theory AN B = {x:A‘xeB}

In Type Theory:
a=bmANBifa=binA anda=b in B

{(x:A|P}{x:A]Q}={x:A|P &0}

Notice that Z, "2, =%, e.g. 0 = ,6 and 0=,6
It 1s easier to compute with Z//E, than with Z/E,

Dependent Intersection
In Type Theory x : A N B_ 1s the set of all elements
x of A such thatx € B,

Subtyping
The type A is a subtype of B iff
1. Any element of A is an element of B.

2. |f two elements are equal in A then they are equal
In B.
Examples:
A & Top
Void E A
{x:A | P[x}} C A
A A//R
{1,2,3} £ z £ zZ,CZ

Subtyping relations

If AC A and BE B’ then:

A+B EA'"+B’

AxB EA’xB’

A’ >B E A B’
{x:A|P(x)} EA

Irn
>

ANB

Ir
w

ANB
A

M
i
~
~
=

A

Irn

AUB
A

Ir

Top

Records Naively

There are many ways to capture the concept of a record. For

example,
{x:A; y:B; z:C}

can be definedas 2 x (B x C) and the field selectors can

be defined as functions on tuples, say
x== A(r.lof(r))
yv== A(r.lof (20f(r)))

7 == k(r.ZOf(ZOf(r)))

Naive Record Extension

We can provide for record extension by adding Top as a last

component of any record

Records == T:U;, X Top

We build up the previous record as follows:

R, == AXTop
R, == AX(BxTop)

R, == AX(Bx(CxTop))

Naive Record Subtyping

Notice that:
R,ER;, since AEA, BxTopE Top
R;,ER, since AEA, Bx(CxTop) EBxTop

R, € Records since A €U;, (BxTop) € Top

Records Using Labels

Another approach to records is to take labels, L, as

indexes into components.
Given {x:A; y:B; 2:C}
take L:{XIYIZ}/ L EAtom

Define Sig:L —>U;, Dby
1f j=x then A
else 1f j=y then B else C

Define the record type as x: L — Sig(x) .

We now take

{x:A;

Records as Functions

v:B; z:C} == x:L—=>S1g(

re {x:A; yv:B; z:C},
r.1 == r (1)

r.xe€eA, r.veB, r.zeC

b

Records Extension Using Labels

Consider {x:A; y:B; z:C; w:D}.
Is this a subrecord of {x:A; v:B; z:C}?
To examine this, let L' ={x, v, z, w}.

Notice I, E L.'.

Define Sig’ (i)=if i=w then D else Sig(i).
Notice x:L’—>Sig’ (x) Ex:L—>Sig(x)

because LE L’ and Sig’ (x) ESig(x) for x e L.

Record Extension Depends on Function
Polymorphism

X:L'">S1g’ (x) Ex:L—>S1g(x)

because any functionr’ in x:L’—>Sig’ (x) is a function

mx:L —Sig(x).

Given inputs from L, x and y, r’ (x)e Sig’ (x) and

Sig’ (x)=Sig(x), r’'(y)e Sig’(y)=Sig(y).

Tension between Types and Computation

Lisp community like to say that Lisp 1s “typeless.”

More accurately, it is very polymorphic.

Summary of Sets and Types

Types

void

N

{x:A | P}
AXB
ANB

A+B
A—>B

X:A—>B,

x:AXxB
A (A)
p(x.F)
AllE

Reading for Lecture 1

On types
Working Material Chapter 1 Computational Type Theory
2.3 Intuitionistic Type Theory
2.4.1 Subset and Quotient Types
2.5.1 Subtyping
2.5.2 Top
2.5.3 Records
2.6.2 Dependent records
Also Naive Computational Type Theory
9. Logic and the Peano Axioms

10. Structures, records, and classes

Exercises

» Use AxB, A//E to explain the difference between fractions
and rational numbers (Q).

«Can you define Q sothat ZCQ ?

Call a type discrete 1f its equality 1s decidable.

*How can we say that N, Q are discrete?

Is N = N discrete?
Define: a@ /! =if a=nilthen /
else hd(a)e (t/(a)@?) fi

Is L@l,@t;)= @t,)@l,
a polymorphic fact or a typed fact?

You guys are both my witnesses... He insinuated that

ZFC set theory is superior to Type Theory!

Relationship to Other Lectures

John Mitchell — Protocol Logic, verification and checking tools
Gilles Barthe — Coq certification of security protocols

Helmut Schwichtenberg — Proof with feasible computational content
John Harrison — Interactive and automatic theorem proving
Javier Esparza — Software model checking

Martin Hyland — Models of recursion and induction

Also ties to Greg Morrisett, Tobias Nipkow, Martin
Hoffman, Orna Grumberg, and Stan Wainer

Other connections may unfold.

Standard Methodology

(basis for trusted semantics)

Programming Language Programming Language

Computational notations

- e

Set Theory
(ZFC)

Proposed Modification

Set Theory Computational

IZF + C

or Type Theory

Computation

(evaluation rules)

More About Types

Types rather than sets because of:
Computability

Constructive logic
Subtyping, inheritance
Openness (extensibility)

Computability requires access to

Structure
Canonical values

Computation rules

Abstractness comes from equality.

Formal Logical Methods for System Security and Correctness

Logical Foundations of Computer Security
Lecture 2

Programs, Processes, and Realizers

Robert L. Constable

Cornell University
Department of Computer Science

Marktoberdorf, Germany — Summer 2007

Programs, Processes, and Realizers

This lecture provides a basis for relating programs and processes to
declarative statements.

One relationship starts with a program, say a function
f: A—B
And asserts properties of it, typically

Vx:A R, f (X))

Another relationship starts with a property and finds a function that has it,
typically given

Vx:A.dy:B.R(x,y)

Find the function that produces a value in B satisfying R given a value in
A. The function 1s part of a realizer for the formula

Realizers

When we start with a property or a specification or a goal we say
that the function realizes the specification or goal.

Consider: In the logic literature

Vx :A.R(X, f (X))

Vx:A.dy:B.R(X,y)

Lecture 2 Plan

We will see in detail how to construct realizers from proofs of
logical formulas by examining an evidence semantics for formulas.
This semantics for constructive logic is known as the
Brouwer/Heyting/Kolmogorov (BHK) Semantics, and it 1s
computational. It can be presented in

Computational Type Theory (CTT).

See Naive Computational Type Theory section 9

MOD 88 Assigning Meaning to Proofs

Lecture 2 - Outline

Semantics of Evidence
Constructive Semantics
Example

Semantics of Proof Objects
Imperative Realizers

Distributed Realizers

Semantics of evidence

Given a formula A, we will define the set or type of objects that

count as evidence that A 1s true in a model 7%, denote it [[A]]%

Sometimes we suppress the model.

Truth and Evidence:

We expect that there is evidence if A is true in 7Z. thus

ac[A] ifF,A

If A is false, then |IA]] = ¢, and if A is true, then [[A]] #= @

Propositional Evidence

Suppose that we have evidence sets for the atomic propositions
A,B,C,...

Here 1s how to construct evidence for compound formulas:

[A&B|==[A]x|B]

|AvB|
[A= B]
||

Evidence for Quantified Statements

|[3x:AB_ |=x:[|A]x|B,]

|vx:AB |=x:[|A]|—>|B,]

Semantics of Proof Terms

A classical axiom - excluded middle

FPv—P BY Magic(P)

Magic(P)e| Pv—P]|

Constructive Semantics

If we look only at constructive logic and use types
instead of sets, then the semantics of evidence 1s
constructive; it 1s the Brouwer/Heyting/Kolmogorov

semantics.

We recover a classical (Tarski) semantics using

Magic(P) as an oracle.

Formulas and Problems

Here 1s how we interpret the statements of a typed predicate logic

constructively.

For atomic predicates to assert or solve P(t;, ..., t) means to provide a

proof or a construction p(tl, ..., tn)

If P,Q are problem statements (predicate formulas), then to assert

P & Q means to find proofs or constructions p and q for P, Q

respectively.

Pv Q means to find a proof or construction p for P and mark it as
applying to P or to find a proof or construction q for Q and

mark it as applying to Q.

Formulas and Problems, continued

P = Q means to find an effective procedure f that takes a proof or
construction p for P and computes p for P and computes f(p) a

proof or construction for Q.
means that there is no proof or construction for P.

means that there is an effective procedure f that takes any

element of type A, say a, and computes a proof or construction
f(a) for P[a/x].

means that we can construct an object a of type A and find a
proof or construction p, of P[a/x], taken together, <a,p_ >
solves this problem or proves this formula.

Programming by refinement

Finding realizers for a goal G can be accomplished by a
refinement process.

Vx:A.dy: BxB,. R (x, fst(y)) & R,(x,snd(y))

We might decompose this goal into two subgoals

x:A}3y:BxB,. (R &R,)
\
x:Al dy:B, R, x:Al Jy:B,.R,

Integer Square Root

Proof of Root Theorem
Vn : N. dr : N. r2£n<(r+1)2
BY allR
n: N
- 3r : N. r? £n<(r+1)2
BY Natlnd 1

- 3r : N. r° SO<(r+1)2
BY existsR | 0| THEN Auto

i : N, r: N, rzéi—1<(r-|—1)2
~ Jr : N. rZSi<(r—|—1)2
BY Decide [(L + 1)2 < i—‘ THEN Auto

Proof of Root Theorem (cont.)

i« N, r: N, r Si—1<(r+1)2, (r+1)2 <
- 3r : N. r? Si<(r+1)2
BY existsR |_L + 1_| THEN Auto'

i : N, r: N, rzﬁi—1<(r+1)2, —|((r+l)2ﬁi)

- 3r : N. r° £i<(r+1)2
BY existsR |_L—| THEN Auto

The Root Program Extract

Here 1s the extract term for this proof in ML
notation with proof terms (pf) included:

let rec sqrt i =
if i = 0then < 0, pf, >
elselet < r, pfi_; >= sqrt(i -]
inif (r + 1)2 < n then < r + 1, pf; >

else < r, pf;' >

A Recursive Program for Integer Roots

Here 1s a very clean functional program

r(n):=if n=0 then O
else letr, =1 (n-1) in
if (r, +1)°<nthenr, +1
else 1, fi
fi

This program 1is close to a declarative
mathematical description of roots given by the
following theorem.

Theorem Vrn: N. dr: N. Root (r.n)

Proof by induction
Base n = 0 take r = 0, clearly Root (0,0)

Induction assume dr : N.Root (r, n-1)
Choose r, where Root(r,,n-1), ie. r,”<n-1 < (r,+1)’
(r, +1)°<m v n< (r, +1)°
case (r, +1)’ <m thenr = (r,+1)

r,+D)*<n < ((r,+1’ < (r,+2)%)

casen < (r,+1)* thenr = r, since r,<n-1< n.

Qed

Deduction Systems

HOL, Nuprl and PVS all use a version of
Gentzen’s sequents to organize proofs.

H,.,H, G or Hy,.,H, F G,.. G,

HFG HF G

Typically, hypotheses are named; in Nuprl we use:

X1 :Hyy oy Xt Hy B G (Xyy ey Xy) €Xt g (Xqy ey X))

Semantics of Proof Terms - Example

n:N F3rN. R(n,r) BY existsR(O, pf)

n:NF R@n,0) BY pf

The evidence for dr : N. R(n,r) should
be a pair which 1s what the proof provides
(0, pf) written existsR(O, pf)

Semantics of Proof Terms - Example

n:NF 3r:N. R(n,r) BY existsR(0, pf)

< \Jj
n:NF R@n,0) BY pf

The evidence for dr : N. R(n,r) should
be a pair which 1s what the proof provides
(0, pf) written existsR(O, pf)

H

Semantics of Proof Terms

Example

- A & B BY andR{pfa, pfb)
HI A pfa

HF A pfb

The evidence forA & B should

be an element of [A & B pair,
{pfa, pfb), the meaning of the proof

term andR(pfa, pfb).

Semantics of Proof Terms

Example

HFA & B BY andR{pfa, pfb)
nra e~
HF A pfb
The evidence forA & B should
be an element of |A & B| pair,

{ pfa, pfb), the meaning of the proof
term andR(pfa, pfb).

Semantics of Proof Terms

H FVx:A. R(x) BY allR(x. pfb)

H,x:A F R(x) BY pfb

Semantics of Proof Terms

HI Vx:A. Rx) BY all R(x. pfb)

S
_Q
H, x:AF R(x)BY pfb

Constructive Semantics

Notice that the proof term corresponding to

Vx:A.R is dllR(x.pf)

This should denote an element of X : [[A]] — [[Rx]]
namely A(x.pf).

In the constructive case, this function should be
computable. We get this result when the
evidence sets are types.

Lecture 2 - Outline

Semantics of Evidence
Constructive Semantics
Example

Semantics of Proof Objects
Imperative Realizers

Distributed Realizers

From functional realizers to imperative realizers

Mainstream programming uses state. We need state for
distributed computing. Can we extend the realizability
interpretation to include state? The simplest way to
include state 1s to model it 1n the existing theory along
the lines shown in Lecture 1 - use (dependent) records.

An Interative Program for Integer Roots

r:= 0;
While (r+1)° <n do

r = r+1

An Interative Program
for Integer Roots, continued

r:= 0;
While (r+1)> <n do

r = r+1

od
n<(r+1)°

A Program for Integer Roots With Assertions

= 0:r><n

While (r+1)° <n do
(r+1)> <n
r = r+1

2
r n

od
r’ <n
n<(r+1)°

This program suggests a precise specification

Root (r,n) iff r°< n<(r+1)°

2 . . .
r- < nis an ivariant

While loop realizer

Vs {n:N; r:N}. ds":{n:N;r:N}. Root(s.n, s".r)

The proof will build the while loop root finder and
apply it to a state 5" where s".» =0. Thus
s".r =root(s').

Lecture 2 - Outline

Semantics of Evidence
Constructive Semantics
Example

Semantics of Proof Objects
Imperative Realizers

Distributed Realizers

Computations with state: terminating,
deterministic

S.:{n:N;r:N}

Computations with state: unbounded,
deterministic

S.:{n:N;p:{x: N‘Prime(x)}}

Computations with state: reactive, nondeterministic

in: Input, S: State,

out: Output

([01,8,,nil)
<nil, S| [2_5]>

<nil,s2,

3])

1,51,5,,[3,71)
5,81,s,,nil)

Computations with state: asynchronous, distributed

inputs

outputs
state

action

P. processes

communications channels

Processes are Message Automata

mitial

action: receive; effect; send

action: guard; effect; send

frame condition

Message Automata Clauses

@ix : T initially = v
Q@ 1 effectk(v : t)on x
= f state £

@ i precondition a(v:t)is P state v

k(v : T)sends on link 1

[(tgt, f1statev; ...; tgn fnstate v]
e @1ionlyfkt ..., kn]sendson link] with tag tg
e A ®B,where A, B are message automata

Message Automata — Guessing Roots

begin x,n,r :N, g : N List, rdy : Bool

initially n =2,r =0,g = nil,rdy = true

send(< out,< "root?",n >)
|*collect guesses*|
input receive(< In,< "guess",x >>);8 = X+g

|*check for a rootamong guesses so far*|
check : if rdy=true
then for alli on g do
if i’ <n<@+1)°
then r =1
rdy = false
g = nil
send (< out,< "root",< mn,r >>>)
exit
fiend
else skip fi
ask for another root

next: if rdy = false then n :=n + 1;rdy = true

else skip fi

end

Picture of a Computation

D:

i}
N

®

loc(1) loc(2) loc(3) loc(4) loc(5)

<s,;,a,,m>@t <s,,a,m,>@t <s;,a,m,>@t <s,a, m,>@t <S;,a;,m;>@t

SN R v

<s,,a,,m >@t+l <s,,a,m,>@t+l <s,;,a,,m,>@t+1 <s,,a,,m,>@t+1 <s;,a,,m,>@t+1

Computational Rules for Distributed realizers

The reduction rules for Message Automata are
not fully deterministic because other processes
change the communication links, and a
scheduler 1s needed to pick the action.

The semantics assumes a scheduler for each
process and allows for an unbounded number
of outcomes in one reduction step of a single
action.

Greeks

Kronecker
Brouwer

Weyl

Baire
Borel
Bishop

Gentzen
Heyting
Kleene
M-L

de Bruijn

Girard
Coquand

Programming Logics

McCarthy

Lip, functional
Scott / Strachey
Milner LCE
Kahn,

Manna

-
! -

| -

-
-
| -
-
| -
-
-
-
-
-
-
-

/ -

McCarthy Kieene -
Scott

(realizability)

Leibniz

-~ Church

Brouwer\

Kolmogorov

Martin-Lof

Reading for Lecture 2

Working Material
Chapter I Computational Type Theory
2.3."1 Propositions as types

Naive Computational Type Theory

12 Computational Complexity

Exercise Lecture 2

1. Write a proof of:
dy:BVx:AR(x,y)=Vx:Ady:B.R(x,y)

Without using excluded middle, and produce the evidence.

2. Write a program that adds assertions to the state
{n:N;r:N;a:A;b:B,c:C}

such that when the while program halts type Root(n,r) has an
element, the evidence for its truth

Propositions (cont.)

SO (a=a in A) is true whenever it is well formed! As a
proposition it cannot be denied as long as is sensible.

So (x=x in A) is a curiosity as a proposition because
It does not make sense to assume it, asin (x=x in

A) = P since to know that this is a sensible proposition
Is to already know that (x=x in A) is true.

So (x=x in A) behaveslike x € A. ltistrue as a
proposition precisely when a € A is a correct judgment.
(In Nuprl x € A abbreviates x=x in A.

Propositions (cont.)

Proposition

ax € (a=b in Aa) —we know a equalsb in A

empty (0=1 in N) -—thereis no evidence that 0=1

ax € (0#1 in N) —there is evidence that 0 is not
equalto 1in N

It might seem strange that a proposition can also be a type and
that a type can also be a proposition. But we will see that all
propositions can naturally be construed as types. This is the

propositions-as-types principle.

Efficient Root Program

The interactive code and the recursive program are both very inefficient.
It 1s easy to make the recursive program efficient.

root(n) : = if n=0 then O
else let 1, =root (n/4) in
if (2-1‘0+1)2 <n
then?2-r,+1
else 2 -1, fi
fi
sinceif n#0,n/4<n

This 1s an efficient recursive function, but why is it correct?

A Theorem that Roots Exist (Can be Found)

Theorem Vn: N. dr: N. Root (r,n)
Pf by efficient induction

Base n = 0 letr =0

Induction case assume dr: N.Root (r, n/4)
Choose r, where r’<n/4 < (r, + 1)
note 4-r023 n < 4-(r0-|—1)2:4-r02+8~r0+4
thus 2.r, <root (n) < 2-(r,+1)
if (2-r,+1)° <m then r = 2xr + 1
since (2+r))° = 4-r>+8-r,+4
else r = 2xr since (2-r0)2£n < (2-r0+1)2

Qed

Exercise

Show how to create a realizer for Root(n,r)

n:

r:=0:r°<n

W hile (r + 1)2 <ndo
r .= r+1
od
Root(n,r)

Lecture 3

A Theory of Events

Robert L. Constable

Marktoberdorf Lecture 3
July 2007

The Challenge

The logic and technology of functional programs are
elegant and useful.

So are high level procedural logics (no pointers),
especially asserted programming logics (from the
1970’s onward to industrial tools).

Can we find an elegant theory of distributed
processes with process extraction capability? What
1s the right specification language?

Outline

1. Introduction
2. Event Structures
3. Process Extraction from Proofs

Events in Space/Time

Intro to Event Systems

We captured a semantics for processes in the standard
asynchronous message passing distributed computing models.

Our design of the Logic of Events was strongly informed by
the systems group and partners.

We captured the conceptual level at which the protocol
designers worked.

event based analysis

high level atomicity

Intro to Event Systems, continued

We then abstracted many high level distributed
system concepts 1into an accessible logic with practical
value: many details can be automatically added back
by the extractors.

to MA

to Java

Intro to Event Systems, continued

The level of abstraction we achieved, reveals
many interpretations, “‘good science stories,”
as well as good “technology stories.”

The general setting 1s observables 1n
time/space.

Space: locations at which *“‘things happen™

Time: events happening at locations.

References

Leslie Lamport

Time, clocks and the ordering of events in a
distributed system, CAM 21, 1978

Glynn Winskel
Events in Computation
PhD Thesis, Univ. of Edinburgh, 1980

Relationship to Winskel, Lamport

As 1n Leslie Lamport’s papers, there 1s no

global clock, only causal order on events
Events include

-local action
-send a message
-receive a message

Outline

1. Introduction
2. Event Structures

3. Process Extraction from Proofs

Events with Order (EOrder)

Here 1s the signature of events with order.
We need the large type Dis of discrete
small types (those with decidable
equality). Let Dis be this large type.

E: Dis

Loc: Dis

pred?: E 2> E 2 E + Loc
sender?: E 2 E + Unit

EOrder Axioms

Axiom 1: For any event e that emits a signal, we can find an
event ¢’ by which e is received.

Axiom 2: The predecessor function, pred?, is injective
(one-to-one).

Axiom 3: The predecessor relation, X L y, 1s strongly well
founded, where x L y iff for y not the first event

x = pred?(y) or X = sender?(y). Namely, there 1s a function
from E to Nat such that x L y implies 1(x) < {(y).

Progression of Event Structures

We progressively define the following richer structures
EOrder — events with causal order
EValue — events have values, val(e)
EState — locations have state, temporal operators
initially, when, after
ECom — communication topology 1s given by a graph
Etime — real time 1s added

ETrans — transition function (for security
applications).

Event Structures (with state)

Discrete types: Events (E), Loc, Actions (Act),
Tag, Link (L)
loc: E — Loc

kind: E — KND
first: E —> B

pred: e:{x:E|-first(x)} - {x:E|loc(x)=loc(e)}

snder: {x:E|kind(x)=rcv} — E
<:BE - E — B

Ty: E — Type

val: x:E > Ty (x)

T: x:Id —» i:Loc — Type

when : x : Id > e : E —> T(loc(e), xX)
after : x : Id > e : E > T(loc(e), x)

initial : x : Id - 1 : Loc — T(i, x)

Example — Two-Phase Handshake

=0

E,={e:E|loc(e) =p}

Snd,, ={e:E,| sends(e,!) # nul}

Rev,, ={e: E,| kind(e) is receive on /|

Deriving the Two-Phase Handshake

We illustrate this process by deriving a protocol for the two-phase

handshake from a proof that its specification is realizable.

() Ve;, e, : Sndg,,. 3dr : Revg,,. (e < e = e < r < &)

(2) Ve, e, : Snd, ;.. dr,r : Rcvg,. e, < e =D <e <1n < e
17 €2 R, 1, 1r 2 R, 1, 1 2 1 1 2 2

(]
(]

r

S R
é:
;>‘ é:

Picture of a Computation

D:

i}
N

®

loc(1) loc(2) loc(3) loc(4) loc(5)

<s,;,a,,m>@t <s,,a,m,>@t <s;,a,m,>@t <s,a, m,>@t <S;,a;,m;>@t

SN R v

<s,,a,,m >@t+l <s,,a,m,>@t+l <s,;,a,,m,>@t+1 <s,,a,,m,>@t+1 <s;,a,,m,>@t+1
17

Executions of Distributed Systems

Executions of distributed systems are event structures in a natural way.

In Mark’s Feasibility Theorem, executions are:

At each moment of time, a process at 1 is in a state, s (1, t),
and the links are lists of tagged messages, m (1, t) . Ateach

locus i and time t, there is an action, a (i,), taken. The
action can be null, i.e., no state change, no receives,

hence no sends.

The execution of a process (Message Automaton) is the set of all event

structures consistent with it.

Fair-Fifo Executions

We assume executions are fair: channels are loss-less; and fifo: messages

are received in the order sent.

1. Only the process at / can send messages on links

originating at /.
2. A receive action at / must be on a link whose destination
is / and whose message is at the head of the queue on that link.

There can be null actions that leave a state unchanged between

{ and 7 +1.
Every queue is examined infinitely often, and if it is nonempty,

a message is delivered.

The precondition of every local action is examined infinitely
often and if true the action is taken.

19

Outline

e Introduction
e Event Structures

e Process Extraction from Proofs

Recall Functional Program
Synthesis

= Vx:A. dy:B. R(x, v

AN

H FG,extg, H, G, ext g,

Retfinements tor Programs

- Vx : A. 3y : B. R(x,y) ext Ax. cut (x, z.cix, z) ;1 (x))
x : A F dy : B. R (X, y) ext Gut (X, z.g (X, z) ;1 (X))\
by cut L /
l.x : A,z :LF3dy :B R(xy) ext g(x 2z
by D Tg(x, z)"
: A,z L I R(x,g(x,z))

Refinements for Systems
~ 3D : System. Ves : ES (D).

R (eS) ext Comp (pf1 (D1/ e51) ’ pfz (DZI e52))

by Comp

1.D, : System (G, Loc, Lnk)

es; : ES(D)) F Ry (es)) ext pf (D, es)

2.D, : System (G, Loc, Lnk)

es, : ES(D,) F R, (es,) ext pf, (D, es;)

Two-Phase Handshake Theorem

Theorem:

Vet,e2 :Snds.e1 < e2 = dr : Rcvs.e1 < r<eoz

What are the consequences of e1 < e2?

S sent two messages

Can we infer further consequences?

Relate send events to knowledge, create a boolean variable rdy
*Require rdy to be true when a send event occurs

*Require rdy to be false after a send event e

Two-Phase Handshake

Theorem:

Vet,e2 :Snds.e1t < e2 = dr : Rcvs.e1 < r < e2

How to establish this by reasoning?

Suppose et < ez are sends on link / from S,

Then by L+ (rdy after e1) = false.
Since ez is a send, rdy must be true at e2 by Lo.
Therefore some event €' before e2 and after e1
must set rdy to true.
By Ls the event €' must be received from R on link /.
Let r be this €'

If we have the lemmas, then the theorem is true.

L.emmas

L1. If S sends on link /¢ then it waits
Ve:Snds, ¢ (rdy after e) = false

L2. Ssendson link / only when rdy = true
Ve: Snds, ¢ (rdy when e) = true

L3. After S on link / sends it is ready only after an
acknowledgement on link /'
Ve :Snds, ¢ e changes rdy to true =

e is a receive from R on link 7'.

Realizing the Lemmas - 1

L1. Ve : Snds, ¢ . (rdy after e) = false
We can require that the sends on ¢ are caused
by the action of setting rdy to false.
a: rdy:= false; send (¢, <tag, m >)
We also require that only action a can send on /.
This is a frame condition.
L2. Ve:Snds, ¢ . (rdy when e) = true

We require the precondition on the action a

that rdy = true

a: pre(rdy =true) = rdy:=false;send (/, < tag, m >)

Realizing the Lemmas - 2

[3: Ve : Snds, ¢ . (€A rdy) = true) =
kind(e) = rcvon/
We stipulate that a receive sets rdy to true
and that only a rcv or a can change rdly.
b: rev(?, m) = rdy=false
only [ab] affect rdy (frame condition)

Handshake Message Automation

action local (a) sendson /i <tag, v >
only [a] sends on /i
state rdy : B ;initially rdy = true
precondition a is rdy = true

etfect local (a) rdy := false
actionrcve. < ack > :Atom

etfect rdy := true
only [local (a), rcve. <ack>] affect rdy

Question

Is the theorem true,
1f we extend the automaton?

Outline

1. Introduction
2. Event Structures
3. Process Extraction from Proof
Examples — two phase handshake
-- leader election 1n a ring
Realizers

Realizability Theorems

Specification for Leader Election in a Ring

Leader Election
In a Ring R of Processes with Unique Identifiers (uid’s)

Specification

Let R be a non-empty list of locations linked in a ring

@»@

R
@k ®
@‘ @l
Let n(i) = dst(out(i)), the nextlocation
Let p(i) =n"'(i), the predecessor location
Let d(i,j)-uk > 1.n"(i)=j, the distance from i to j
Note i # p(j) = d(i,p(j))=d(1,j)-l.

Specification, continued

Leader (R,es) == 3 1dr: R. (Je@ldr. kind(e)=leader) &
(Vi:R. Ve@i. kind(e)=leader = i=ldr)

Theorem V R:List(Loc). Ring(R)
3 D:Dsys(R). Feasible(D) &
Ves: ES. Consistent(D,es). Leader(R,es)

Logically Decomposing the Leader Election Task

Let LE(R,es) == Vi:R.
1. Je. kind(e)=rcv(out(i), <vote,uid(i)>)

2. Ve. kind(e)=rcv (in(i), <vote,u>) =

(u>uid(i) = Je'kind(e')=rcv (Out(i)/<V0te111>))

3.Ve'. [(kind(e')=rcv(out(i), <vote,uid(i)>)) v
Je. (kind(e)=rcv(in(i), <vote,u>)& (e <e’' & u>uid(i))) |

4. Ve@i. kind(e)=rcv(in(i),uid(i)). Je'@i. kind(e')=leader

5. Ve@i. kind(e)=leader. Je@i. kind(e)=rcv (in(i), <vote,uid(i)>)

Realizing Leader Election

Theorem VR:List(Loc) . Ring(R)
dD:Dsys(R) . Feasible(D) .
Ves:Consistent(D, es) . (LE(R, es) = Leader(R, es))

Proof: Letm = max {uid@d) | i € R}, then 1dr = uid '(m).

We prove that 1dr = uid™'(m) using three simple lemmas.

Intuitive argument that a leader 1s elected

1. Every i will get a vote from predecessor for the

predecessor.

in(i) =

2. When a process i gets a vote u from its predecessor with u out (p (1))

with u > uid(i) it sends it on.

out (1)

itself or a vote larger than process id before.

3. Every rcv s either vote of predecessor rcvin(i) for itself or :

4. If a processor sets a vote for itself, it declares itself 1dr.

1dr.

5. If a processor declares 1dr it got a vote for itself.

Lemmas

Lemmal. Vi : R.Je@i.kind(e) = rcv (in(d), <vote, 1ldr>)

By induction on distance of i to 1dr.

Lemma 2. Vi, j : R.Ve @i.kind(e) = rcv (in(i), <vote, 3>).
(j = 1dr v d(1dr, j) < d(1dr, 1))
By induction on causal order of rcv events.

Lemma3. Vi : R.Ve @i. (kind(e) = leader = i = 1dr)

If kind(e') = leader, then by property 5, 3v @ i.rcv (in(i), <vote, uid(i)>).
Hence, by Lemma?2 i = 1dr v (d(ldr, i) < d(1dr, 1))
but the right disjunct is impossible.

Finally, from property 4, it is enough to know
Jekind(e) = rcv (in(ldr), <vote, uid(ldr)>)

which follows from Lemma 1.

QED

Realizing the clauses of LE(R,es)

We need to show that each clause of LE (R, es) can be
implemented by a piece of a distributed system, and then show

the pieces are compatible and feasible.
We can accomplish this very logically using these Lemmas:
*Constant Lemma
*Send Once Lemma
"Recognizer Lemma

"Trigger Lemma

Implementing Clause 1 of LE(R,es)

1. dekind(e) rcv (out(i) , <vote, uid(i)>) @

out (i)

We need to send <vote, uid (1) > from each ILCE['[IOH

The Constant Lemma allows us to create a state variable me
1 with me=uid (1)

Ve @ i. (me when e) = uid(i)

The Send Once Lemma lets the process at 1 send uid (i)

Jekind(e) = rcv (out(i), <vote, uid(i)>)

Implementing Clauses 4, 5 of LE(R,es)

We can instantiate the Trigger Lemma to obtain

Vi : Loc.
Ve' @ ikind(e') = leader.
(Je@i.e < €. kind(e) = rcv(in(), <vote, uid(i)>))
Ve @ i.kind(e) = rcv(in(i), <vote, uid(d)>) =
Jde' @ 1. kind(e') = leader

Leader Election Message Automaton

state me : N; initially uid(7)
state done : B; initially false
state x : B; initially false
action vote; precondition —done
effect done : = true
sends [msg(out(i), vote,me)]
action rcv,, ;,(vote)(v) : N;
sends if v > me then [msg (out(i), vote,v)] else[]
effect x : = if me = v then true else x
action leader; precondition x = true
only rcv,,;,(vote) affects x

only vote affects done

only {vote, 0,)(vote)} sends out (1), vote

Outline

e Introduction
 Event Structures
e Process Extraction from Proof
Examples — two phase handshake
-- leader election 1n a ring
Realizers

Realizability Theorems

mitial

effect

frame

pre

sends

sframe

Realizable specifications

gives the value of a variable

defines a change of state based on an action
limits actions that can change a variable
takes an action if a precondition is true
sends tagged messages on a specified link

limits actions that can send

Realizing Primitive Event Specifications

initial (using Message Automata)
@i state x:T; initially p(x)

realizes : p(initial (x,1))

frame
Define xae as x aftere # xwhene
@i only L affects x

realizes : Ve@i. (xae = kind(e) € L)

Effect lemma

effect
@i state x:T,; action k:T;
k(v) effect x: = f(s when e, val (e))

realizes
Ye@i. kind(e)=k =

x after e = f(s when e, val (e))

pre

@i action k:T; k(v) precondition p(s,v)
realizes:

Ve @i. (kind(e) = k = p(swhere, val(e)))

& Ve@Qi.de'@Ri.e < e' &

kind(e') = k v Vv

: T.—p(saftere', v))
: T.p(dnit(es) (1), V)

= de : E. loc(e) = 1

& dv

The skolem function in the Ve 3e ' clause
gives a "schedule" for the action k.

Compound Realizers

Realizers are built by combining the six basic clauses. In the concrete case
of Message Automata, the clauses are just joined by union. In the

abstract setting, there is a combining operator,
R, ® R,.

es-realizer

Realizer
=, rec(X.Unit
+XxX
+IdxT:TypexIdxT
+IdxTypexIDx(KndList)
+IdLnkxIdx(KndList)
+Idxds:x:Id fp — TypexKndxT:Typexx:Idx(State(ds) - T — Declared Type(ds;x))
+ds:x:1d fp — Type
xKnd
xT:Type
x]dLnk
xdt:x:Id fp — Type
x((tg:Id x (State(ds) —» T — (Declared Type(dt;tg) List))) List)
+Id xds:x:1d fp — TypexIdxT:Typex(State(ds) - T — Prop)

Compatibility

Arbitrary compositions, R, @© Rmight not be compatible. For
example, R, might be a frame condition that says

R;: only action k can change x and

R,: action k ' changes x for some k # k'

Also compatible realizers must have compatible types

R;: declares x to be of type T,
R,: declares x to be of type T,

Wemusthave T E T, or T E T

Compatibility, continued

Compatibility 1s defined by 15 conditions from the 6 by 6 matrix of
possibilities (half minus the diagonal). They are not decidable in

theory but are 1n practice.

Outline

e Introduction
 Event Structures
e Process Extraction from Proof
Examples — two phase handshake
-- leader election 1n a ring
Realizers

Realizability Theorems

Consistency

If P is any event specification, then the type theory expression of the goal

1s this
|— dD : DSyst. FeasibleD) & Ves:ES.
Consistent(D, es) = P(es)

We say that Feasible (D) if D has at least one execution.

We say Consistent (D, es) provided es is an event system that arises

from a possible execution of D.

Feasibility

A realizer R 1s feasible if 1t has an execution. For this to be possible, the
clauses of R must be compatible and the types of variables, event

values, and message content must be nonempty.

Computability

One of the main theorems of Bickford’s massive library is that if
distributed system D is feasible, then we can construct the possible

executions, worlds, of it.

Moreover, from a world W of D, we can construct event systems for D,

es (D) , consistent with it.

Consistent (D, es)

This 1s a constructive proof, as are all in the library. So it defines the

computational rules for the realizers given a schedule.

Running Distributed Systems Generate Event
Structures

Theorem 1

For all DSys D, Feasible(D)= 3w:World. Possible(D,w)

Theorem 2

For all DSys D and all Possible Worlds w of D,

we can build an EventStructure es(w) Consistent(D, es(w)).

Logic of Events, circa 2007

What distinguishes our event structures approach?
-based directly on Leslie Lamport’s insights;
type theory captures them naturally

-used by distributed computing researchers, matches their
their intuitions

-integrated into LPE, hence into procedural programming
-completely formalized

-supports proofs-as-processes of synthesis and programming
programming

-widely applicable: verification, optimization, documentation,
documentation, security, performance

-organizes a fundamental set of concepts

Exercise

Specity that a group of processes all have
the same function for integer root in their
state.

Message Automata Clauses

@ix : T initially = v
Q@ 1 effectk(v : t)on x
= f state £

@ i precondition a(v:t)is P state v

k(v : T)sends on link 1

[(tgt, f1statev; ...; tgn fnstate v]
e @1ionlyfkt ..., kn]sendson link] with tag tg
e A ®B,where A, B are message automata

Citation

On urelements in computation

Andreas Blass, Yuri Gurevich, and Saharori
Shelah, Choiceless Polynomial Time,
Annals of Pure and Applied Logic, 100,
1999, 141-187.

Formal Basis for Security Properties

Lecture 4

Robert L. Constable
Joint with Mark Bickford

Marktoberdorf, Germany — Summer 2007

Reliability, Correctness, and Security

Reliability and correctness are properties of software
that make sense 1n even the simplest computer models
— functional code on one processor.

Security 1s a sensible property for the distributed
computing model of which the Internet is an instance.

Secure Communication

A building block concept for security properties on
Internet computing systems 1s secure communications,
1.e. process A can send content in messages to process B
that no other process learns.

Typically this property is achieved by encrypting the
messages in such a way that only B can encrypt them,
thus a process C that intercepts the message does not
learn the content.

Essential Elements of Security Models

Agents
Protected information content

Learning content

Outline

Motivation
security models
a new model
Unguessable Atoms
Type Atom (Urelements)
Properties

Permutation Rule
Independence
Content does not involve Atom a
Rules
Applications (nonces)
Conclusion to Series

Bickford’s Analysis

There are two kinds of security models

Analytic Algebraic
learning £ to learn is to
Acquiring acquire
general restricted
computation computation

Analytic Model

Computation system includes all computer
programes.

Agents can guess content, so learning 1s not
the same as acquiring. Learning definitions
can depend on resource bounds of agents,
thus on computational complexity, and on
probability assumptions about “cracking a
code.”

Algebraic Model (Dolev-Yao ’83)

To learn the content 1s to acquire 1t or
generate 1t — guessing 1s disallowed.

Protected information is a finitely generated
algebra over atomic pieces (keys, nonces,
atomic messages).

New Security Model

Mark Bickford proposed a way to use elements of Type
Theory mspired by our digital library work to create a new
security model which combines a generally model of
computation with a simple model of learning protected
information, namely

all programs

learning 1s acquiring.

How is this possible?

In a general model of computation, agents
can guess secrets by enumerating all
possible content.

How to prevent that!

Answer: protected content 1s built from
unguessable atoms.

What is an unguessable atom?

Here are the properties we want.

They are elements of a primitive type, in fact the
CTT type Atom, included since 1984 but with an
additional rule. (A major advantage of the open-
ended nature of CTT.) The only operations on
atoms 1s to

compare them for identity

They cannot be generated or constructed from other
clements. Otherwise, they behave as ordinary data
clements.

Reading about Atoms in Nuprl

In the working material, the paper by Stuart Allen
entitled: An Abstract Semantics for Atoms in
Nuprl, provides the semantics for Atoms and
explains why they are “unguessable.”

It 1s only 10 pages of content.
I hope you will read pages 4 — 7.

Atoms and Urelements

The closest concept in Set Theory to Atoms
1s the notion of urelement. These are atomic
non-set primitive elements. Some accounts
of them might be useful 1n a classical
account of security.

Sets Types

Urelements Atoms

Citation

On urelements 1n computation

Andreas Blass, Yuri Gurevich, and
Saharor1 Shelah, Choiceless Polynomial
Time, Annals of Puter and Applied Logic,
100, 1999, 141-187.

Properties of Atoms

Atoms are not enumerable, not infinite. Yet they
are not of a fixed finite cardinality.

The canonical elements are tokenfi:ut} where
the class assigned to an unhideable token 1s a
parameter D, some discrete class.

The semantics quantifies over all possible values
for a discrete D (this 1s a supervaluation
semantics).

token{i:ut} reduces to itself, 1.e. is canonical.
Equality is decidable on Atom

For any k, we can pick out k atoms from Atom.

Properties of Atoms continued

For any character string a, token{a:ut} 1s

a possible 1nstance of the semantics (see
Allen p.6, True,).

If the elements of D are unhideable in
definitions (occur on both left and right
sides) and 1f the evaluation rules respect
permutation of the names 1n D, then any
sequent J true of k atoms, J (a,b,c,...), 1s
true for any permutation a to al, b to b1,
..., 1.e. J(al,bl,cl,...).

Examples

f(x)= = 1f x=1 then token(a) else token(b) fi

1s not a legal definition because a, b do not appear
on the left hand side.

fla,b}(x)==...would be legal.

It 1s 1llegal to introduce a term, say oups, and have a
rule oups | token(a).

Outline

Motivation
security models
a new model
Unguessable Atoms
Type Atom (Urelements)
Properties

Permutation Rule
Independence
Content does not involve Atom a
Rules
Applications (nonces)
Conclusion to Series

Tracking atoms in a distributed computation

We want to track when a process acquires an
unguessable atom. It does so when 1its state depends
on that atom. This happens only because the state
initially has the atom or because 1t was received 1n a
message since 1t 1s not possible for a process to
construct an atom 1t does not already have.

We express this idea by talking about a state being
independent of an atom up to some receive event.

Independence Rules

Here are the key rules for the proposition (x:#| @) which
expresses “x of type 7'1s independent of atom a.”

Triviality (¢ has no atoms)

HE (T o)
HFtel
HFae Atom
t 1S closed and mentions
no tokens

Independence Rules

Base (¢ is a different atom)

- (1. Atom | a)

H
H

- —(t=a in Atom)

Application (key rule)
H | (f():B[t/o] ||a)

H
H

H(f(0:A—B ||a)
(14 a)

Independence Rules

Absurdity (a depends on a)

H |—ﬁ (a:Atom Ha)

Set (separating predicate 1s irrelevant)

H} (t:4x:T\P}|| @)

H
H

- T\ a)

-tin {x:T | P}

Independence Rules

Equality

H |' (t:Tilla) = (1T, ||ay
- 1,=T1,in Type
- 1=t in T

-a; = a,in Atom

This allows us to build up independence
from pieces.

Basic Facts

We can prove general facts such as
Theorem Va:AtomNz:7.(z:7 Ha)

We proceed by induction on I (upwards and
downwards) starting from the fact that 0 1s a
closed term with no atoms. Going upwards,
if(z: ZHa), then(z+1:Z Ha) since z+1 1S
A(x.x+1)(z) and A(x.x +1)

1s a closed term with no atoms
and the application rule applies

Qed.

Outline

Motivation
security models
a new model
Unguessable Atoms
Type Atom (Urelements)
Properties

Permutation Rule
Independence
Content does not involve Atom a
Rules
Applications (nonces)
Conclusion to Series

Specifying Security Properties

Here 1s a way to specify security properties depending
on a cryptographic service. First we specify the service

with a predicate P and the security property with

crypto
Qqecure- Then we show that some message automaton M

realizes PCrypto = Q.cure:

|_ (Pcrypto :>Qsecure) extract M

A Security Property

Suppose we want to say that a group of agents will share a
common secret. Let the agents be at locations on the list L.

The safety specification is that the state of any agent not on
L 1s always independent of a secret a.

0, (a)==Ve.[loc(e) € Lv ((state(loc(e))when ¢) Ha)]
The liveness part 1s that eventually all agents on L receive
the secret.

Q,(a)==Vi.ie L= Je.(loc(e) =1 & (x whene)=a)

The full specification 1s

da : Atom.Q,(a) &0, (a)

Cryptographic Services

Mark Bickford and Robbert van Rennesse have modeled a

Public Key Cryptography service in the Logic of Events using
atoms. It 1s sketched in a forthcoming article by Bickford:

Unguessable Atoms: A Logical Foundation for

Security Supported by the Information Assurance
Institute at Cornell.

We will look at a simpler service, providing nonces.

A simple nonce service

We can equip Message Automata to choose nonces by taking

a nonce to be a distinct unguessable value, an atom. One way
to do this is to assume that every agent has a supply of atoms

unique to itself. We call this the

Nonce Assumption

Vi,j:Loc.i #j = Va:Atoma < (Nonces initially i) = (j Ha)

Implementing Atoms

To generate real code from the Message Automata that
use Atoms to provide cryptographic services, we would
resort to the standard technique of using random bit
strings or RSA style public key that depend on
computational complexity results and one-way functions.

Series Conclusion

We have shown how public trust in information technology relies
on a partnership between computer scientists and mathematicians -
especially logicians.

The computer scientist must abstract away detail to present
concepts that are mathematically tractable yet faithful to computing
practice and capable of information and guiding the technology.
For example:

*The digital abstraction

*Automata and state machines
*Induction and recursion
«Computability

*Data and types

*Formal correctness

*Asynchronous distributed computing
eEvent structures

Computer Science Practice — *‘the stack”, translators

Models Code

People

On-line banking
model
(logic book)

Secure aps
(thru provers)
banking sys

Aps theory

Aps programmer
|:(transaction design)

Protocols IOA, MA Middleware

ASM

i [Syst. Prog.
: Distrib sys theory

|

Computable function
models

Prog languages

procedural, declarative computer theory

|: Computer writer
Semantics

Concurrency, file syst Operating system

Virtual machines

Syst programmer
Os theory

Assembler
Handware

Modeling and

Computer engineer
simulation languages [

architect

S S -
.____«._________«._________

This 1s how we span levels of abstraction

Series Conclusion Continued

We have presented a correct-by-construction
refinement methodology for distributed
computing, a long standing challenge, and a
capability more critical than in the functional
case.

We have integrated a logic for the event
structure abstraction into the comprehensive
theory of computing serving computer science,
and have shown how to include security
properties 1in a novel and formally tractable way.

	Records Naïvely
	Naïve Record Extension
	Naïve Record Subtyping
	Records Using Labels
	Records as Functions
	Records Extension Using Labels
	Record Extension Depends on Function Polymorphism
	Reading for Lecture 1
	More About Types
	Formulas and Problems
	Formulas and Problems, continued
	Integer Square Root
	Proof of Root Theorem
	Proof of Root Theorem (cont.)
	The Root Program Extract
	A Recursive Program for Integer Roots
	Deduction Systems
	An Interative Program for Integer Roots
	An Interative Program �for Integer Roots, continued
	A Program for Integer Roots With Assertions
	While loop realizer
	Message Automata Clauses
	Picture of a Computation
	Efficient Root Program
	A Theorem that Roots Exist (Can be Found)
	Exercise
	Lecture 3��A Theory of Events
	The Challenge
	Outline
	Events in Space/Time
	Intro to Event Systems
	Intro to Event Systems, continued
	Intro to Event Systems, continued
	References
	Relationship to Winskel, Lamport
	Outline
	Events with Order (EOrder)
	EOrder Axioms
	Progression of Event Structures
	Event Structures (with state)
	Example – Two-Phase Handshake
	Deriving the Two-Phase Handshake
	Picture of a Computation
	Executions of Distributed Systems
	Fair-Fifo Executions
	Outline
	Recall Functional Program Synthesis
	Refinements for Programs
	Refinements for Systems
	Two-Phase Handshake Theorem
	Two-Phase Handshake
	Lemmas
	Realizing the Lemmas - 1
	Realizing the Lemmas - 2
	Handshake Message Automation
	Question
	Outline
	Specification for Leader Election in a Ring
	Specification, continued
	Logically Decomposing the Leader Election Task
	Realizing Leader Election
	Intuitive argument that a leader is elected
	Lemmas
	Realizing the clauses of LE(R,es)
	Implementing Clause 1 of LE(R,es)
	Implementing Clauses 4, 5 of LE(R,es)
	Leader Election Message Automaton
	Outline
	Realizable specifications
	Realizing Primitive Event Specifications
	Effect lemma
	
	Compound Realizers
	es-realizer
	Compatibility
	Compatibility, continued
	Outline
	Consistency
	Feasibility
	Computability
	Running Distributed Systems Generate Event Structures
	Logic of Events, circa 2007
	Exercise
	Message Automata Clauses
	Citation

