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jMoped: an Eclipse plug-in

jMoped performs a reachability analysis to check the re-
duced Java method.
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Generates coverage information from model-checking re-
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jMoped: an Eclipse plug-in

Tests for common Java errors, i.e. assertion violations, null-
pointer exceptions, array bound violations.
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jMoped: an Eclipse plug-in

Generates JUnit test cases or call traces with concrete in-
puts.
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jMoped: an Eclipse plug-in

Searches backwards from uncovered instructions.
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Overview of the Architecture
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Supported Java Features

@ Assignments

@ Control statements

@ Method calls and recursions
@ Exceptions

@ Strings (very limited)

@ Multi-dimensional arrays

@ Object-oriented programming

o Inheritance
@ Abstraction
e Polymorphism



Limitations

@ No float or negative values
@ No multi-threading
@ State space is rebuilt for each analysis

Performance limitations
@ Analysis: jMoped is too slow for heaps bigger than 64
blocks
@ Translation: A class in the Java library often calls many
other classes — very big program!



Demonstrations

More demos ...



Conclusion

@ Symbolic testing: uses a BDD-based model checker for
testing a large set of inputs.

@ Generates coverage information and find some common
errors.

@ User-friendly interface, model checker is hidden.
@ Can be used as a complement to JUnit.
@ Supports backward analysis.

http://www?7.in.tum.de/tools/jmoped
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Automatic verification using model-checking

Initiated in the early 80s in USA and France.

Exhaustive examination of the state space using (hopefully) clever techniques to
avoid state explosion.

Very successful for hardware or “low-level” software:

e Applied to commercial microprocessors, telephone switches launching
protocols, brake systems, or the dutch Delta works.

e Model-checking groups at all major hardware companies.

e ACM Software System Award 2001, Godel Prize 2000, Kannellakis Awards
1998 and 2005.



Software model-checking

Big research challenge of the 00s: extension to ‘high-level’ software.

Three main research questions:

e Integration of the tools in the software development process.

e Users trust their hardware but may not trust their software:
“post-mortem” verification, “backstage” verification tools ...

e Automatic extraction of models from code.

e Algorithms for infinite-state systems.

e Software systems are very often infinite-state.



A “lazy” approach to software verification

Construct a sequence of increasingly faithful models that under- or
overapproximate the code.

Underapproximations: 32-bit integer — 2-bit integer, 500MB heap — 10B heap.
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A “lazy” approach to software verification

Construct a sequence of increasingly faithful models that under- or
overapproximate the code.

Underapproximations: 32-bit integer — 2-bit integer, 500MB heap — 10B heap.

Overapproximations using predicate abstraction:

Define a set of predicates over the dataspace.
Example: x <y x=0

Associate to each predicate a boolean variable.
Example: x <y~ a XxX=0—Db

Overapproximate by a program over these variables.
Example: X =y is overapproximated by

a .— false;

if (aand b) then b := false

else b := true or false



Both under- and overapproximations are boolean programs:

Same control-flow structure as code + possibly nondeterminism.

Only one datatype: booleans.

Conceptually could also take any enumerated type but booleans are the
bridge to SAT and BDD technology.



Rewriting models of boolean programs

Boolean programs are still pretty complicated objects:

e Procedures/methods and recursion.
e Concurrency and communication (threads, cobegin-coend sections).

e Object-orientation.

Must be “compiled” into simpler and formal models.



Rewriting models of boolean programs

Boolean programs are still pretty complicated objects:

e Procedures/methods and recursion.
e Concurrency and communication (threads, cobegin-coend sections).

e Object-orientation.

Must be “compiled” into simpler and formal models.

Use rewriting to model boolean programs. In a nutshell:

e Model program states as terms.
e Model program instructions as term-rewriting rules.

e Model program executions as sequences of rewriting steps.



Fundamental analysis problem: Reachabillity

But reachability between two states not enough for verification purposes

Safety properties often characterized by an infinite set of dangerous states.

Set of initial states also possibly infinite.

Generalized reachability problem: Given two (possibly infinite) sets / and D of
initial and dangerous states, respectively, decide if some state of D is reachable
from some state of /.



Challenge: Find a finite (“symbolic”) representation of the
(possibly infinite) set of states reachable or backward reachable from a given
(possibly infinite) set of states.

e pre*(S) denotes the set of predecessors of S.
(states backward reachable from states in S)

e post*(S) denotes the set of successors of S.
(states forward reachable from states in S)

Strategies: Compute pre*(D) and check if I N pre*(D) = (), or compute
post* (1) and check if post*(/) "D = ()



Program for the rest of Part |

Rewriting models for:

e Procedural sequential programs.
e Multithreaded while-programs.
e Multithreaded procedural programs.

e Procedural programs with cobegin-coend sections.

For each of those:

e Complexity of the reachability problem.

e Finite representations for symbolic reachability.



A rewriting model of procedural sequential programs

State of a procedural boolean program: ( g, 4, n, (¢1,n1) ... (¢x, nx) ), where

e g is a valuation of the global variables,

e /is a valuation of local variables of the currently active procedure,

e nis the current value of the program pointer,

e /i is a saved valuation of the local variables of the caller procedures, and

e n;is a return address.
Modelled as a string g (¢, n) (¢1,n1) ... (Cs, Ny)

Instructions modelled as string-rewriting rules, e.g. 1t (t, mg) — f{ftf, pg) (t, m1)

Prefix-rewriting policy:
u— w

r
uv —wyv



An example

bool function foo(¥)

fy: if ¢ then bt fo) — bt f)
fl: return false b{f,fy) — b{f )
else bit,f1) — f

fo: return true
" b{t,fp) — 't
i
procedure main()
global b tmg — tmy
mqg: while b do fmg — fmo
my: b := foo(b)
- bml — b<b, f0> mo
od;
my: return bmy —

(b and ¢ stand for both t and f)



Prefix string rewriting. From theory ...

First studied by Blchi in 64 under the name regular canonical systems as a
variant of semi-Thue systems.

Theorem: Given an effectively regular (possibly infinite) set S of strings, the sets
pre*(S) and post*(S) are also effectively regular.
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Prefix string rewriting. From theory ...

First studied by Blchi in 64 under the name regular canonical systems as a
variant of semi-Thue systems.

Theorem: Given an effectively regular (possibly infinite) set S of strings, the sets
pre*(S) and post*(S) are also effectively regular.

Rediscovered by Caucal in 92.

Polynomial algorithms by Bouajjani, E., Maler and Finkel, Willems, Wolper in 97.

e Saturation algorithms: the automata for pre*(S) and post*(S) are essentially
obtained by adding transitions to the automaton for S.
(Algorithms for similar models by Alur, Etessami, Yannakakis, and Benedikt,
Godefroid, Reps and .. .)



...to applications

Efficient algorithms by E., Hansel, Rossmanith and Schwoon in 00.

Theorem (informal): Let 2, R be the alphabet and set of rules of a 2-normalized
prefix-rewriting system system and let A be a “small” NFA over 3.

An NFA for post*(L(A)) can be constructed in O(|X||R|2) time and space.

An NFA for pre*(L(A)) can be constructed in O(|=|2|R|) time and O(|=||R|)

space.
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...to applications

Efficient algorithms by E., Hansel, Rossmanith and Schwoon in 00.

Theorem (informal): Let 2, R be the alphabet and set of rules of a 2-normalized
prefix-rewriting system system and let A be a “small” NFA over 3.

An NFA for post*(L(A)) can be constructed in O(|X||R|2) time and space.

An NFA for pre*(L(A)) can be constructed in O(|=|2|R|) time and O(|=||R|)
space.

BDD-based algorithms by E. and Schwoon in 01.
MOPED model checker by Schwoon in 02.
MOPS checker by Chen and Wagner in 02.

“Model Checking an Entire Linux Distribution for Security Violations”
by Schwarz et al. at ACSAC 05.



Buchi did it

Moshe Vardi:

BlUchi automata, introduced by Bichi in the early 60s to solve
problems in second-order number theory, have been
translated, unlikely as it may seem, into effective algorithms

for model checking tools.




Buchi did it twice

Moshe Vardi:

BlUchi automata, introduced by Bichi in the early 60s to solve
problems in second-order number theory, have been
translated, unlikely as it may seem, into effective algorithms

for model checking tools.

Here:
Regular canonical systems, introduced by Blchi in the early 60s because

he liked them, have been translated, unlikely as it may seem, into effective

algorithms for software model checking tools.



A rewriting model of multithreaded while-programs

Communication through global variables.

State determined by: { g, (Y0, ng), (¢1,n1) - .. (¢x, Ny) } where

e g is a valuation of the global variables,
e /;is a valuation of the local variables of the /-th thread, and
e n; is the value of the program pointer of the j-th thread.

Modelled as a multiset
g |l (o, no) || 1, ny |l --- || Lk, Nk)

Instructions modelled as multiset-rewriting rules, e.g.

tf |l mo — 1 my |l {f,po)

Multiset rewriting, or rewriting modulo assoc. and comm. of ||.



An example

thread p()

Po- if 7 then

p1: b := true
else

po: b .= false
fi;

p3:. end

thread main()

global b

mo:  while bdo

my: fork p()
od;

m>: end

S T T T T

O T —~ ~

Po
Po
P1
P2
P3

Ll

|

| p1
| P2
P3
P3



Multiset rewriting

Theorem [Mayr, Kosaraju, Lipton, 80s]: The reachability problem for
multiset-rewriting is decidable but EXPSPACE-hard.

e Equivalent to the reachability problem for Petri nets.
e A place for each alphabet letter.
e A Petri net transition for each rewrite rule.

X|Y|Z—V|W

Algorithms (not only proofs) quite complicated.

Negative results for pre*({s}) and post*({s}).



Symbolic reachability for pre* and upward-closed sets

Upward-closed set: if some multiset t belongs to the set, then t || ' also belongs
to the set for every t'.

Finitely representable e.g. by the its of minimal elements.

Upward-closed sets capture properties that can be decided by inspecting a
bounded number of threads (e.g. mutual exclusion).

Theorem [Abdulla et al. 96]: Given a multiset-rewriting system and an
upward-closed set of states S, the set pre*(S) is upward-closed and effectively
constructible.

e Very simple algorithm: compute pre(S), pre?(S), pre3(S) .. ..

Extensions applied to multithreaded Java [Delzanno, Raskin, Van Begin 04].



Monadic multiset-rewriting

Monadic rules = no global variables = no communication
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Monadic multiset-rewriting

Monadic rules = no global variables = no communication
... but what are threads that cannot communicate with each other good for?!!!

They are good for underapproximations [Qadeer and Rehof 05]

\/J(\i i

L

| A~

Context 1 Context 2 Context 3

N\




Reachabillity

Theorem [Huyhn 85, E.95]: The reachability problem for monadic multiset-rewrite
systems is NP-complete.

e Membership in NP not completely trivial.

e Hardness very easy, reduction from SAT:

A thread for each variable x; that (a) nondeterministically chooses /; € {x;, x;}
and (b) spawns a clause thread for each clause satisfied by /;.

The thread for a clause does nothing and terminates.

Formula satisfiable iff there is state at which one thread per clause is active.



Symbolic reachability for semi-linear sets

Semi-linear sets usually defined as subsets of N”.

e Finite union of linear sets.
o {r+Xip1+...+Anpn|A1,...,An € N},

Language interpretation: “commutative closure” of the regular languages.

Similar properties to regular languages: closure under boolean operations,
decidable (but no longer polynomial) membership problem, etc.

Theorem [E.95]: Given a monadic multiset-rewriting system and a semi-linear set
of states S, the sets post*(S) and pre*(S) are semi-linear and effectively
constructible.



Multithreaded procedural programs

Two-counter machines can be simulated by a program with two recursive threads
communicating over two global (boolean) variables:

e Tops of the recursion stacks contains two copies of the machine’s control
point.

e Depths the two recursion stacks model the values of the counters.
e Calls and returns model increasing and decrementing the counters.
e One variable to ensure alternation of moves.

e One variable to keep the two copies of the control point “synchronized”.

If communication takes place by rendezvous the two variables are no longer
needed: programs without variables are still Turing powerful.



Multithreaded procedural programs

Two-counter machines can be simulated by a program with two recursive threads
communicating over two global (boolean) variables:

e Tops of the recursion stacks contains two copies of the machine’s control
point.

e Depths the two recursion stacks model the values of the counters.
e Calls and returns model increasing and decrementing the counters.
e One variable to ensure alternation of moves.

e One variable to keep the two copies of the control point “synchronized”.

If communication takes place by rendezvous the two variables are no longer
needed: programs without variables are still Turing powerful.

Communication-free case: [Bouajjani, Muller-Olm and Touili 05]

Communication through nested locks: [Kahlon and Gupta 06]



A rewriting model for the communication-free case

State of a multithreaded procedural program without global variables:
multiset {s1,s5... sk} of states of procedural programs, where

— (6107 nlO) (ella n/l) ( ims n/m)
Modelled as a string #w, #w)_1# ... # w1 where

w; = (€jo, Nig) (41, Nj1) - - Lims> Nim)

Instructions modelled as string-rewriting rules. A new thread is inserted to the
left of its creator, e.g.

# (b, my) — # pg # (f, m3)

Threads “in the middle” of the string should also be able to “move”: back to
ordinary rewriting

u—w

r
ViuVo —— V1 W Vo



An example

process p();
po: if (?) then

p1: call p()
else

Po. skip
fi:

p3:  return

process main()
mg: if (?) then

my . fork p()
else
mo: call main()

fi;
m3:  return

7 Po
7 Po
# P1

# P3

Ll

Ll bl



Analysis

Theorem [BMOTO5]: For every effectively regular set S of states, the set pre*(S)
is regular and a finite-state automaton recognizing it can be effectively
constructed in polynomial time.

e Similar to pre* for monadic string-rewriting [Book and Otto 93].

Theorem [BMOTO5]: For every effectively context-free set S of states, the set
post*(S) is context-free and a pushdown automaton recognizing it can be
effectively constructed in polynomial time.

Counterexample to regularity: P that spawns a copy of Q and calls itself.
The number of threads is equal to the depth of the recursion.

Reachability set: {(#9)"#p("t1) | n > 0}.



Cobegin-coend sections

Difference with threads: implicit synchronization induced by the coend.

e “Threads have to wait for its siblings to terminate.”

e Corresponds to calling procedures in parallel.

Rewriting model only works well for the communication-free (monadic) case.

States modelled as terms with both || and - as infix operators e.g

((t,p1) || g2) - (tf, my)

Rewriting modulo assoc. of - and assoc. and comm. of ||.

This model is called monadic process rewrite systems (monadic PRS) [Mayr 00].



Analysis

Symbolic reachability with commutative hedge automata (CHA) [Lugiez 03].

Theorem [Bouajjani and Touili 05]: Given a monadic PRS, for every
CHA-definable set of terms T, the sets post*(T) and pre*(T) are
CHA-definable and effectively constructible.

Weaker approach: construct not the sets post*(T) or pre*(T) themselves, but
representatives w.r.t. the equational theory.

Sufficient for control reachability problems.

Theorem [Lugiez and Schnoebelen 98, E. and Podelski 00]:

Let R be a monadic PRS and let A be a bottom-up tree automaton.

One can construct in O(|R| - |A|) time bottom-up tree automata recognizing a set
of representatives of post*(L(A)) and pre*(L(A)).



Conclusions

Rewriting concepts can be used to give elegant semantics to programming
languages.

e String/multiset rewriting correspond to sequential/parallel computation.

e Monadic/non-monadic rewriting correspond to absence or presence of
communication.

e Rewriting modulo useful for combining concurrency and procedures.

Symbolic reachability is the key problem to solve.

Comparison with process algebras:

e Process algebras have a notion of hiding or encapsulation.

e Rewriting much closer to automata theory — algorithms.
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Case study: D rmaw ng skylnes

static Random r = new Random() ;
static void m() {
if (r.nextBoolean()) {
s(); right(); 1f (r.nextBoolean()) m();

}

else { up(); m(); down(); }
t

static void s () {
i1f (r.nextBoolean()) return;

up(); m(); down();
}

public static void main() { s(); }



M odel

static void s () {
so: 1f (r.nextBoolean())
§1: return;
So: up();
s3: m();
sa: down () ;
S5t

var st:stack of {sqg,...,ss5,...

S0 — S1 S0 — S§92
§1 — €

§2 — Upgs3

§3 — mQS4

s4 — downg sy

S5—>€



S ym bolc reachabilty m prefix rew ritng

Recal: program state (g, 4, n,(f1,n1) ... (¢, n;) ) modeled as a word
8 <€,Vl> <£1,I/l]_> <€k7nk>'

Denote by G the abhabetofvaliatons ofgbbal.

Denote by L the abhabetofpais (£, n).

The setofpossbk program s states is gven by G L*



A subsetofGL* words is requlr if fcan be recognized by a finie autom aton.

Typically, the sets [ and D of niialand dangerous program states are regulr
sets. Even very sin pk ones, lke g [L*)

Chalenge: show thatif§ C GL* i eflectvely) requkr, then so are pre™(S ) and
post*(S).

This gives a procedure to check ifl N pre*(D) = () orpost* (1) "D = ().



Sym bolc search

Forw ard sym bolc search

hialize § (=1
Tfermte S =8 Upost(S) untdlfixpont.

Backward search: rephce [ by D, repkce post by pre .

Q uestons:

e Are S Upost(S) and S Upre(S) requbrOrregubrs ?

® Does the search tem nate ?

W e answerthese questons forbackw ard search, the orward case s s 1ar.



TS reqgubr then S Upre(S) requkr

W e representa regubrsetS C G L* by an NFA.

e G as setofiniihlstates, L as abhabet.

® gw recognized ifg % g orsom e finalstate ¢q .

Exampk: G = {go,g1} and L = {lp, 1}
Autom aton coding the set golilp + 11 :




R=1{ golb—50 , g1h—80 , g1h—g1hl }
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golo — go
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g1hh — go

11



g1hh — go
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g1hh —g1hlp
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g1hh —g1hlp
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R=1{ golo—580 ,

g1lh — g0

g1lh — g1l }
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R=1{ golo—580 ,

g1lh — g0

g1lh —g1hl }
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R=1{ golo—580 ,

g1lh — g0

g1lh — g1l }
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R=1{ golo—580 ,

g1lh — g0

g1lh — g1l }
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g1hh —g1hlp
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g1hh —g1hlp
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R=1{ golo—580 ,

g1lh — g0

g1lh — g1l }
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R=1{ golo— go

Y

g1lh — go

Y

g1lh — g1l }
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R=1{ golo— go

Y

g1lh — go

Y

g1lh — g1l }
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Term naton fails

G = {go,gl},L — {l07ll}

R = {g0lb—¢80,81h —80,81h—g1hl}
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Term naton fails

G = {go,gl},LZ {l07ll}
R={golb—280,81h —80,81h—¢g1hl}

So = D = golbliflo + g11h

29



Term naton fails

G = {go,gl},LZ {l07ll}
R={golb—280,81h —80,81h—¢g1hl}

D
SoUpre(So)

gololilo + g1l
g0 (o +18) I lo +
g1l (e+ 1) 5 (e+ o)

A Un
= (@)
Il



Term naton fails

G =

{go,&1},L=1{l,h}

{g0lb— 80,811 — 80,8101 —g1hhl}

D
SoUpre(So)

Si_1Upre(S;_1)

gololilo + g1h
go(o+ 1)+
g1l (e+ 1) 5 (e+ o)

golo+ ...+ o+
gili(ed+lg+ ...+ 1) e+ 1p)

31



How ever, the fixpont

s regubr.

pre*(D) = golal_li" Ib +
g1l 51 (e + o)

How can we compute it?

32



Accelkratons

By definiton, pre (D) = U;>0 S
where Sog =D and S;41 = 8;Upre(S;) Preveryi >0

If convergence fails, try t com pute an accelkraton :
a sequence Tg € Tq1 C To ... such that

@) Vi>0:S5,CT,

P roperty (@) ensures capture of @t kast) the whok setpre (D)
P roperty () ensures thatonk elem ents ofpre (D) are captured

The accekraton guarantees term naton it

(C) Ell 2 O: Tl—|—1 — Ti

33



An accekraton orprefix rew ring

dea: rruse the sam e states
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An accekraton orprefix rew ring

dea: rruse the sam e states
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dea: rruse the sam e states
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dea: rruse the sam e states

g1lh — go
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dea: rruse the sam e states
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An accekraton Orprefix rew ring

dea: rruse the sam e states

R = {golo—80,81h1—80,81h—¢1hl}
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Butdoes twork ...7?

A llpredecessors are com puted, and termm naton guaranteed

But: we m ghtbe addihg nonpredecessors
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Butdoes twork ...7?

A llpredecessors are com puted, and termm naton guaranteed

But: we m ghtbe addihg nonpredecessors

R = {golb—280,81h1 — 80,81l —g1hl}
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Butdoes twork ...7?

A llpredecessors are com puted, and termm naton guaranteed

But: we m ghtbe addihg nonpredecessors

golo — go
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Butdoes twork ...7?

A llpredecessors are com puted, and termm naton guaranteed
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Butdoes twork ...7?

A llpredecessors are com puted, and termm naton guaranteed

But: we m ghtbe addihg nonpredecessors

R = {golb—280,81h1 — 80,81l —g1hl}

Forunatel: conect f niialstates have no nhcom ng arcs.
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Forw ard search and com pExiy

Sym bolc orward search w ith reqgulhrsets can be accekrated n a smm ibhrway

Recallihput: Abhabet> = G UL, setR ofruks,NFA A = (Q,L, —q,G,F)

recognizhg subsetofG L*.
C om pEexiy ofbackward search: O(|Q|2 - [R]) tme,0(|Q] - |R| + | =0 |) space.

Com pkxiy of brward search: O (|G| - [R|- (|Q \ G|+ |R|) + |G| -| —¢o |) tme

and space.
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Reachabk configurations ofthe pbterprogram

maing, mainj
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Repeated reachabilty orprefix rew ritng

Letl = gglpand D = g L*.

D can be repeatedl reached from [ iff

golo —* g'lw
and
g/l —*gv —*g'lu

rsome g/, lLw,v,u.

R epeated reachabilty can be reduced to com puthg severalpre *.
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Part IIT: Abstraction R efinem ent

JavEerE sparza

Technische UniersidtM inchen




(X <0) (X >0)
\ @ The probkm :
(Y >0) -
@ Is the error Bbelreachabk?
(Y <0)

The approach:

@ Upgrade a BDD checkerw ih
/ abstraction refinem ent




RN

(true) (true)

\

(true) sklp
M odelcheck the abstractprogram :
tme
@ Is the eror Bbelreachabk
\ skip consdering onl controlflow ?
(true) (lme)




/N

(true) (true)

(true) sklp

M ode}check the abstractprogram :

tme

@ Is the eror Bbelreachabk
Sk,p consdering onl controlflow ?

Yes!




X <0
The concrete mstructions
are nserted again.

Y <o

(X+Y >0)




) Analsis ofthe trace

@ Is trealor spurbus?

X <0
The concrete mstructions
are nserted again.

Y <o

(X+Y >0)




(? {true }

X < O
The concrete mstructions
{x <o} - -
are mserted agan.
Y < O

Analysis ofthe trace

@ Is trealor spurbus?

{Xx+Y <o} @ Spurbus!= Hoare proof

X+Y >0

'
{false}




(X+Y >0) /®\

‘ (X+Y <0 (X+Y>0)

atse '/ \
o

Part IIl: Abstracton R efinem ent



/
A

'
als e '/
Cap

tracton R efinem ent



{true } / \

x <0) - @
%} (x <o} (true) sk
(Y <0) lz:g((ig)<0) (Y<i \//‘5
< .
C% {X+v <o} /

A

‘ (true) (Is = false)

) N\
{false }




{true } / \

X < O
{X < O}
£(L2)
12 = (X < O) Is = true
Y < O _ (

- el;e
=(X+Y <0 L= okip
{X+Y <o} \‘®'\/
(X +7Y >0) /
‘ (true) (Is = false)

) N\
{false }




( ) ls=(X+Y <0) L "
{X+Y <0} \ /
(X+Y >0) / \
‘ (true) (Is = false)

als e '/ \
(D) e




(? {true } / \

L = true (true)

a
v

{X+Y <0} \/
(X +Y >0) /®\

‘ skip (Is = false)

als e '/ \
(D) e




(? {true } / \

L = true (true)

, <
N

<0) ls=(X+Y <0) =

Is :=?

{X+v <o} /
(X+Y >0) /®\

‘ skip (Is = false)

als e '/ \
(D) e

X <0
x <o)
£(L)
lZ = (X < O) Is .= true
Yy <0




The concrete mstructions
) are nserted agai.




The concrete mstructions
) are nserted agai.

X<o0
Y >0
QJ% Analsis ofthe trace

@ Is trealor spuribus?




The concrete mstructions
) are nserted agai.

X <0
Y >0
QJ% (X -y <o} Analsis ofthe trace

@ Is trealor spuribus?

@ Spurbus!= Hoare-lke proof

(X +v <0}

X+Y>0)

{
{false }




{true} /®\

L, := true (X >0)
CJ% {x <o} ~~_
X =-X
(Y >0)
(Y >0)
L~ (X <0) I‘fgm
s 1= true
x-v<op b= (X -Y <0) e
Is—(X+Y <0) /sr:?\ )Y/;;y
é% {X+v <o} /2

~
+
~
IA
[
=2

X+Y >0

N
{false }




{true}

{x <o}

(Y >0)
QJ% x-v<oplb > (X-Y <0

~—

ls = (X +Y <0)

(X +v <0}

X+Y >0

'
{false}

it (1)
Is := true
eke
Is :=7 \ Is =1,
X+Y <0) (s=false)




{true}

{x <o}

Y>O
x-v<oly = (X —-Y <0)

s (X+Y <0

~

(X +v <0}

X+Y >0

'
{false}

I, == true
eke [, =7
i (1)
Is := true
eke
ls =1 Is =1,




{true}

{x <o}

(Y >0)
x-v<op g~ (X—-Y <0)

s (X+Y <0

~

(X +v <0}

X+Y >0

'
{false}

A

L = true (true)
O () @

ly := true skip
eke [, :=7
it (L)
Is := true
eke
ls =1 Is =1,

N

A

(true) (Is = false)



{true}

{x <o}

Y>O
QJ% x-v<oly = (X —-Y <0)

s (X+Y <0

~

(X +v <0}

X+Y >0

'
{false}

N

L = true (true)

T () @

1, ;= true 1, :=?
eke [, =7
i (1)
Is := true
eke
Is =7 s =1,

/-

A

(Is = true) (Is = false)




(X >0)

The concrete mstructions
are nserted agai.

<
<

~
~

i
i
i

X+Y>0)




(X >0)

The concrete mstructions
are nserted agai.

<

4@« '\‘\' @« '\‘\' %\D«

<

Analsis ofthe trace

@ Is trealor spuribus?

~
~

X+Y>0)




i

(X >0)

<

4@« '\‘\' @« '\‘\' %\D«

<

~
~

X+Y>0)

The concrete mstructions
are nserted agai.

Analsis ofthe trace

@ Is trealor spuribus?
@ Real = Reportito the user!




A Spurbus Trace s an Unsatisfiabk Fomukh.

<

~©O—-©

o

Il

a

+ (o)
-

~

~O= i@

vl

(Y #X +1)




A Spurbus Trace s an Unsatisfiabk Fomukh.

<

~©O—-©

o

Il

a

+ (o)
-

~

~O= i@

vl

(Y #X +1)

(Ys =Ds) A (Co=C3) A(Ds =D3) A (Xs = X)




W hatis a HoareProofofSpurbusness?




W hatis a HoareProofofSpurbusness?
CZ‘D {true} @ {true}

=C (X2 =C )N (C:=Ci)N(D; =D:)A(Y,=7Y1)
| |
@ {c=x} @ {c. =
2)

D:=C+1 (Ds=Co+1)A(C:=C)A(Xs =X D)

(é {D=X+1} (% {Dy =X, +1}

Y:=D (Yo=D3)A(Cy=C3)A(Ds=D:)A(Xs=X:)

|

|
@ Y =x+1} @ (Vo=X,+1}

(Y #X +1) (Yo #Xa+ 1) A(Coror = C1) A(Depor = =X)AYepor =Ya)

{false} {false}




W hatis a Hoare ProofofSpuribusness?

@ A blie predicate {---} &5 In plied by the conjincton ofthe
instructions above.




W hatis a Hoare ProofofSpuribusness?

@ A blie predicate {---} &5 In plied by the conjincton ofthe
instructions above.

@ A blie predicate i unsatisfiabk togetherw ih the
conjincton ofthe instructions below .




W hatis a Hoare ProofofSpuribusness?

@ A blie predicate {---} &5 In plied by the conjincton ofthe
instructions above.

@ A blie predicate i unsatisfiabk togetherw ih the
conjincton ofthe instructions below .

@ A blue prediate, togetherw ih the next instruction,
n ples the nextblie predicate.

The hstproperty is calked Trackihg Property.




Crag hterpohtion n Proposibnall.ogics

Definiton Crai hterpohnt)

Let(F,G) be a parofomukswih F A G unsatistiabk.
An hterpobntor(F,G) sa dmukh [
w ih the ©low hg propertes:

@ FEI,

@ /A G is unsatisfiabk and

@ [ refers onk to the comm on variablks of F and G .




Crayg hterpohtion n Proposionallogics

Definiton Crai hterpohnt)
Let(F,G) be a parofomukswih F A G unsatistiabk.
An hterpobntor(F,G) sa dmukh [
w ih the ©low hg propertes:
@ FEI,
@ /A G is unsatisfiabk and
@ [ refers onk to the comm on variablks of F and G .

F=xAM\y G=—xANz

I =x 5 an nterpohntor(F,G).

\




Crag hterpohtoon: O urApplcation

{true }

(X =C)A(C,=C))ADy;=D)A (Y, =7Y1)

{C.=X,}

(Ds=Co+1)A(C3=C)N(X5=X)A(Y5=7>)

{D; =X;+1}

(Yo=D3)A(Cy=C3)A(Ds=D3)A(Xs=X5)

{Y,=X,+1}

(Ya# Xa4+ 1) A(Cermor = Cs) AN(Derror = Da) N Xeror = Xa) A (Yerror = Y4)

{false}




Crag hterpohtoon: O urApplcation

(X =C)A(C,=C))ADy;=D)A (Y, =7Y1)
(Ds=Co+1)A(C3=C)N(Xs=X)A(Y5=7>)

(Yo=D3)A(Cy=C3)A(Ds=D3)A(Xs=X5)

(Ya# Xa 4+ 1) A(Cermor = Ca) AN (Derror = Da) N Xeror = Xa) A (Yerror = Y4)




Crag hterpohtoon: O urApplcation

(X =C)A(C,=C))ADy;=D)A (Y, =7Y1)
(Ds=Co+1)A(C3=C)N(Xs=X)A(Y5=7>)

(Yo=D3)A(Cy=C3)A(Ds=D3)A(Xs=X5)

!

¥

(Ya# Xa 4+ 1) A(Cermor = Ca) AN (Derror = Da) N Xeror = Xa) A (Yerror = Y4)




Crag hterpohtoon: O urApplcation

(X =C)A(C,=C))ADy;=D)A (Y, =7Y1)
(Ds=Co+1)A(C3=C)N(Xs=X)A(Y5=7>)

(Yo=D3)A(Cy=C3)A(Ds=D3)A(Xs=X5)




Crag hterpohtoon: O urApplcation

{true }

(X =C)A(C,=C))ADy;=D)A (Y, =7Y1)

{C.=X,}

(Ds=Co+1)A(C3=C)N(X5=X)A(Y5=7>)

{D; =X;+1}

(Yo=D3)A(Cy=C3)A(Ds=D3)A(Xs=X5)

{Y,=X,+1}

(Ya# Xa4+ 1) A(Cermor = Cs) AN(Derror = Da) N Xeror = Xa) A (Yerror = Y4)

{false}




@ Spurbus traces « unsatisfiabk ormuh

@ Crayg nterpohnts satsfyhg the trackhg property — Hoare
proofs of spuribusness

@ C kan’Hoare proofs of spurbusness — Craiy hterpohnts




W eakestand Strongest hterpohnts

Definiton Weakest nterpohnt)

The weakesthterpolntor(F,G) i the hterpohntor(F, G)
thatis m pled by allinterpohnts or(F,G).

I i denoted by WI(F,G).

| A\

Definion (strongestnterpoknt)

The strongestnterpolntor(F,G) & the hterpohntor(F, G)
thatmples allnterpohnts or(F,G).

I is denoted by SI(F, G).

W e show how to com pute them and thatthey satisfy the
trackihg property.




A Chamaterizaton ofW eakest mterpohnts

Theorem (Weakestnterpohnt)
@ Let (F,G) be a pair of formulas with F A\ G unsatisfiable.
@ Let Z be the variables that occurin G, but not in F.

Then WI(F,G) =VZ.—G.




A Chamaterizaton ofW eakest mterpohnts

Theorem (Weakestnterpohnt)
@ Let (F,G) be a pair of formulas with F A\ G unsatisfiable.
@ Let Z be the variables that occurin G, but not in F.

Then WI(F,G) =VZ.—G.

Very adequate forcom putation with BDD s.




E fficentC om putation ofW eakest hterpohnts

e

Fi(X1,X,) @ Let F1 ANF, N\ F3 be unsatisfiable.

@ Let X5 be the variables that occurin F5,
(2) but not in F.

Then
Fy(X2,X5)
WI(F]_,F2 /\F3) = VX3(F2 — WI(F]_ /\F2,F3)).
®

() WI(F1,F> AFs)ANF, = WI(F1AF,, Fs).




hterpolnts C om putation fora Spurious Trace

@ Wl(true ,F, AN Fy A F3) = true

Fi(X1,X>)

F3(X5,X4)

(4) WI(F, NF; NFo,true) = false




hterpolnts C om putation fora Spurious Trace

(1) Wi(true, Fy NF, AFs) = true
Fi(X1,X.)
@
Fa(X2,X5)
(3) WI(F, AFa, Fs) = J5(Xs) = VX4(Fs — false)

F3(X5,X4)

(4) WI(F, NF, NFoytrue) = false




hterpolnts C om putation fora Spurious Trace

(1) Wi(true,Fy NF, AFs) = true
F.(X1, X))
(2) WI(F,,Fs NF) = 1,(X,) = VXS (F, — J5)
Fa(X5, X5)
(3) WI(F: AFa, Fs) = J5(Xs) = VX4(Fs — false)

F3(X5,X34)

(4) WI(F, NF, NFo,true) = false




hterpolnts C om putation fora Spurious Trace

(1) Wi(true, Fy NF, AFs) = J,(X,) = VXL(F) — 1) = true
F.(X1, X))
(2) WI(F,,Fs NFs) = 1,(X,) = VXS (F, — J5)
Fa(X5, X5)
(3) WI(F: AFa, Fs) = J5(Xs) = VX4(Fs — false)

F3(X5,X4)

(4) WI(F, NF, NFo,true) = false




DAG s of Spurbus C ounterexam pes

/CD\ Spurbus C ounterexam pk DAG s

@ Each path through the DAG i a
spurbus counterexam pke.

@ Each path through the DAG
corresponds t an unsatisfiablk
Yy =1 Y =2 omulk.

\ / @ The disjincton ofthe trace
form uls is unsatisfiablke.




DAG s of Spurbus C ounterexam pes

tracton R efinem ent



DAG s of Spurbus C ounterexam pes




DAG s of Spurbus C ounterexam pes




DAG s of Spurbus C ounterexam pes

2,
¢

/(D\AO X =0)A(A#£0—X =0)}




DAG s of Spurbus C ounterexam pes

{(A=0—X=0)A(A#0—X=0)}={X =0}




There Are M any Interpoants.

<—— SI(F,G)

-~ WI(F,G)




There Are M any Interpoants.

-~ F =xA(yVz)

<—— SI(F,G)

-~ WI(F,G)

- -G =xVyV(zAw)




There Are M any Interpoants.

-~ F =xA(yVz)
-—— SI(F,G) =3{} F=xA(yVz)
-— WI(F,G) =V{w}-G=xVy

- -G =xVyV(zAw)




There Are M any Interpoants.

-~ F =xA(yVz)
-—— SI(F,G) =3{} F=xA(yVz)
-— WI(F,G) =V{w}-G=xVy

- -G =xVyV(zAw)




There Are M any Interpoants.

|

-—— SI(F,G) =3} F=xA( Vz)

~—— WI(F,G) =V{w}-G=xVy

PartII: Abstracton R efinem en



There Are M any Interpoants.

-—— SI(F,G) =xA(yVz)

~—— WI(F,G) =xVy




There Are M any Interpoants.

-—— SI(F,G) =xA(yVz)

-~ SIxA(Vz),~(xVvy)=Hz}xA(y Vz))=x

~—— WI(F,G) =xVy

PartII: Abstracton R efinem en



There Are M any Interpoants.

-~ SIxA(Vz),~(xVvy))=FHz}(xA(y Vz))=x

~—— WI(F,G) =xVy

PartII: Abstracton R efinem en



There Are M any Interpoants.

-~ Wilx,~(x vy))=V{y}.(x vy)=x

- xVy

tracton R efinem ent



There Are M any Interpoants.

-~ Wilx,~(x vy))=V{y}.(x vy)=x

PartII: Abstracton R efinem en



There Are M any Interpoants.




There Are M any Interpoants.

F xed ponts have been reached.
W e callthem concilated
hterpohnts.




Conciliated hterpoknts

W hataboutthe Trackihg Property?

@ Conciiated hterpobnts by them seles
do notnecessarily satisfy the trackihg property.
@ TherPre,we

(% ) appl a strongest hterpoknts com putaton (©ward),
Q appl a backward com putation and
concilate afftereach step w ih the strongest nterpohnt.

@ The resulting hterpobnts satisfy the trackihg property.




Concilated hterpoknts as a S m plfication Procedure

{true } {true }

X =0
!
{Xx =0} {(W=0vX=0vZ=0}
Y =0
{X =0AY =0} {(W=0vX=0VZ=0}
(z #0)

{X =0AY =0AZ #0} {W=0vX =0}

(x #0)

{false} {W =0}
(W % 0)

{false } @ {false }



Concilated hterpoknts as a S m plfication Procedure

{true }

X:\L:O
{x:o}@
Y:\L:O

{x=0AY =0}
(z #0)
{X=0AY =0AZ #0}

(X #0)

{false}
(W 0)

fatse} (6) {faise}



Concilated hterpoknts as a S m plfication Procedure

{true }

X:\L:O
{x:o}@
Y:\L:O

{x=0AY =0}
(Z #0)

{X=0AY =0AZ #0}

(X #0)

{false} (W =0}
(W #0)

fatse} (6) {faise}



Concilated hterpoknts as a S m plfication Procedure

{true }

X:\L:O
{x:o}@
Y:\L:O

{x=0AY =0}
(z #0)
{X=0AY =0AZ #0}

(X #0)

{false} {false}
(W #0)

fatse} (6) {faise}



Concilated hterpoknts as a S m plfication Procedure

{true }

X:\L:O
{X:O}@
Y:\L:O

{X =0AY =0}

(Z #0)

{X =0AY =0AZ #0} {X =0}

(x #0)

{false } {false }
(W £ 0)

fatse} (6) {faise}



Concilated hterpoknts as a S m plfication Procedure

{true }

X:\L:O
{x:o}@
Y:\L:O

{x=0AY =0}
(Z #0)

X=0AY=0AZ#£0}(4){X

0}

(X #0)

{false} {false}
(W #0)

fatse} (6) {faise}



Concilated hterpoknts as a S m plfication Procedure

{true }
X =0

x = o)
Y =0

J

x=o0ry =0} (3){x =0}

(Z #0)

{X =0AY =0AZ #0} {X =0}

(x #0)

{false } {false }
(W £ 0)

fatse} (6) {faise}



Concilated hterpoknts as a S m plfication Procedure

{true }

X =0

!

x=00@)x=0

Y =0

J

x=o0ry =0} (3){x =0}

(Z #0)

{X =0AY =0AZ #0} {X =0}

(x #0)

{false } {false }
(W £ 0)

fatse} (6) {faise}



Concilated hterpoknts as a S m plfication Procedure

{true } {true }

X =0

!

x=00@)x=0

Y =0

J

x=o0ry =0} (3){x =0}

(Z #0)

{X =0AY =0AZ #0} {X =0}

(x #0)

{false } {false }
(W £ 0)

fatse} (6) {faise}



Concilated hterpoknts

{true}

XC:?O

(? {x =0

Y =0

@ {X =0} Concilated hterpolnts
(Z #0) kad to predicates on fewervarabkes

{false }
(W £ 0)

!
@ {false }



Concilated hterpoknts

{true}

XC:?O

(? {x =0

Y =0

@ {X =0} Concilated hterpolnts
(Z #0) kad to predicates on fewervarabkes

— faster com putaton

{false }
(W £ 0)

!
@ {false }



Concilated hterpoknts
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A Lockhg Exampk

structfike {
boolbcked;
ntpos;

b

open (ik 1) {
assert(—f.bcked);
f.bcked = true;

fpos=0;
}
cbse fik ) {
assert(f.bcked V
fros==0);

f.ocked = false;

w ik D {
assert(f.bcked V fpos==0);
fpos = fpos + 1;
}
man () {
fie 1,2;
fl ocked = 2 bocked = false;
open (f1);
whike (%) {
open (£);
whike (*) {w (2);w (f); }
cbse (2);

cbse (f1);




E xperm entalResuls

mem ory
tme/s | BDD nodes) | # cycks ‘
w /o abstracton 460 440482 n/a
weakesthterp. 0.43 89936 14

concil. nterp. 029 80738 10




@ Craly nterpohtion goeswellw ith CEG AR ifthe program is
gien I term s ofBDD s.

@ Mulbk counterexam pks can be exclided atonce.

@ There are heuristics to enhance predicate generation.

@ The m odelchecknhg process can be speeded up.
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