
Formal Logical Methods for System Security and Correctness

Logical Foundations of Computer Security

Lecture 1

Robert L. Constable

Cornell University

Department of Computer Science

Marktoberdorf, Germany – Summer 2007

Course Outline

Lecture 1. Basis for trust:

Elements of a Theory of Computing

Lecture 2. Programs, Processes, and Realizers

Lecture 3. A Theory of Events

Lecture 4. Formal Basis for Security Properties

Motivation: Provide the logical foundations necessary for

a trusted information technology, specifically to:

• Formally validate system designs with respect to intent

• Synthesize systems provably faithful to intent

• Explain verified code and safely modify and maintain it

• Protect and secure systems and data

Series Introduction and Type Theory Basics

We must be able to express intent formally and then

systematically refine the level of detail presented until we can

guarantee its correct execution on available hardware.

These lectures will be about formalisms used at the highest

levels of abstraction and about their translation to running code.

For me the key formalism is type theory, as contrasted with

category theory, set theory, algebra, or a high level programming

language or informal specification language.

Applied set theory is a closely related approach as in the

B-Tool of Abrial. Type theory concepts are programming

concepts and thus a basis for synthesis in which the conceptual

distance between intent and action is the closest. We exploit this

advantage.

Focus of Lecture 1

Security, correctness and trust are related.

To incorporate security services into software,

they must first be understood in computing

theory, e.g. cryptography.

Security services are effective only if elements

of software are correct, and correctness must also

be part of computer science theory . Computer

Science itself is trusted in relation to the larger

“organized scientific enterprise,” especially

mathematics. So computing theory must connect

to the appropriate mathematics, e.g. types to sets.

Focus of Lecture 1 continued

The security mechanism that we introduce in Lecture 4

depends on type theory elements of computing theory.

These elements are understood and trusted in

relationship to set theory, and to programming

language concepts.

This lecture lays the foundation for the security

mechanisms and the distributed computing model in

which they are used. Lecture 2 presents the model and

Lecture 3 its logic.

Computer Science Practice – “the stack”, translators

Models Code People

On-line banking

model

(logic book)

Secure aps

(thru provers)

banking sys

Aps programmer

Aps theory

(transaction design)

Protocols IOA, MA

ASM

Middleware Syst. Prog.

Distrib sys theory

Computable function

models

Prog languages

procedural, declarative

Computer writer

computer theory

Semantics

Concurrency, file syst Operating system

Virtual machines

Syst programmer

Os theory

Modeling and

simulation languages

Assembler

Handware

Computer engineer

architect

This is how we span levels of abstraction

How the stacks are grounded

Models Code People

CS Theory

Mathematics

(Set Theory)

Hardware

Physics

Computer

Science &

Engineering

Refining the Questionaire

What is type?

What is a set?

What is a recursive function?

What is a computable function?

What is a finite automaton?

What is a regular expression?

Can you synthesize an automaton

from a regular expression?

Do you know Java, ML, Lisp, or Scheme?

Historical Perspective

John McCarthy

proposed a theory of computing in 1961 that has motivated many.

Scott Hoare

Dijkstra Milner

De Bruijn Girard

Martin-Löf

This theory has inspired the MOD series. It in turn was enabled by

Alonzo Church’s work in the 30’s / 40’s.

e.g. Ȝ calculus ĺ Lisp

Simple Theory of Types ĺ HOL

Historical Perspective

McCarthy said in A Basis for a Mathematical

Theory of Computation…

“Computation is sure to become one of the most

important of the sciences.”

“This is because it is the science of how machines

can be made to carryout intellectual processes.”

Historical Perspective

McCarthy’s Elements of a Theory of Computation

• Expressive notation for computable functions (including partial

functions)

• Transforming non-computable specifications to computable

ones (an MOD Blue theme)

• Notation for “data spaces” (Hoare)

• Study of equivalence of notations for (partial) functions –

recursion induction (Scott extended, Milner implemented)

• Integrating functional and imperative (Algol-like) notations

(Hoare, Dijkstra Programming Logics)

• Proof checking and proof generation (Milner onward).

• Sample statement in a Logic of Events

Given a network of at least n processes, suppose of them are

organized into a ring R and requests are sent to elect a leader, then there

will exist a unique process declared to be the leader in R.

• Compare this to

Every positive number can be factored in to a product of prime

powers, e.g. etc.

• Compare to

Every planar graph G can be colored by four colors.

The regions of any simple planar map can be colored with only four

colors in such a way that any two adjacent regions have different

colors.

m n≤

0 1 11 2 ,6 2 3 ,= = ⋅

Expressing Tasks Declaratively

For formalization, detail matters – too much detail for most

people. Consider the simple examples above.

Factoring

: . : (PrimePower) List. ()

or

:{ : 1 }. : (Prime) List. ()

or

: . : (Prime)List. ()

 where () 1.

n F prod F n

n i i F prod F n

n F prod F n

prod nil

+∀ ∃ =

∀ < ∃ =

∀ ∃ =
=

`

`

`

Formalizing Tasks

The detail for the ring of processes example is

much more extensive, especially for real code

– see Morrisett.

How can we digest such detail and connect it to our

intuitive thinking? We need computer assistance.

How does formal detail of processes and events

relate to detail about imperative programs,

functional programs and functions?

These are typical issues faced in my lectures.

Formalizing Complex Tasks

Consider the formal details about numbers.

John Harrison connects such details to hardware

implementations of floating point numbers.

That detail is mainly for specialists.

What about , the numbers that God gave us,

not Intel?

Natural Numbers

What are these?

`

{0,1,...,10,11,...,36,...100,...1000000,...}=`

Formalization Issues

Set Theory: they are sets, elements of the

axiomatic inductive set, Inf, i.e.

 and if then { }

Let () { }, then

()

Inf x Inf x x Inf

s x x x

x Inf
Inf

s x Inf

∈ ∈ ∪ ∈
= ∪

∈
∈

∈

Numbers

Such a set is inductive.

Rules for computing are in a metalanguage

Justified in terms of set theory, but computation

is external to set theory.

Computing with Numbers

 0 = = 0

 (n 1) = = (x n) + x

x

x +
i
i i

Type Theory: the canonical numbers are elements

of the axiomatic inductive type

3

noncanoni

0 and if

cal numb

 then ()

or the elements are

{ : } a decimal numeral

the are expressions

that redu

ers

canonical numbce to ,

e.s. 2 2,3!, 2 , tc.

ers

e

n s n

nat n number n

∈ ∈ ∈

+

` ` `

This is an example of Per Martin-Löf’s semantic

method.

For numbers in type theory, the theory tells us how to

compute. See Naïve Type Theory section 9.

Numbers

Formalization Continued - Functions

 The theorem : . : () . ()

 tells us that there is

 : ()

 (1)

 (2) {2}

 (3) {3}

a

(

 function

n F Prime List prod F n

factor Prime List

factor nil

factor

factor

factor

∀ ∃ =

→
=
=
=

`

`

4) {2,2}

What is a ?

 informal mathematics: a rule of corres

function from A to B

pondence from A to B

=

Set Theory:

(x) such that

. : . , &

, : if () ()

then () ()

F P A B

x A y B x y F

p q F fst p fst q

snd p snd q

⊆
∀ ∈ ∃ < >∈
∀ =

=

A functional relation on , i.e. a single-valued

set of ordered pairs

x A B

Computation is external to ZFC set theory

Formalization of Functions Continued

Type theory

effective rule

: a lambda term (.)

such that for all , [/]

The lambda term is the .

We can apply it to elements of ,

 ((.);) reduces to whatever

 [/] reduces to.

N

x b

a A b a x B

A

ap x b a

b a x

∈ ∈

otice that such a definition is the operational

definition in functional programming languages.

Here is multiplication in type theory,

A lambda term using a fixed point combinator

Computing in Type Theory

(. (, . 0 0 (1,)))fix f x y x y f x y= + −if then else fi

Questions

Is (.1) (. /) in () ?

Is (. (.0)) (.0) ?

x x x x

x y y

= →
=

_ _

Formalization – Functions Continued

In Computational Type Theory (CTT) and Intuitionistic

Type Theory (ITT) functions are polymorphic. This is a

major departure from Set Theory. For example,

is the identity function in every function type ,

even if A is empty. In Set Theory there is no such function.

The function taking the head of a list is polymorphic.

We will see that this difference is important in defining data

types and subtyping.

Note in CIC, the type theory of Coq, functions,

are monomorphic.

A A→

(.)x x

()hd L

: . x A b

Questions

Does Java have polymorphic functions?

Is 0 polymorphic because it belongs to

, , , ?

Is a subset of ?

`] _ \
` _

Set theory is easily able to make all functions total.

For example, we can extend integer + to any set.

n + A = n for any set A not an integer.

In type theory it is not possible to make every function

total.

We can’t tell of an expression A whether it is an integer

or not and trying to compute n + exp might diverge if

exp diverges.

It is very annoying when a set theory formalization uses

the “totalizing trick” to make a theory look simple,

because that approach does not work constructively.

Totalizing Functions

Formalizations Continued

The factorization theorem used A Lists, lists of

elements of type A. We can imagine theorems

using other recursive data structures such as trees,

queues, stacks, streams, etc.

How are these defined?

Set Theory:

In set theory, the poylmorphic list concept where A is any set

requires the notion of an inductive class. Typically these are

defined as fixed points of monotonic functions over the class

of all sets, and the fixed point is guaranteed by a cardinality

argument.

or

These are monotone functions on set, so they have fixed

points, e.g. the set

() (x ())List A A A List A= ∪

x x (x) ...A A A A A A∪ ∪ ∪

() 1 (x ())List A A List A= ⊕

Type Theory:

Recursive types are built by a primitive construction, say

where is a type expression in x, e.g.

It suffices for most purposes to use one inductive type, a

W-type (Martin-Löf) to encode recursive ordinals

() .(1 x).List A Y A Y= ⊕

. ()x F x ()F x

.(: x ())xW x A B W→

Formalization
Recall the formulation

The type seems like a normal set formed

by separation, but in type theory it also has computational

significance, namely the function

factor:

does not take evidence for 1<i as input

Otherwise, the separation type is like the

corresponding subset of A.

:{ : 1 }. : (Pr) . ()n i N i F ime List prod F n∀ < ∃ =

{ : 1 } (Pr)i i ime List< →`

{ : 1 }i i<`

{ : }x A B

Equality

In Set Theory, equality on the natural numbers reduces to

equality of sets. Consider:

This is also 0,{0},{0,1},{0,1,2}…

Notice which is a bit more interesting

than 2=2.

In Type Theory, two numbers are equal precisely when they

have identical canonical forms. So 2=2 is true and axiomatic.

Where 1+1=2 is interesting.

0 1={ } 2={ ,{ }} 3={ ,{ },{ ,{ }}}...=

{ ,{ }} {{ }, }=

Type Theory has collections and objects not found in classical

set theory. For example, Top is the type of all closed

constructions, considered equal. So it has one element, on the

other hand, it has all elements, e.g. , and

for any type A. Top is a signature type for semantic

polymorphism a feature exploited by CTT but not by ITT. In

CTT, terms with nonterminating reductions are members, such

as

A TopÆ

(.).fix x x

A Top A∩ =

Top Type

Intersection

2 3 6 2 3

 In { : }

 In :

 in if in and in

 { : } { : } { : & }

Notic

Set T

e that , e.g. 0 6 and 0= 6

It is easier to compute

h

wit

eory

Type The

h /

ory

/E

A B x A x B

a b A B a b A a b B

x A P x A Q x A P Q

∩ = ∈

= ∩ = =

∩ =

∩ = =]]]
] 2 2 than with /E]

Dependent Intersection

 In Type Theory : is the set of all elements

 of such that

x

x

x A B

x A x B

∩

∈

Subtyping

The type A is a subtype of B iff

1. Any element of A is an element of B.

2. I f two elements are equal in A then they are equal

in B.

Examples:

A Top

Void A

{x:A | P[x}} A

A A//R

{1,2,3} Z Z6 Z2

Subtyping relations

I f A A’ and B B’ then:

A + B

A B

A’ B

{x:A | P(x)}

A B

A B

A

A

A

A’+ B’

A’ B’

A B’

A

A

B

A//E

A B

Top

Records Naïvely

There are many ways to capture the concept of a record. For

example,

can be defined as A ×(B × C) and the field selectors can

be defined as functions on tuples, say

{x:A; y:B; z:C}

x == λ(r.1of(r))

y == λ(r.1of(2of(r)))

z == λ(r.2of(2of(r)))

Naïve Record Extension

We can provide for record extension by adding Top as a last

component of any record

We build up the previous record as follows:

Records == T:Ui × Top

R1 == A × Top

R2 == A ×(B × Top)

R3 == A ×(B ×(C × Top))

Naïve Record Subtyping

Notice that:

R2 R1

R3 R2

R2 ∈ Records since A ∈ Ui, (B × Top) ∈ Top

since

since

A A,

A A,

B × Top Top

B ×(C × Top) B × Top

Records Using Labels

Another approach to records is to take labels, L, as

indexes into components.

Given

take

Define

Define the record type as x:L→ Sig(x).

{x:A; y:B; z:C}

L={x,y,z}, L Atom

Sig:L→ Ui by

if j=x then A

else if j=y then B else C

Records as Functions

We now take

{x:A; y:B; z:C} == x:L→ Sig(x).

r ∈ {x:A; y:B; z:C},

r.i == r(i)

r.x ∈ A, r.y ∈ B, r.z ∈ C

For

let

so

Records Extension Using Labels

Consider {x:A; y:B; z:C; w:D}.

Is this a subrecord of {x:A; y:B; z:C}?

To examine this, let L’={x,y,z,w}.

Notice L L’.

Define Sig’(i)=if i=w then D else Sig(i).

Notice x:L’→Sig’(x) x:L→Sig(x)

because L L’ and Sig’(x) Sig(x) for x ∈ L.

Record Extension Depends on Function

Polymorphism

x:L’→Sig’(x) x:L→Sig(x)

because any function r’ in x:L’→Sig’(x) is a function

in x:L →Sig(x).

Given inputs from L, x and y, r’(x)∈ Sig’(x) and

Sig’(x)=Sig(x), r’(y)∈ Sig’(y)=Sig(y).

Tension between Types and Computation

Lisp community like to say that Lisp is “typeless.”

More accurately, it is very polymorphic.

Reading for Lecture 1

On types

Working Material Chapter 1 Computational Type Theory

2.3 Intuitionistic Type Theory

2.4.1 Subset and Quotient Types

2.5.1 Subtyping

2.5.2 Top

2.5.3 Records

2.6.2 Dependent records

Also Naïve Computational Type Theory

9. Logic and the Peano Axioms

10. Structures, records, and classes

Exercises

• Use AxB, A//E to explain the difference between fractions

and rational numbers ().

•Can you define so that ?

•Call a type discrete if its equality is decidable.

•How can we say that are discrete?

•Is discrete?

•Define:

_

_] _Æ

,` _
→` `

1 2 3 1 2 3

@ a =nil

 () (t ()@)

Is @(@) (@)@

a polymorphic fact or a typed fact?

if then

else fi

=
•

=

A A
A A

A A A A A A

a

hd a a

John Mitchell – Protocol Logic, verification and checking tools

Gilles Barthe – Coq certification of security protocols

Helmut Schwichtenberg – Proof with feasible computational content

John Harrison – Interactive and automatic theorem proving

Javier Esparza – Software model checking

Martin Hyland – Models of recursion and induction

Also ties to Greg Morrisett, Tobias Nipkow, Martin

Hoffman, Orna Grumberg, and Stan Wainer

Other connections may unfold.

Relationship to Other Lectures

Standard Methodology

(basis for trusted semantics)

Computational notations

Programming Language Programming Language

Set Theory

(ZFC)

Proposed Modification

Computational

Type Theory

(evaluation rules)

Set Theory

IZF + C

Computation

or

More About Types

Types rather than sets because of:
Computability

Constructive logic

Subtyping, inheritance

Openness (extensibility)

Computability requires access to
Structure

Canonical values

Computation rules

Abstractness comes from equality.

Formal Logical Methods for System Security and Correctness

Logical Foundations of Computer Security

Lecture 2

Programs, Processes, and Realizers

Robert L. Constable

Cornell University

Department of Computer Science

Marktoberdorf, Germany – Summer 2007

This lecture provides a basis for relating programs and processes to

declarative statements.

One relationship starts with a program, say a function

f: AĺB

And asserts properties of it, typically

Another relationship starts with a property and finds a function that has it,

typically given

Find the function that produces a value in B satisfying R given a value in

A. The function is part of a realizer for the formula

Programs, Processes, and Realizers

: . (, ())x A R fx x

: . : . (,)x A y B R yx

When we start with a property or a specification or a goal we say

that the function realizes the specification or goal.

Consider: In the logic literature

Realizers

: . (, ())x A R fx x

: . : . (,)x A y B R yx

We will see in detail how to construct realizers from proofs of

logical formulas by examining an evidence semantics for formulas.

This semantics for constructive logic is known as the

Brouwer/Heyting/Kolmogorov (BHK) Semantics, and it is

computational. It can be presented in

Computational Type Theory (CTT).

See Naïve Computational Type Theory section 9

MOD 88 Assigning Meaning to Proofs

Lecture 2 Plan

Semantics of Evidence

Constructive Semantics

Example

Semantics of Proof Objects

Imperative Realizers

Distributed Realizers

Lecture 2 - Outline

Given a formula A, we will define the set or type of objects that

count as evidence that A is true in a model M, denote it

Sometimes we suppress the model.

Truth and Evidence:

We expect that there is evidence if A is true in M, thus

Semantics of evidence

a bA
M

a b if a A A∈
M M

If A is false, then a b a b, and if is true, then A A A= ≠

Suppose that we have evidence sets for the atomic propositions

A,B,C,…

Here is how to construct evidence for compound formulas:

Propositional Evidence

a b a b a b
a b a b a b
a b a b a b
a b a b

 & == x

 ==

==

 ==

A B A B

A B A B

A B A B

A A

∨ ⊕

⇒ →

¬ →

Evidence for Quantified Statements

a b a b a b

a b a b a b

 : . : x

 : . :

x x

x x

x A B x A B

x A B x A B

∃ ==

∀ == →

Semantics of Proof Terms

a b

A classical axiom - excluded middle

 BY ()

() P P

P P Magic P

Magic P

∨ ¬

∈ ∨ ¬

Constructive Semantics

If we look only at constructive logic and use types

instead of sets, then the semantics of evidence is

constructive; it is the Brouwer/Heyting/Kolmogorov

semantics.

We recover a classical (Tarski) semantics using

Magic(P) as an oracle.

Formulas and Problems

Here is how we interpret the statements of a typed predicate logic

constructively.

For atomic predicates to assert or solve P(t1, …, tn) means to provide a

proof or a construction p(t1, …, tn)

If P,Q are problem statements (predicate formulas), then to assert

P & Q means to find proofs or constructions p and q for P, Q

respectively.

P v Q means to find a proof or construction p for P and mark it as

applying to P or to find a proof or construction q for Q and

mark it as applying to Q.

P Q means to find an effective procedure f that takes a proof or

construction p for P and computes p for P and computes f(p) a

proof or construction for Q.

P means that there is no proof or construction for P.

means that there is an effective procedure f that takes any

element of type A, say a, and computes a proof or construction

f(a) for P[a/x].

means that we can construct an object a of type A and find a

proof or construction pa of P[a/x], taken together, <a,pa>

solves this problem or proves this formula.

Formulas and Problems, continued

⇒

 x:A.P∀

 x: A.P∃

¬

1 2 1 2: : x . (&)x A y B B R R∃

Finding realizers for a goal G can be accomplished by a

refinement process.

1 2 1 2: . : x . (, ()) & (, ())x A y B B R x fst y R x snd y∀ ∃

1 1: : .x A y B R∃

Programming by refinement

We might decompose this goal into two subgoals

2 2: : .x A y B R∃

Integer Square Root

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

6

5

4

3

2

1

Proof of Root Theorem
()

()

()

()
()

()

22

22

22

2

2

2

22

1

1

0

1

0

1

1 1

1

1

allR

exis

n : . r : . r n r

n :

r : . r n r

.....

r : . r r

AtsR

Decide r

uto

.....

: , r : , r r

r : . r r

⎡ ⎤

∀ ∃ ≤ < +

∃ ≤ < +

∃ ≤ < +

≤ − < +

∃

⎢ ⎥

⎡ ⎤+ ≤⎢

≤ <

⎥

+

` `

`

`

`

` `

`

+

BYȱ

BYȱȱ
inductionȱcase.....

BYȱ THENȱ
inductionȱcase.....

BYȱ T

Nat n

N

d

HE

I

`

`

`

i

i

i

i

Autoȱ

() ()
()

() ()()
()

2 22

22

2 22

22

1 1 1

1

1

1

1 1 1

+

+

Caseȱ1.....

BYȱ THENȱ
Caseȱ2.....

BYȱ THENȱ

≤ − < + + ≤

∃ ≤ < +

≤ − < + ¬ + ≤

∃

+⎡

≤

⎤⎢ ⎥

⎡ ⎤⎢

< +

⎥

.....

: , r : , r r , r

r : . r r

Auto'

.....

: , r : , r r , r

r : . r r

existsR r

existsR Autor

` `

`

` `

`

`

`

i i i

i

i i i

i

Proof of Root Theorem (cont.)

Here is the extract term for this proof in ML

notation with proof terms (pf) included:

()
()

0

1

2

0 0

1

1 1

ȱletȱ ȱ ȱ
ȱ ifȱ ȱthen
ȱ elseȱletȱ

ȱ inȱifȱ ȱȱthen
elseȱ

−

=
= < >

< > =

+ ≤ < + >
< >

rec

,pf

r,pf -

r n

sqrt

s

r ,pf

r,pf'

qrti

i

i

i

i

i

The Root Program Extract

A Recursive Program for Integer Roots

0

2

0 0

0

r(n):= n= 0 0

 let r r (n-1)

(r 1) n r 1

r

=

+ ≤ +

if then

 else in

 if then

 else fi

 fi

Here is a very clean functional program

This program is close to a declarative

mathematical description of roots given by the

following theorem.

2 2

0 0 0 0

 : . : . (,)

 by induction

 Base 0 take 0, clearly Root (0,0)

 Induction assume : . (, -1)

 where (, -1), . . -1 (1)

n r Root r n

n r

r Root r n

Choose r Root r n i e r n r

∀ ∃

= =
∃

≤ < +

` `

`

Theorem

Proof

2 2

0 0

2

0 0

2 2 2

0 0 0

2

0 0 0

 (1) (1)

 case (1) then (1)

 (1) ((1) (2))

case (1) then since -1 .

r n n r

r n r r

r n r r

n r r r r n n

+ ≤ ∨ < +

+ ≤ = +

+ ≤ < + < +

< + = ≤ <

Qed

Deduction Systems

HOL, Nuprl and PVS all use a version of

Gentzen’s sequents to organize proofs.

Typically, hypotheses are named; in Nuprl we use:

1 nH ,…,H G

H G

`

`

or 1 n 1 mH ,…,H G ,…,G

H G

`

`

() ()1 1 n n 1 n 1 nx :H ,…,x :H G x ,…,x ext g x ,…,x`

Semantics of Proof Terms - Example

: : . (,) BY (0,)

 : (,0) BY

n r R n r existsR pf

n R n pf

∃` `

`

The evidence for : . (,) should

be a pair which is what the proof provides

0, written (0,)

r R n r

pf existsR pf

∃

〈 〉

`

Semantics of Proof Terms - Example

: : . (,) BY (0,)

 : (,0) BY

n r R n r existsR pf

n R n pf

∃` `

`

The evidence for : . (,) should

be a pair which is what the proof provides

0, written (0,)

r R n r

pf existsR pf

∃

〈 〉

`

Example

Semantics of Proof Terms

 & BY and ,

A B R pfa pfb

A pfa

A pfb

Η 〈 〉
Η
Η

a b
The evidence for & should

be an element of & pair,

, , the meaning of the proof

term an , .()d

A B

A B

pfa pf

R pfa

b

pfb

〈 〉

Example

Semantics of Proof Terms

 & BY and ,

A B R pfa pfb

A pfa

A pfb

Η 〈 〉
Η
Η

a b
The evidence for & should

be an element of & pair,

, , the meaning of the proof

term an , .()d

A B

A B

pfa pf

R pfa

b

pfb

〈 〉

Semantics of Proof Terms

 : . R() BY all (.)

 , : () BY

x A x R x pfb

x A R x pfb

Η

Η

Semantics of Proof Terms

 : . R() BY all (.)

 : () BY

x A x R x pfb

x A R x pfb,Η

Η

Constructive Semantics

Notice that the proof term corresponding to

This should denote an element of

namely

In the constructive case, this function should be

computable. We get this result when the

evidence sets are types.

: . is (.)x A R allR x pf

a b a b: xx RΑ →

(.).x pf

Semantics of Evidence

Constructive Semantics

Example

Semantics of Proof Objects

Imperative Realizers

Distributed Realizers

Lecture 2 - Outline

From functional realizers to imperative realizers

Mainstream programming uses state. We need state for

distributed computing. Can we extend the realizability

interpretation to include state? The simplest way to

include state is to model it in the existing theory along

the lines shown in Lecture 1 - use (dependent) records.

An Interative Program for Integer Roots

2

r : 0;
 (r 1) n

 r : r 1

=
+ ≤

= +

W h ile d o

od

An Interative Program

for Integer Roots, continued

2

r : 0;
 (r 1) n

 r : r 1

 =
+ ≤

= +

2n

W h ile d o

o
 < (r + 1)
d

A Program for Integer Roots With Assertions

2

2

2

2

2

2

 r n

(r 1) n

r : 0;
 (r 1) n

 r : r 1
 r n

r n
n (r 1)

=
+ ≤

=

≤

+ ≤

≤

≤
< +

+

W h ile d o

od

This program suggests a precise specification

2 2

2

Root (r, n) iff r n < (r+1)

r n i invs a a r tn ian

≤

≤

While loop realizer

: { : ; : }. " :{ : ; : }. (. , ".)∀ ∃` ` ` `s n r s n r Root s n s r

The proof will build the while loop root finder and

apply it to a state where Thus"s ". 0.=s r

". (').=s r root s

Semantics of Evidence

Constructive Semantics

Example

Semantics of Proof Objects

Imperative Realizers

Distributed Realizers

Lecture 2 - Outline

Computations with state: terminating,

deterministic

0

1

2

17

S

S

S

S

17 1

17 2

17 4

17 0

…

:{ : ; : }iS n r` `

Computations with state: unbounded,

deterministic

0

1

2

S

S

S

10 13

10 17

10 11

…

:{ : ; :{ : ()}}iS n p x Prime x` `

…

Computations with state: reactive, nondeterministic

0

1

2

3

4

in: Input, S: State, out: Output

 [0],s ,nil

 , ,[15]

 , ,[3]

 [1,5], ,[3,7]

 [5,8], ,

nil s

nil s

s

s nil

…

inputs

outputs

state

action

Pi processes

Li communications channels

Computations with state: asynchronous, distributed

P1

P3P2

L1 L3

L2

L4

Pi

Processes are Message Automata

initial

action: receive; effect; send

action: guard; effect; send

frame condition

• =
•

=
•
•

•
n n

n

@ i x : T v

@ i k(v : t) x

x : f state f

@ i a(v t) P state v

k(v : T)

[tg, f state v; ...; tg , f state v]

@ i [k, ..., k]

1 1

1

ȱ ȱ ȱȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ
ȱȱȱȱ ȱ ȱ ȱ
ȱ ȱ ȱ : ȱisȱ ȱ ȱ
ȱȱ ȱ ȱ

initially

effect on

precondition

sendsȱonȱlink l

only

ȱ
ȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱsendsȱo

• ⊕
tg

A B A,Bȱȱ ,ȱw
nȱ

hereȱ ȱareȱme
linkȱlȱwithȱta

ssageȱa
g

utomata

Message Automata Clauses

Message Automata – Guessing Roots

 , , : , : , :

 2 , 0 , ,

 (, " ? " ,)

 * c o lle c t g u e s s e s *

 : (, " " ,) ; :

 * c h e c k f o r a r o o t a m o n g g u e s s e s s r

o f a

i

x n r g L is t r d y B o o l

n r g n i l r d y t r u e

o u t r o o t n

I n g u e s s xn p u t g x g

= = = =

< < >

< < > > =

` `

i

b e g in

s e n d

r e

in i t ia

c e i e

l ly

v

2 2

*

 : r d y = t r u e

 n < (1)

 :

 :

 :

i g

i i

r i

r d

c h

y f a l s e

g n i

e c k

l

≤ +

=

=

=

i f

 t h e n f o r a l l o n d o

 i f

 t h e n

 (, " " , ,)

 * a s k f o r a n o th e r r o o t*

 n e x t :

o u t r o o t n r

s k ip

r d y f a l s e n

< < < > > >

=

s e n d

e x i t

 f i e n d

 e l s e f i

i f t h e n : 1; :

n r d y t r u e

s k ip

= + =

e l s e f i

e n d

Picture of a Computation
1 2

3

4

5

loc(1) loc(2) loc(3) loc(4) loc(5)

@
ȇ ȇ ȇ
1 1 1<s ,a ,m > t+1 @

ȇ ȇ ȇ
2 2 2<s ,a ,m > t+1 @

ȇ ȇ ȇ
3 3 3<s ,a ,m > t+1 @

ȇ ȇ ȇ
4 4 4<s ,a ,m > t+1 @

ȇ ȇ ȇ
5 5 5<s ,a ,m > t+1

@1 1 1<s ,a ,m > t @2 2 2<s ,a ,m > t @3 3 3<s ,a ,m > t @4 4 4<s ,a ,m > t @5 5 5<s ,a ,m > t

Computational Rules for Distributed realizers

The reduction rules for Message Automata are

not fully deterministic because other processes

change the communication links, and a

scheduler is needed to pick the action.

The semantics assumes a scheduler for each

process and allows for an unbounded number

of outcomes in one reduction step of a single

action.

History

Greeks

Kronecker

Brouwer Gentzen

Weyl Heyting

Baire Kleene Girard

Borel M-L Coquand

Bishop de Bruijn

McCarthy

Lip, functional

Scott / Strachey

Milner LCE

Kahn,

Manna

Programming Logics

McCarthy

Scott

Milner

Kleene

(realizability)

RC

Brouwer

Kolmogorov

Martin-Löf

Leibniz

Church

Working Material

Chapter I Computational Type Theory

2.3.7 Propositions as types

Naïve Computational Type Theory

12 Computational Complexity

Reading for Lecture 2

1. Write a proof of:

Without using excluded middle, and produce the evidence.

2. Write a program that adds assertions to the state

such that when the while program halts type Root(n,r) has an

element, the evidence for its truth

Exercise Lecture 2

: ; : ; : ; : , : }n r a A b B c C` `

: . : . (,) : . : . (,)y B x A R x y x A y B R x y∀ ⇒ ∀

Propositions (cont.)

So (a=a in A) is true whenever it is well formed! As a

proposition it cannot be denied as long as is sensible.

So (x=x in A) is a curiosity as a proposition because

it does not make sense to assume it, as in (x=x in

A) P since to know that this is a sensible proposition

is to already know that (x=x in A) is true.

So (x=x in A) behaves like x A. It is true as a

proposition precisely when a A is a correct judgment.

(In Nuprl x A abbreviates x=x in A.

Type

ax (a=b in A)

Proposition

– we know a equals b in A

It might seem strange that a proposition can also be a type and

that a type can also be a proposition. But we will see that all

propositions can naturally be construed as types. This is the

propositions-as-types principle.

empty (0=1 in N)

ax (0 1 in N)

– there is no evidence that 0=1

– there is evidence that 0 is not

equal to 1 in N

Propositions (cont.)

Efficient Root Program

The interactive code and the recursive program are both very inefficient.

It is easy to make the recursive program efficient.

0
2

0

0

0

root(n) : n=0 0
 r = root (n/4)

(2 r +1) n
2 r +1

 2 r

 since if n 0, n/4 n

=

⋅ ≤
⋅

⋅

≠ <

if then
else let in

if
 then
 else fi
 fi

This is an efficient recursive function, but why is it correct?

A Theorem that Roots Exist (Can be Found)

2 2

0 0 0

Theorem : . : . (,)

Pf by

 Base 0 let 0

 Induction case assume : . (, / 4)

 Choose where / 4 (1)

efficient in

 note

ductio

 4

n

n r Root r n

n r

r Root r n

r r n r

∀ ∃

= =
∃

≤ < +

` `

`

2 2 2

0 0 0 0

0 0

2

0

2 2

0 0 0

 4 (1) 4 8 4

 thus 2 () 2 (1)

 if (2 1) then 2 1

 since (2) 4 8 4

 else 2 since

r n r r r

r root n r

r n r r

r r r

r r

⋅ ≤ < ⋅ + = ⋅ + ⋅ +

⋅ ≤ < ⋅ +

⋅ + ≤ = × +

⋅ = ⋅ + ⋅ +

= × 2 2

0 0 (2) (2 1)r n r⋅ ≤ < ⋅ +

Qed

Exercise

2

2

r : 0; r n
(r 1) n

 r : r 1

 R oot(r

n ,)

= ≤
+ ≤

= +
W h ile d o

od

Show how to create a realizer for Root(n,r)

in:

1

Lecture 3

A Theory of Events

Robert L. Constable

Marktoberdorf Lecture 3
July 2007

2

The Challenge

The logic and technology of functional programs are

elegant and useful.

So are high level procedural logics (no pointers),

especially asserted programming logics (from the

1970’s onward to industrial tools).

Can we find an elegant theory of distributed

processes with process extraction capability? What

is the right specification language?

3

Outline

1. Introduction

2. Event Structures

3. Process Extraction from Proofs

4

Events in Space/Time

5

Intro to Event Systems

We captured a semantics for processes in the standard

asynchronous message passing distributed computing models.

Our design of the Logic of Events was strongly informed by

the systems group and partners.

We captured the conceptual level at which the protocol

designers worked.

event based analysis

high level atomicity

6

Intro to Event Systems, continued

We then abstracted many high level distributed

system concepts into an accessible logic with practical

value: many details can be automatically added back

by the extractors.

to MA

to Java

7

Intro to Event Systems, continued

The level of abstraction we achieved, reveals

many interpretations, “good science stories,”

as well as good “technology stories.”

The general setting is observables in

time/space.

Space: locations at which “things happen”

Time: events happening at locations.

8

References

Leslie Lamport

Time, clocks and the ordering of events in a

distributed system, CAM 21, 1978

Glynn Winskel

Events in Computation

PhD Thesis, Univ. of Edinburgh, 1980

9

Relationship to Winskel, Lamport

As in Leslie Lamport’s papers, there is no
global clock, only causal order on events
Events include

-local action
-send a message
-receive a message

10

Outline

1. Introduction

2. Event Structures

3. Process Extraction from Proofs

11

Events with Order (EOrder)

Here is the signature of events with order.

We need the large type Dis of discrete

small types (those with decidable

equality). Let Dis be this large type.

E: Dis

Loc: Dis

pred?: E å E å E + Loc

sender?: E å E + Unit

12

EOrder Axioms

Axiom 1: For any event e that emits a signal, we can find an
event e’ by which e is received.

Axiom 2: The predecessor function, pred?, is injective

(one-to-one).

Axiom 3: The predecessor relation, x L y, is strongly well
founded, where x L y iff for y not the first event

x = pred?(y) or x = sender?(y). Namely, there is a function
from E to Nat such that x L y implies f(x) < f(y).

13

Progression of Event Structures

We progressively define the following richer structures

EOrder – events with causal order

EValue – events have values, val(e)

EState – locations have state, temporal operators

initially, when, after

ECom – communication topology is given by a graph

Etime – real time is added

ETrans – transition function (for security

applications).

14

Event Structures (with state)
Discrete types: Events (E), Loc, Actions (Act),

Tag, Link (L)

{ } { }
{ }

→
→

→

¬ →

→
→ →

→
→

→ →
→ →

→ →

loc: E Loc

kind: E KND

first: E B

pred: e: x:E| first(x) x:E|loc(x)=loc(e)

snder: x:E|kind(x)=rcv E

<:E E B

Ty: E Type

val: x:E Ty(x)

T: x:Id i:Loc Type

: x : Id e : E T(loc(e), x)

: x : Id e : E T(loc(e), x)

when

after

initi → →: x : Id i : Loc T(i, x)al

15

Example – Two-Phase Handshake

S R

{ }

{ }

{ }

,

,

: | ()

: | (,)

: | ()

p

p l p

p l p

E e E loc e p

Snd e E sends e l nul

Rcv e E kind e is receive on l

= =

= ≠

=

16

Deriving the Two-Phase Handshake

()
1 21 2 1 2 1 21 ∀ < ⇒ < <S,l S,l() e ,e : Snd . r : Rcv . e e e r e ූ

We illustrate this process by deriving a protocol for the two-phase

handshake from a proof that its specification is realizable.

()
2 11 2 1 2 1 2 1 1 2 22 ∀ < ⇒ < < <R,l R,l() e ,e : Snd . r,r : Rcv . e e r e r e ූ

S R

e1

r

e2

e2

e1

17

Picture of a Computation
1 2

3

4

5

loc(1) loc(2) loc(3) loc(4) loc(5)

@ȇ ȇ ȇ
1 1 1<s ,a ,m > t+1 @ȇ ȇ ȇ

2 2 2<s ,a ,m > t+1 @ȇ ȇ ȇ
3 3 3<s ,a ,m > t+1 @ȇ ȇ ȇ

4 4 4<s ,a ,m > t+1 @ȇ ȇ ȇ
5 5 5<s ,a ,m > t+1

@1 1 1<s ,a ,m > t @2 2 2<s ,a ,m > t @3 3 3<s ,a ,m > t @4 4 4<s ,a ,m > t @5 5 5<s ,a ,m > t

18

Executions of Distributed Systems

Executions of distributed systems are event structures in a natural way.

In Mark’s Feasibility Theorem, executions are:

()
()

()

Atȱeachȱmomentȱofȱtime,ȱaȱprocessȱatȱ ȱis inȱaȱ ,ȱ ,ȱ
andȱtheȱlinksȱareȱlistsȱofȱtaggedȱmessages,ȱ . ȱAtȱeachȱ
locusȱ ȱandȱtimeȱ ,ȱthereȱisȱanȱaction,ȱ ,ȱtaken.ȱȱTheȱ
actionȱcanȱbeȱnull

stat

,

ȱ

ȱ

e

i.e

s i t

m l t

i t

i

t ai

,

,

,

.,ȱnoȱstateȱchange,ȱnoȱreceives,ȱ
henceȱnoȱsends.

The execution of a process (Message Automaton) is the set of all event

structures consistent with it.

19

Fair-Fifo Executions

We assume executions are fair: channels are loss-less; and fifo: messages

are received in the order sent.

1. Onlyȱtheȱprocessȱatȱ ȱcanȱsendȱmessages onȱlinks
originatingȱatȱ .

i

i

2. Aȱreceiveȱactionȱatȱ ȱmustȱbeȱonȱaȱlinkȱwhoseȱdestination
isȱ ȱandȱwhoseȱmessageȱisȱatȱtheȱheadȱofȱtheȱqueueȱonȱthatȱlink.

i

i

1

3. Thereȱcanȱbeȱ ȱthatȱleaveȱaȱstateȱunchangedȱbetweennullȱac
ȱandȱ

tions

.+t t

4. Everyȱqueueȱisȱexaminedȱ ,ȱandȱifȱitȱis nonempty,

aȱmessag

infini

eȱisȱd
telyȱ

elive

often

red.

5. Theȱ ȱofȱeveryȱlocalȱactionȱisȱexamined infinitely

oftenȱandȱifȱtrueȱtheȱactio
prec

nȱis
ondition

taken.

20

Outline

• Introduction

• Event Structures

• Process Extraction from Proofs

21

Recall Functional Program

Synthesis

ȱ : ȱȱ : ȱȱ ȱȱȱȱȱ ȱȱȱȱȱ∀ ∃
1 2

| x A. y B. R(x, y) ex (gt , gC)

1 11
H | G , e t gx ȱȱ ȱȱ

22 2
H | G ex gt

22

Refinements for Programs
() () ()()

() () ()()

() ()
()

()()

()

1

2

x : A. y : B. R x,y ext x.

x : A y : B. R x,y ext cut x,z. ;

by cut L

.x : A,z : L y : B. R x,y ext

by D g x,

g x,z

z

cut x,

x : A

z.g x,z

,z :

l x

g

L R x,g x,z

.x : A L ext

b

x,z

l x

y

;l xλA

A

A

7 9

A

A

ී ූ

ූ

ූ

23

Refinements for Systems
()

() () ()()

()
() () ()

()
() () ()

1 1 1

1 1 1

2 2 2

2 2

1

1 1 1 1

2

2 2 2 2 2

1

2

System. es : ES D .

R es ext Comp ,

by Comp

.D : System G,Loc,Lnk

es : ES D R es ext

.D : System G,Loc,Lnk

es : ES D

pf pf D ,eD ,es

pf

R es

s

pf D ,esext

D ,es

A

A

A

ූD : ී

24

Two-Phase Handshake Theorem

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
Theo

<

er m:

s se,e :Snd .e e r : Rcv .e r e∀ < ⇒ ∃ <1 2 1 2 1 2

Whatȱareȱtheȱconsequencesȱofȱ ?<e e1 2

S sent two messages

Can we infer further consequences?

Relate send events to knowledge, create a boolean variable rdy

•Require rdy to be true when a send event occurs

•Require rdy to be false after a send event e

25

Two-Phase Handshake

ȱȱ ȱ ȱ ȱ ȱ ȱ ȱ
Theorem:

Howȱtoȱestablishȱthisȱbyȱreas
ȱ ȱ

o

ȱ
g

ȱ
nin ?

s se,e :Snd .e e r : Rcv .e r e∀ < ⇒ ∃ < <1 2 1 2 1 2

1

2

Supposeȱ ȱareȱsendsȱonȱlinkȱ ȱfromȱS
Thenȱbyȱ ȱ ȱafterȱ)ȱȱ=ȱfalse.
ȱȱSinceȱ ȱisȱaȱsend,ȱ ȱmustȱbeȱtrueȱatȱ ȱbyȱ
ȱȱThereforeȱsomeȱeventȱ beforeȱ ȱandȱafterȱ ȱ
ȱȱmustȱsetȱ ȱtoȱtrue.
ȱ

<

′
.

e e ,

(rdy e

e rdy e

e e e

rdy

L

L

1

2

1 2

2

2 1

`

ȱByȱ ȱtheȱeventȱ mustȱbeȱreceivedȱfromȱ ȱon linkȱ
ȱȱLetȱ ȱbeȱthisȱ
fȱweȱhaveȱtheȱlemmas,ȱthenȱtheȱtheoremȱisȱtrue.

′ ′.
′.

Ι

e R

r e

L3 `

26

Lemmas

ȱ

L1.ȱȱIfȱ ȱsendsȱonȱlinkȱ ȱthenȱitȱwaitsȱ
ȱȱȱȱȱȱȱ

L2.ȱȱ ȱsendsȱonȱlinkȱ ȱonlyȱwhenȱ trueȱ
ȱȱȱȱȱȱȱ

L3.ȱȱAfterȱ ȱonȱlinkȱ ȱsendsȱitȱisȱr

: ȱ(ȱafterȱ)ȱ=ȱfalse

:ȱ (ȱwhenȱ)ȱ=ȱt

eadyȱon

rue

=

∀

∀

s,

s,

eSnd rdy e

e Snd r

S

S rdy

S

dy e

`

`

`

`

`

ȱȱȱ ȱchangesȱ

lyȱafterȱan

ȱ
ȱȱȱȱȱȱȱȱackn

toȱtrueȱ ȱ
owledgementȱonȱlinkȱ

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱisȱaȱreceiveȱfromȱ ȱonȱlinkȱȱ

′
 ∀ : ⇒

′.
s,e Snd e rdy

e R

`

`

`

27

Realizing the Lemmas - 1
L1.ȱȱ ȱ ȱ(ȱafterȱ)ȱ=ȱfalse
ȱȱȱȱȱȱȱWeȱcanȱrequireȱthatȱtheȱsendsȱonȱ ȱareȱcausedȱ
ȱȱȱȱȱȱȱȱbyȱtheȱactionȱofȱsettingȱ ȱtoȱfalse.ȱ
ȱȱȱȱȱȱ

rdy

a:ȱrdy:=ȱfalse;ȱsendȱ(ȱȱȱȱȱȱȱ ȱ<ȱȱȱ
ȱȱȱȱȱȱȱWeȱals

>

∀ s,

, t

e : Snd . rdy

ag, m)

e`

`

`

oȱrequireȱthatȱ
ȱȱȱȱȱȱȱThisȱisȱaȱframeȱcondition.
L2.ȱȱ : ȱ.ȱ(ȱwhenȱ)ȱ=ȱtrue
ȱȱȱȱȱȱWeȱrequireȱtheȱ ȱonȱ

onlyȱa

th

a

eȱactionȱaȱ
ȱȱȱȱȱȱȱthatȱrdyȱ=ȱtrue
ȱȱȱȱȱȱȱ

ctionȱaȱcanȱsendȱonȱ

precondition

ȱȱȱ ȱȱȱ :ȱ

∀ s,

.

e Snd rdy e`

`

ȱpre(rdyȱ=ȱtrue)ȱ ȱrdy:=ȱfalse;ȱsendȱ(⇒ < >, tag, m)`

28

Realizing the Lemmas - 2

L3:ȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱkind(ȱonȱ

Weȱstipulateȱthatȱaȱreceiveȱsetsȱ ȱtoȱtrueȱ
ȱȱȱȱȱȱȱȱandȱthatoȱ .ȱ
ȱȱȱȱȱȱȱȱȱȱȱȱȱ

nlyȱaȱrcvȱorȱaȱcanȱchangeȱr
rdy

dy

s,e:Snd .(e rdy) true)

e) rcv

∀ Δ = ⇒
= ′

`

`

b:ȱrcv(,ȱm)ȱ ȱrdy:=ȱfalse
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱ onlyȱ[a,b]ȱaffeȱȱȱȱ ȱȱ(fra

ȱȱȱȱȱ
mectȱrd ȱcon on)y diti

′ ⇒`

29

Handshake Message Automation

2

1

1

actionȱlocalȱ(a)ȱsendsȱonȱ ȱ<ȱ
onlyȱ[a]ȱsendsȱonȱ
stateȱ ȱ ;ȱinitiallyȱrdyȱ=ȱtrue
preconditionȱaȱisȱrdyȱ=ȱtrue
ȱȱȱȱȱȱȱȱeffectȱlocalȱ(a)ȱrdyȱ:=ȱfalse
actionȱ ȱ :ȱ ȱ
ȱȱȱȱȱȱȱȱeffectȱrd

tag,v

rdy :

rcv ack Atom

>

< >`

`
`

B

2

yȱ:=ȱtrue
onlyȱ[localȱ(a),ȱ ȱ<ack>]ȱaffectȱrdyrcv`

30

Question

Is the theorem true,

if we extend the automaton?

31

Outline

1. Introduction

2. Event Structures

3. Process Extraction from Proof

Examples – two phase handshake

-- leader election in a ring

Realizers

Realizability Theorems

32

Specification for Leader Election in a Ring

Leader Election

In a Ring R of Processes with Unique Identifiers (uid’s)

Specification

Let R be a non-empty list of locations linked in a ring

2

6

1

3

45

Ȭ1

k

Let ȱn()ȱ= ȱdst(ou t()) ȱthe ȱ
Let ȱp()ȱ= ȱn () ȱthe ȱ
Let ȱd(,j)Ȭ k 1.ȱn ()ȱ= ȱj,ȱth

next ȱlocation
predecessor ȱlocation

d istancee ȱ
ȱȱȱȱȱȱȱNote

ȱ
ȱ

fr

p (j) d (,p (j))ȱ= ȱd(,j)Ȭl
om ȱ ȱto ȱj

.

i i ,

i i ,

i i

i i i

iμ ≥
≠ ⇒

33

Specification, continued

()
()

Leaderȱ(R,es)ȱ==ȱ ȱldr:ȱR.ȱ e@ldr.ȱkind(e)=leader &

ȱȱ ȱȱȱ i:R.ȱ e@i.ȱkind(e)=leader i=ldr

∃ ∃

∀ ∀ ⇒

Theoremȱȱȱȱȱȱȱȱ ȱR:List(Loc).ȱRing(R)
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱD:Dsys(R).ȱFeasible(D)ȱ&
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ es:ȱES.ȱConsistent(D,es).ȱLeader(R,es)

∀
∃
∀

34

Logically Decomposing the Leader Election Task

()()

[

LetȱLE(R,es)ȱ==ȱ i:R.

ȱȱȱȱȱȱȱ1.ȱ e.ȱkind(e)=rcv(out(i),ȱ<vote,uid(i)>)

ȱȱȱȱȱȱȱ2.ȱ e.ȱkind(e)=rcvȱ(in(i),ȱ<vote,u>)

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ u>uid(i) e .kind(e)=rcv out(i),<vote,u>

ȱȱȱȱȱȱȱ3.ȱ e .ȱ kind(e)=rcv(o

∀
∃

∀ ⇒

′ ′⇒ ∃

′ ′∀ ()
()()]

ut(i),ȱ<vote,uid(i)>)

ȱȱȱȱȱȱȱȱȱȱȱ e. kind(e)=rcv(in(i),ȱ<vote,u>)& eȱ<ȱe ȱ& ȱu>ȱuid(i)

ȱȱȱȱȱȱȱ4.ȱ e@i.ȱkind(e)=rcv(in(i),uid(i)) ȱ e @i.ȱkind(e)=leader

ȱȱȱȱȱȱȱ5.ȱ e@i.ȱkind(e)=leader.ȱ e@i.ȱkind(e)=rcv in(

∨

′∃

′ ′∀ ∃

∀ ∃

.

()i),ȱ<vote,uid(i)>

35

Realizing Leader Election

()

Theoremȱȱȱȱȱȱȱȱ : ȱ
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ : ȱ
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ : ȱ

∀
∃

∀ ⇒

R List(Loc).Ring(R)

D Dsys(R).Feasible(D).

esConsistent(D,es). LE(R,es) Leader(R,es)

{ } 1

1

Proof:ȱȱȱȱȱȱȱȱLetȱ thenȱ .

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱWeȱproveȱthatȱ ȱusingȱthreeȱsimpleȱlemmas.

= ∈ =

=

-

-

m max uid(i)| i R , ldr uid (m)

ldr uid (m)

36

Intuitive argument that a leader is elected

1. Every i will get a vote from predecessor for the

predecessor.

2. When a process i gets a vote u from its predecessor with u

with u > uid(i) it sends it on.

3. Every rcv is either vote of predecessor rcvin(i) for itself or

itself or a vote larger than process id before.

4. If a processor sets a vote for itself, it declares itself ldr.

ldr.

5. If a processor declares ldr it got a vote for itself.

p(i)

i

in(i) =

out(p(i))

out(i)

n(i)

37

Lemmas
()

()
inductionȱonȱdistanceȱofȱ ȱ

Lemmaȱ1.ȱȱȱȱȱȱȱ ȱ ȱ < ȱ >

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱByȱ .

Lemmaȱ2.ȱȱȱȱȱȱȱ ȱ ȱ < >

ȱȱ

toȱ

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ

∀ ∃ =

∀ ∀ =

i l

i : R. e @ i.kind(e) rcv in(i), vote, ldr

i,j : R. e @ i.kind(e) rcv in(i), vote,j .

dr

()

()

ȱȱȱȱȱȱȱȱ
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱByȱ .

Le

inductionȱonȱcausalȱorderȱofȱ ȱeven
mmaȱ3.ȱȱȱȱȱȱȱȱ ȱ ȱ

Ifȱ ,ȱthenȱbyȱpropertyȱ5,ȱ

ts

= ∨ <

′ ′∀ ∀ = ⇒ =

′ = ∃

j ldr d(ldr,j) d(ldr,i)

i : R. e @ i. kind(e) leader i ldr

kind(e) leader v @ i.r

rcv

cv in(()
()

()

< >

Hence,ȱbyȱLemmaȱ2ȱȱ
butȱtheȱrightȱdisjunctȱisȱimpossible.

Finally,ȱfromȱpropertyȱ4,ȱitȱisȱenoughȱtoȱknow
ȱ < ȱ >

whichȱfollowsȱfromȱ

= ∨ <

∃ =

i), vote,uid(i) .

i ldr d(ldr,i) d(ldr,i)

e.kind(e) rcv in(ldr), vote, uid(ldr)

Lemmaȱ1.

QED

38

Realizing the clauses of LE(R,es)

We need to show that each clause of LE(R,es) can be

implemented by a piece of a distributed system, and then show

the pieces are compatible and feasible.

We can accomplish this very logically using these Lemmas:

̇Constant Lemma

̇Send Once Lemma

̇Recognizer Lemma

̇Trigger Lemma

39

Implementing Clause 1 of LE(R,es)

()1.ȱȱȱ < >∃ =e.kind(e) rcv out(i), vote,uid(i)

We need to send <vote,uid(i)> from each location

i.

∀ =e @ i.(me e) uid(i) when

The Send Once Lemma lets the process at i send uid(i)

()< >∃ =e.kind(e) rcv out(i), vote,uid(i)

i

n(i)

out(i)

The Constant Lemma allows us to create a state variable me at each

i with me=uid(i)

40

Implementing Clauses 4, 5 of LE(R,es)

We can instantiate the Trigger Lemma to obtain

()
ȱȱȱȱȱ
ȱȱȱȱȱȱȱȱȱȱȱȱ ȱ ȱ < >

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱ < >

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱ

∀
′ ′∀ =

′∃ < =
∀ = ⇒

′ ′∃ =

i : Loc.

e @ i.kind(e) leader.

e @ i.e e.kind(e) rcv(in(i), vote,uid(i))

e @ i.kind(e) rcv(in(i), vote,uid(i))

e @ i.kind(e) leader

41

Leader Election Message Automaton

()

stateȱ ;ȱinitiallyȱ ()

stateȱ ;ȱinitiallyȱ
stateȱ ;ȱinitiallyȱ
actionȱ ;ȱpreconditionȱ
ȱȱȱȱȱeffectȱ =ȱ
ȱȱȱȱȱsendsȱ[(),ȱ ,]

actionȱ ()() ;

ȱȱȱȱȱ
in(i)

me : uid i

done : B false

x : B false

vote done

done : true

msg out i vote me

rcv vote v :

¬

’

’

()

{ }

sendsȱifȱ ȱthenȱȱ[(),ȱ ,]ȱelse[]
ȱȱȱȱȱeffectȱ =ȱifȱ ȱthenȱ ȱelseȱ
actionȱ ;ȱpreconditionȱ
onlyȱ ()ȱaffectsȱ
onlyȱ ȱaffectsȱ

onlyȱ ,ȱ () send

in(i)

in(i)

v me msg out i vote v

x : me v true x

leader x true

rcv vote x

vote done

vote rcv vote

>

=
=

sȱ ȱ(),ȱout i vote

42

Outline

• Introduction

• Event Structures

• Process Extraction from Proof

Examples – two phase handshake

-- leader election in a ring

Realizers

Realizability Theorems

43

Realizable specifications

initial -- gives the value of a variable

effect -- defines a change of state based on an action

frame -- limits actions that can change a variable

pre -- takes an action if a precondition is true

sends -- sends tagged messages on a specified link

sframe -- limits actions that can send

44

Realizing Primitive Event Specifications

initial (usingȱMessageȱAutomata)

p(initialȱ(x,i))

frame

Defineȱx eȱasȱxȱafterȱ

ȱ
ȱȱȱȱȱȱȱȱȱ@iȱstateȱx:T;ȱinitiallyȱp(x)
realizesȱ:ȱ

ȱȱȱȱȱȱȱȱȱ
ȱȱȱȱȱȱȱȱȱ@iȱonlyȱLȱaffectsȱx
realizesȱ:ȱ

eȱ ȱxȱwhenȱe

e@i.ȱ(x e kind(e

≠

∀ ⇒

J

J) ȱL)∈

45

Effect lemma

1 2ȱȱ@iȱȱȱȱstateȱȱx:T ;ȱȱactionȱk:T
ȱȱȱȱȱȱȱȱȱȱk(v)ȱeffectȱx:ȱ=ȱf(sȱwhenȱe,ȱvalȱ(

e@i.ȱkind(e)=kȱ
ȱȱȱȱȱȱȱȱȱȱȱȱ

e))

realizes

ȱȱȱȱȱȱȱȱȱxȱ

effectȱȱȱȱȱȱ

afterȱeȱ=ȱf(sȱwhenȱe,ȱvalȱ(e))

ȱȱȱ

ȱȱȱȱȱȱȱȱȱȱ

;

∀ ⇒

46

ȱ ȱ ȱ ȱ ȱ
ȱȱȱȱ ȱ ȱ ȱ ȱ
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ
ȱȱȱ ȱ

pre

ȱȱȱȱ@iȱactionȱk:T;ȱk(v)ȱpreconditionȱp(s,v)
realizes:

ȱȱȱȱ

ȱ

e@i.(kind(e) k p(swhere, val(e)))

& e@i. e'@i.e e' &

(kind(e') k v : T. p(safter e',v))

& v : T.p(init

∀ = ⇒
∀ ∃ ≤

= ∨ ∀ ¬
∃

Theȱskolemȱfunctionȱinȱtheȱ ȱ ȱclause
givesȱaȱȈscheduleȈȱforȱtheȱaction

ȱ ȱ

ȱk

ȱ ȱȱ

.

(es)(i), v) e

e e'

: E. loc(e) i

∀ ∃

⇒ ∃ =

47

Compound Realizers

Realizers are built by combining the six basic clauses. In the concrete case

of Message Automata, the clauses are just joined by union. In the

abstract setting, there is a combining operator,

⊕
1 2

R R .

48

es-realizer

def

Realizer

ȱrec(.Unit

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ+ ×

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ+Id× :Type×Id×

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ+Id×Type×ID×(KndList)
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ+IdLnk×Id×(KndList)
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ+Id× : :Idȱfp Type×Knd

≡

→

X

X X

T T

ds x ()× :Type× :Id× State DeclaredType ;

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ+ : :Idȱfp Type

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ×Knd
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ× :Type

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ×IdLnk
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ× : :Idȱfp Type

ȱȱȱȱȱ

→ →

→

→

T x (ds) T (ds x)

ds x

T

dt x

()ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ× (:Id (State() (DeclaredType(;)ȱList)))ȱList
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ+Id : :Idȱfp Type×Id× :Type×(State Prop)

× → →

× → → →

tg ds T dt tg

ds x T (ds) T

49

Compatibility
Arbitrary compositions, might not be compatible. For

example, R1 might be a frame condition that says

R1: only action k can change x and

R2: action changes x for some

1 2
R R⊕

Also compatible realizers must have compatible types

R1: declares x to be of type T1

R2: declares x to be of type T2

We must have

k k'≠k'

ȱȱȱȱ ȱȱorȱȱ ȱȱȱȱȱ
1 2 2 1
T T T T

50

Compatibility, continued

Compatibility is defined by 15 conditions from the 6 by 6 matrix of

possibilities (half minus the diagonal). They are not decidable in

theory but are in practice.

51

Outline

• Introduction

• Event Structures

• Process Extraction from Proof

Examples – two phase handshake

-- leader election in a ring

Realizers

Realizability Theorems

52

Consistency
If P is any event specification, then the type theory expression of the goal

is this

ȱȱ ȱ :∃ ∀
⇒

| D : DSyst.Feasible(D)& esES.

Consistent(D,es) P(es)

We say that Feasible(D) if D has at least one execution.

We say Consistent(D,es) provided es is an event system that arises

from a possible execution of D.

53

Feasibility

A realizer R is feasible if it has an execution. For this to be possible, the

clauses of R must be compatible and the types of variables, event

values, and message content must be nonempty.

54

Computability

One of the main theorems of Bickford’s massive library is that if

distributed system D is feasible, then we can construct the possible

executions, worlds, of it.

Moreover, from a world W of D, we can construct event systems for D,

es(D), consistent with it.

Consistent(D,es)

This is a constructive proof, as are all in the library. So it defines the

computational rules for the realizers given a schedule.

55

Running Distributed Systems Generate Event

Structures

Theorem 1

ForȱallȱDSysȱD,ȱȱFeasible(D) w:World.ȱPossible(D,w)⇒ ∃

Theorem 2

()
ForȱallȱDSysȱDȱandȱallȱPossibleȱWorldsȱwȱofȱD,
weȱcan eȱ sbu (wildȱanȱEventStructureȱ ȱConsistent D,ȱes) (w) .

56

Logic of Events, circa 2007

What distinguishes our event structures approach?

-based directly on Leslie Lamport’s insights;

type theory captures them naturally

-used by distributed computing researchers, matches their
their intuitions

-integrated into LPE, hence into procedural programming

-completely formalized

-supports proofs-as-processes of synthesis and programming
programming

-widely applicable: verification, optimization, documentation,
documentation, security, performance

-organizes a fundamental set of concepts

57

Exercise

Specify that a group of processes all have

the same function for integer root in their

state.

58

• =
•

=
•
•

•
n n

n

@ i x : T v

@ i k(v : t) x

x : f state f

@ i a(v t) P state v

k(v : T)

[tg, f state v; ...; tg , f state v]

@ i [k, ..., k]

1 1

1

ȱ ȱ ȱȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ
ȱȱȱȱ ȱ ȱ ȱ
ȱ ȱ ȱ : ȱisȱ ȱ ȱ
ȱȱ ȱ ȱ

initially

effect on

precondition

sendsȱonȱlink l

only

ȱ
ȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱsendsȱo

• ⊕
tg

A B A,Bȱȱ ,ȱw
nȱ

hereȱ ȱareȱme
linkȱlȱwithȱta

ssageȱa
g

utomata

Message Automata Clauses

59

Citation

On urelements in computation

Andreas Blass, Yuri Gurevich, and Saharori

Shelah, Choiceless Polynomial Time,

Annals of Pure and Applied Logic, 100,

1999, 141-187.

Formal Basis for Security Properties

Lecture 4

Robert L. Constable

Joint with Mark Bickford

Marktoberdorf, Germany – Summer 2007

Reliability, Correctness, and Security

Reliability and correctness are properties of software

that make sense in even the simplest computer models

– functional code on one processor.

Security is a sensible property for the distributed

computing model of which the Internet is an instance.

Secure Communication

A building block concept for security properties on

Internet computing systems is secure communications,

i.e. process A can send content in messages to process B

that no other process learns.

Typically this property is achieved by encrypting the

messages in such a way that only B can encrypt them,

thus a process C that intercepts the message does not

learn the content.

Agents

Protected information content

Learning content

Essential Elements of Security Models

Outline

Motivation

security models

a new model

Unguessable Atoms

Type Atom (Urelements)

Properties

Permutation Rule

Independence

Content does not involve Atom a

Rules

Applications (nonces)

Conclusion to Series

Bickford’s Analysis

There are two kinds of security models

Analytic Algebraic

learning

Acquiring

to learn is to

acquire

general

computation

restricted

computation

≠

Analytic Model

Computation system includes all computer

programs.

Agents can guess content, so learning is not

the same as acquiring. Learning definitions

can depend on resource bounds of agents,

thus on computational complexity, and on

probability assumptions about “cracking a

code.”

Algebraic Model (Dolev-Yao ’83)

To learn the content is to acquire it or

generate it – guessing is disallowed.

Protected information is a finitely generated

algebra over atomic pieces (keys, nonces,

atomic messages).

New Security Model

Mark Bickford proposed a way to use elements of Type

Theory inspired by our digital library work to create a new

security model which combines a generally model of

computation with a simple model of learning protected

information, namely

learning is acquiring.

all programs

In a general model of computation, agents

can guess secrets by enumerating all

possible content.

How to prevent that!

Answer: protected content is built from

unguessable atoms.

How is this possible?

Here are the properties we want.

They are elements of a primitive type, in fact the

CTT type Atom, included since 1984 but with an

additional rule. (A major advantage of the open-

ended nature of CTT.) The only operations on

atoms is to

compare them for identity

They cannot be generated or constructed from other

elements. Otherwise, they behave as ordinary data

elements.

What is an unguessable atom?

In the working material, the paper by Stuart Allen

entitled: An Abstract Semantics for Atoms in

Nuprl, provides the semantics for Atoms and

explains why they are “unguessable.”

It is only 10 pages of content.

I hope you will read pages 4 – 7.

Reading about Atoms in Nuprl

The closest concept in Set Theory to Atoms

is the notion of urelement. These are atomic

non-set primitive elements. Some accounts

of them might be useful in a classical

account of security.

Atoms and Urelements

Sets Types

Urelements Atoms

On urelements in computation

Andreas Blass, Yuri Gurevich, and

Saharori Shelah, Choiceless Polynomial

Time, Annals of Puter and Applied Logic,

100, 1999, 141-187.

Citation

• Atoms are not enumerable, not infinite. Yet they

are not of a fixed finite cardinality.

• The canonical elements are token{i:ut} where

the class assigned to an unhideable token is a

parameter D, some discrete class.

• The semantics quantifies over all possible values

for a discrete D (this is a supervaluation

semantics).

• token{i:ut} reduces to itself, i.e. is canonical.

• Equality is decidable on Atom

• For any k, we can pick out k atoms from Atom.

Properties of Atoms

• For any character string a, token{a:ut} is

a possible instance of the semantics (see

Allen p.6, True+).

• If the elements of D are unhideable in

definitions (occur on both left and right

sides) and if the evaluation rules respect

permutation of the names in D, then any

sequent J true of k atoms, J (a,b,c,…), is

true for any permutation a to a1, b to b1,

…, i.e. J(a1,b1,c1,…).

Properties of Atoms continued

f(x)= = if x=1 then token(a) else token(b) fi

is not a legal definition because a, b do not appear

on the left hand side.

f{a,b}(x)= = …would be legal.

It is illegal to introduce a term, say oups, and have a

rule oups Ļ token(a).

Examples

Outline

Motivation

security models

a new model

Unguessable Atoms

Type Atom (Urelements)

Properties

Permutation Rule

Independence

Content does not involve Atom a

Rules

Applications (nonces)

Conclusion to Series

Tracking atoms in a distributed computation

We want to track when a process acquires an

unguessable atom. It does so when its state depends

on that atom. This happens only because the state

initially has the atom or because it was received in a

message since it is not possible for a process to

construct an atom it does not already have.

We express this idea by talking about a state being

independent of an atom up to some receive event.

Independence Rules

Here are the key rules for the proposition (x:tŒa) which

expresses “x of type T is independent of atom a.”

Triviality (t has no atoms)

HŌ (t:T Œa)

HŌ t ɽT
HŌ a ɽ Atom

t is closed and mentions

no tokens

Independence Rules

Base (t is a different atom)

H Ō (t: AtomŒa)

H Ō ¬(t=a in Atom)

Application (key rule)

H Ō (f(t):B[t/ȣ] Œa)

H Ō(f:(ȣ:AĺB Œa)

H Ō (t:AŒa)

Independence Rules

Absurdity (a depends on a)

H Ō ¬ (a:Atom Œa)

Set (separating predicate is irrelevant)

H Ō (t:{x:T|P}Œa)

H Ō (t:TŒa)

H Ō t in {x:T | P}

Independence Rules

Equality

H Ō (t1:T1Œa1) = (t2:T2 Œa2)

H Ō T1=T2 in Type

H Ō t1=t2 in T

H Ō a1 = a2 in Atom

This allows us to build up independence

from pieces.

Basic Facts

We can prove general facts such as

Theorem

We proceed by induction on I (upwards and

downwards) starting from the fact that 0 is a

closed term with no atoms. Going upwards,

if , then since is(:)z a¦ (1:)z a+ ¦ 1z +

(. 1)() and (. 1)
 is a closed term with no atoms
 and the application rule applies

x x z x x+ +

Qed.

: . : .(:)a Atom z z a∀ ∀ ¦ ¦

Outline

Motivation

security models

a new model

Unguessable Atoms

Type Atom (Urelements)

Properties

Permutation Rule

Independence

Content does not involve Atom a

Rules

Applications (nonces)

Conclusion to Series

Here is a way to specify security properties depending

on a cryptographic service. First we specify the service

with a predicate Pcrypto and the security property with

Qsecure. Then we show that some message automaton M

realizes Pcrypto Qsecure.

Ō (Pcrypto Qsecure) extract M

Specifying Security Properties

⇒

⇒

A Security Property

Suppose we want to say that a group of agents will share a

common secret. Let the agents be at locations on the list L.

The safety specification is that the state of any agent not on

L is always independent of a secret a.

The liveness part is that eventually all agents on L receive

the secret.

The full specification is

1() .[() (((()) e))]Q a e loc e L state loc e when a== ∀ ∈ ∨

2 () . .(() & (when))Q a i i L e loc e i x e a== ∀ ∈ ⇒ ∃ = =

1 2: . () & ()a Atom Q a Q a∃

Cryptographic Services

Mark Bickford and Robbert van Rennesse have modeled a

Public Key Cryptography service in the Logic of Events using

atoms. It is sketched in a forthcoming article by Bickford:

Unguessable Atoms: A Logical Foundation for

Security Supported by the Information Assurance

Institute at Cornell.

We will look at a simpler service, providing nonces.

A simple nonce service

We can equip Message Automata to choose nonces by taking

a nonce to be a distinct unguessable value, an atom. One way

to do this is to assume that every agent has a supply of atoms

unique to itself. We call this the

Nonce Assumption

, : . : . (Nonces initially) ()i j Loc i j a Atoma i j a∀ ≠ ⇒∀ ∈ ⇒

Implementing Atoms

To generate real code from the Message Automata that

use Atoms to provide cryptographic services, we would

resort to the standard technique of using random bit

strings or RSA style public key that depend on

computational complexity results and one-way functions.

We have shown how public trust in information technology relies

on a partnership between computer scientists and mathematicians -

especially logicians.

The computer scientist must abstract away detail to present

concepts that are mathematically tractable yet faithful to computing

practice and capable of information and guiding the technology.

For example:

•The digital abstraction

•Automata and state machines

•Induction and recursion

•Computability

•Data and types

•Formal correctness

•Asynchronous distributed computing

•Event structures

Series Conclusion

Computer Science Practice – “the stack”, translators

Models Code People

On-line banking

model

(logic book)

Secure aps

(thru provers)
banking sys

Aps programmer

Aps theory

(transaction design)

Protocols IOA, MA
ASM

Middleware Syst. Prog.

Distrib sys theory

Computable function

models

Prog languages

procedural, declarative

Computer writer

computer theory

Semantics

Concurrency, file syst Operating system

Virtual machines

Syst programmer

Os theory

Modeling and
simulation languages

Assembler

Handware

Computer engineer

architect

This is how we span levels of abstraction

Series Conclusion Continued

We have presented a correct-by-construction

refinement methodology for distributed

computing, a long standing challenge, and a

capability more critical than in the functional

case.

We have integrated a logic for the event

structure abstraction into the comprehensive

theory of computing serving computer science,

and have shown how to include security

properties in a novel and formally tractable way.

	Records Naïvely
	Naïve Record Extension
	Naïve Record Subtyping
	Records Using Labels
	Records as Functions
	Records Extension Using Labels
	Record Extension Depends on Function Polymorphism
	Reading for Lecture 1
	More About Types
	Formulas and Problems
	Formulas and Problems, continued
	Integer Square Root
	Proof of Root Theorem
	Proof of Root Theorem (cont.)
	The Root Program Extract
	A Recursive Program for Integer Roots
	Deduction Systems
	An Interative Program for Integer Roots
	An Interative Program �for Integer Roots, continued
	A Program for Integer Roots With Assertions
	While loop realizer
	Message Automata Clauses
	Picture of a Computation
	Efficient Root Program
	A Theorem that Roots Exist (Can be Found)
	Exercise
	Lecture 3��A Theory of Events
	The Challenge
	Outline
	Events in Space/Time
	Intro to Event Systems
	Intro to Event Systems, continued
	Intro to Event Systems, continued
	References
	Relationship to Winskel, Lamport
	Outline
	Events with Order (EOrder)
	EOrder Axioms
	Progression of Event Structures
	Event Structures (with state)
	Example – Two-Phase Handshake
	Deriving the Two-Phase Handshake
	Picture of a Computation
	Executions of Distributed Systems
	Fair-Fifo Executions
	Outline
	Recall Functional Program Synthesis
	Refinements for Programs
	Refinements for Systems
	Two-Phase Handshake Theorem
	Two-Phase Handshake
	Lemmas
	Realizing the Lemmas - 1
	Realizing the Lemmas - 2
	Handshake Message Automation
	Question
	Outline
	Specification for Leader Election in a Ring
	Specification, continued
	Logically Decomposing the Leader Election Task
	Realizing Leader Election
	Intuitive argument that a leader is elected
	Lemmas
	Realizing the clauses of LE(R,es)
	Implementing Clause 1 of LE(R,es)
	Implementing Clauses 4, 5 of LE(R,es)
	Leader Election Message Automaton
	Outline
	Realizable specifications
	Realizing Primitive Event Specifications
	Effect lemma
	
	Compound Realizers
	es-realizer
	Compatibility
	Compatibility, continued
	Outline
	Consistency
	Feasibility
	Computability
	Running Distributed Systems Generate Event Structures
	Logic of Events, circa 2007
	Exercise
	Message Automata Clauses
	Citation

