Marktoberdorf Summer School

Security Analysis of Network Protocols

John Mitchell Stanford

Reference: http://www.stanford.edu/class/cs259/

It's great to be here

My third Summer School

Other two were "red series"

Some goals

- Meet old and new friends
- Sample five main kinds of beer made in Bavaria
- Swim in lake, after discussion before dinner (T,Th,F)
- Hike, weather and other factors permitting (W?)

Computer Security

Cryptography

• Encryption, signatures, cryptographic hash, ...

Security mechanisms

- Access control policy
- Network protocols

Implementation

- Cryptographic library
- Code implementing mechanisms
 - Reference monitor and TCB
 - Protocol
- Runs under OS, uses program library, network protocol stack

Analyze protocols, assuming crypto, implementation, OS correct

Cryptographic Protocols

- Two or more parties
- Communication over insecure network
- Cryptography used to achieve goal
 - Exchange secret keys
 - Verify identity (authentication)

Crypto (class poll):

Public-key encryption, symmetric-key encryption, CBC, hash, signature, key generation, random-number generators

Correctness vs Security

Program or System Correctness

- Program satisfies specification
 - For reasonable input, get reasonable output

Program or System Security

- Program properties preserved in face of attack
 - For unreasonable input, output not completely disastrous

Main differences

- Active interference from adversary
- Refinement techniques may fail
 - More functionality can be worse

Security Analysis

Model system

Model adversary

Identify security properties

See if properties are preserved under attack

Result

- No "absolute security"
- Security means: under given assumptions about system, no attack of a certain form will destroy specified properties.

Important Modeling Decisions

How powerful is the adversary?

- Simple replay of previous messages
- Block messages; Decompose, reassemble and resend
- Statistical analysis, partial info from network traffic
- Timing attacks

How much detail in underlying data types?

- Plaintext, ciphertext and keys
 - atomic data or bit sequences
- Encryption and hash functions
 - "perfect" cryptography
 - algebraic properties: $encr(x^*y) = encr(x) * encr(y)$ for

RSA encrypt(k,msg) = $msg^k \mod N$

Protocol analysis spectrum

Four "Stanford" approaches

SRI, U Penn,

U Texas, Kiel,

INRIA, ...

Finite-state analysis

- Case studies: find errors, debug specifications
- Symbolic execution model: Multiset rewriting
 - Identify basic assumptions
 - Study optimizations, prove correctness
 - Complexity results

Process calculus with probability and complexity

- More realistic intruder model
- Interaction between protocol and cryptography
- Equational specification and reasoning methods

Protocol logic

• Axiomatic system for modular proofs of protocol properties

Some other projects and tools

Exhaustive finite-state analysis

- FDR, based on CSP [Lowe, Roscoe, Schneider, ...]
- Search using symbolic representation of states
 - Meadows: NRL Analyzer, Millen: Interrogator

Prove protocol correct

- Paulson's "Inductive method", others in HOL, PVS, ...
- MITRE -- Strand spaces
- Process calculus approach: Abadi-Gordon spicalculus, applied pi-calculus, ...
- Type-checking method: Gordon and Jeffreys, ...

Many more – this is just a small sample

Example: Needham-Schroeder

Famous simple example

- Protocol published and known for 10 years
- Gavin Lowe discovered unintended property while preparing formal analysis using FDR system

Background: Public-key cryptography

- Every agent A has
 - Public encryption key Ka
 - Private decryption key Ka⁻¹
- Main properties
 - Everyone can encrypt message to A
 - Only A can decrypt these messages

Needham-Schroeder Key Exchange

Result: A and B share two private numbers not known to any observer without Ka⁻¹, Kb⁻¹

Anomaly in Needham-Schroeder

Explicit Intruder Method

Run of protocol

Correct if no security violation in any run

Automated Finite-State Analysis

Define finite-state system

- Bound on number of steps
- Finite number of participants
- Nondeterministic adversary with finite options
- Pose correctness condition
 - Can be simple: authentication and secrecy
 - Can be complex: contract signing
- Exhaustive search using "verification" tool
 - Error in finite approximation \Rightarrow Error in protocol
 - No error in finite approximation \Rightarrow ???

Finite-state methods

Two sources of infinite behavior

- Many instances of participants, multiple runs
- Message space or data space may be infinite

Finite approximation

- Assume finite participants
 - Example: 2 clients, 2 servers
- Assume finite message space
 - Represent random numbers by r1, r2, r3, ...
 - Do not allow unbounded encrypt(encrypt(...)))

[Dill et al.]

Describe finite-state system

- State variables with initial values
- Transition rules
- Communication by shared variables
- Scalable: choose system size parameters
- Automatic exhaustive state enumeration
 - Space limit: hash table to avoid repeating states
- Research and industrial protocol verification

Applying Mur to security protocols

Formulate protocol

- Add adversary
 - Control over "network"
 - Possible actions
 - Intercept any message
 - Remember parts of messages
 - Generate new messages, using observed data and initial knowledge (e.g. public keys)

(shared variables)

Needham-Schroeder in Mur φ (1)

const

- NumInitiators: 1;
- NumResponders: 1;
- NumIntruders:
- NetworkSize:
- MaxKnowledge: 10;

- -- number of initiators
- -- number of responders
- 1; -- number of intruders
 - -- max. outstanding msgs in network
 - -- number msgs intruder can remember

type

InitiatorId: scalarset (NumInitiators); ResponderId: scalarset (NumResponders); IntruderId: scalarset (NumIntruders);

1;

AgentId: union {InitiatorId, ResponderId, IntruderId};

Needham-Schroeder in Mur φ (2)

- MessageType : enum {
 - M_NonceAddress,
 - M_NonceNonce,
 - M_Nonce
- };

- -- types of messages
- -- {Na, A}Kb nonce and addr
- -- {Na,Nb}Ka two nonces
- -- {Nb}Kb one nonce

- Message : record
 - source: AgentId;
 - dest: AgentId;
 - key: AgentId;
 - mType: MessageType;
 - nonce1: AgentId;
 - nonce2: AgentId;

- AgentId; -- source of message
 - -- intended destination of msg
 - -- key used for encryption
 - -- type of message
 - -- noncel
 - -- nonce2 OR sender id OR empty

end;

Needham-Schroeder in Mur φ (3)

```
-- intruder i sends recorded message
choose j: int[i].messages do -- recorded message
   ruleset k: AgentId do
                      -- destination
     rule "intruder sends recorded message"
      !ismember(k, IntruderId) & -- not to intruders
      multisetcount (1:net, true) < NetworkSize</pre>
     ==>
     var outM: Message;
     begin
        outM := int[i].messages[j];
        outM.source := i;
        outM.dest := k;
        multisetadd (outM, net);
end; end; end; end;
```

Adversary Model

Formalize "knowledge"

- initial data
- observed message fields
- results of simple computations

Optimization

- only generate messages that others read
- time-consuming to hand simplify

Possibility: automatic generation

Run of Needham-Schroeder

Find error after 1.7 seconds exploration
 Output: trace leading to error state
 Murφ times after correcting error:

number of			sizeof		
ini.	res	int.	network	states	time
1	1	1	1	1706	3.1s
1	1	1	2	40207	82.2s
2	1	1	1	17277	43.1s
2	2	1	1	514550	5761.1s

Limitations

System size with current methods

- 2-6 participants
 - Kerberos: 2 clients, 2 servers, 1 KDC, 1 TGS
- 3-6 steps in protocol
- May need to optimize adversary

Adversary model

- Cannot model randomized attack
- Do not model adversary running time

Security Protocols in Murq

Standard "benchmark" protocols

- Needham-Schroeder, TMN, ...
- Kerberos
- Study of Secure Sockets Layer (SSL)
 - Versions 2.0 and 3.0 of handshake protocol
 - Include protocol resumption
- Tool optimization
- Additional protocols
 - Contract-signing
 - Wireless networking
 - ... ADD YOUR PROJECT HERE ...

State Reduction on N-S Protocol

 Base: hand optimization of model

 CSFW: eliminate net, max knowledge
 Merge intrud send, princ reply

Plan for this another course

Protocols

• Authentication, key establishment, assembling protocols together (TLS ?), fairness exchange, ...

Tools

• Finite-state and probabilistic model checking, constraint-solving, process calculus, temporal logic, proof systems, game theory, polynomial time ...

Projects (You do this later on your own!)

- Choose a protocol or other security mechanism
- Choose a tool or method and carry out analysis
- Hard part: formulating security requirements

Reference Material (CS259 web site)

Protocols

- Clarke-Jacob survey
- Use Google; learn to read an RFC
- Tools
 - Murphi
 - Finite-state tool developed by David Dill's group at Stanford
 - PRISM
 - Probabilistic model checker, University of Birmingham
 - MOCHA
 - Alur and Henzinger; now consortium
 - Constraint solver using prolog
 - Shmatikov and Millen
 - Isabelle
 - Theorem prover developed by Larry Paulson in Cambridge, UK
 - A number of case studies available on line

Plan for these 4 lectures

Introduction

- Simple example, finite-state analysis
- Protocol examples
 - SSL, 802.11i, Kerberos (PKINIT), IKEv2, ...

Security Proofs

- Symbolic model
 - Paulson's method
 - Protocol composition logic (PCL)
- Cryptographic soundness
 - Computational model for PCL: challenges, accomplishments

Marktoberdorf Summer School

SSL / TLS Case Study

John Mitchell Stanford

Reference: http://www.stanford.edu/class/cs259/

Overview

Introduction to the SSL / TLS protocol

Widely deployed, "real-world" security protocol

Protocol analysis case study

- Start with the RFC describing the protocol
- Create an abstract model and code it up in $Mur\phi$
- Specify security properties
- Run Murφ to check whether security properties are satisfied

What is SSL / TLS?

Transport Layer Security protocol, ver 1.0

- De facto standard for Internet security
- "The primary goal of the TLS protocol is to provide privacy and data integrity between two communicating applications"
- In practice, used to protect information transmitted between browsers and Web servers

Based on Secure Sockets Layers protocol, ver 3.0

Same protocol design, different algorithms

Deployed in nearly every web browser

SSL / TLS in the Real World

History of the Protocol

SSL 1.0

- Internal Netscape design, early 1994?
- Lost in the mists of time

◆SSL 2.0

- Published by Netscape, November 1994
- Badly broken

◆SSL 3.0

- Designed by Netscape and Paul Kocher, November 1996
- ◆TLS 1.0
 - Internet standard based on SSL 3.0, January 1999
 - <u>Not</u> interoperable with SSL 3.0
Let's Get Going...

Request for Comments

- Network protocols are usually disseminated in the form of an RFC
- TLS version 1.0 is described in RFC 2246
- Intended to be a self-contained definition
 - Describes the protocol in sufficient detail for readers who will be implementing it and those who will be doing protocol analysis (that's <u>you</u>!)
 - Mixture of informal prose and pseudo-code
- Read some RFCs to get a flavor of what protocols look like when they emerge from the committee

Evolution of the SSL/TLS RFC

TLS Basics

TLS consists of two protocols

- Handshake protocol
 - Use public-key cryptography to establish a shared secret key between the client and the server

Record protocol

- Use the secret key established in the handshake protocol to protect communication between the client and the server
- We will focus on the handshake protocol

TLS Handshake Protocol

Two parties: client and server

- Negotiate version of the protocol and the set of cryptographic algorithms to be used
 - Interoperability between different implementations of the protocol
- Authenticate client and server (optional)
 - Use digital certificates to learn each other's public keys and verify each other's identity

Use public keys to establish a shared secret

Handshake Protocol

ClientHello	$C \rightarrow S$	C, Ver_C ,	Suite _c , N _c
-------------	-------------------	--------------	-------------------------------------

 $\label{eq:serverHello} \begin{array}{ll} \mathsf{S} \to \mathsf{C} & \mathsf{Ver}_\mathsf{S}, \, \mathsf{Suite}_\mathsf{S}, \, \mathsf{N}_\mathsf{S}, \, \mathsf{sign}_\mathsf{CA} \{ \; \mathsf{S}, \, \mathsf{K}_\mathsf{S} \} \end{array}$

(Change to negotiated cipher)

Handshake Protocol Structure

Abbreviated Handshake

- The handshake protocol may be executed in an abbreviated form to resume a previously established session
 - No authentication, key material not exchanged
 - Session resumed from an old state
- For complete analysis, have to model both full and abbreviated handshake protocol
 - This is a common situation: many protocols have several branches, subprotocols for error handling, etc.

Rational Reconstruction

Begin with simple, intuitive protocol

- Ignore client authentication
- Ignore verification messages at the end of the handshake protocol
- Model only essential parts of messages (e.g., ignore padding)

Execute the model checker and find a bug

Add a piece of TLS to fix the bug and repeat

Better understand the design of the protocol

Protocol Step by Step: ClientHello

ClientHello (RFC)

struct {

- ProtocolVersion client_version;
- Random random;
- SessionID session_id;
- CipherSuite cipher_suites;-

Highest version of the protocol supported by the client

resume an old session) Cryptographic algorithms

Session id (if the client wants to

supported by the client (e.g., RSA or Diffie-Hellman)

CompressionMethod compression_methods;

} ClientHello

ClientHello (Murφ)

```
ruleset i: ClientId do
 ruleset j: ServerId do
  rule "Client sends ClientHello to server (new session)"
    cli[i].state = M SLEEP &
    cli[i].resumeSession = false
  ==>
  var
    outM: Message; -- outgoing message
  begin
    outM.source := i;
    outM.dest := j;
    outM.session := 0;
    outM.mType := M_CLIENT_HELLO;
    outM.version := cli[i].version;
    outM.suite := cli[i].suite;
    outM.random := freshNonce();
    multisetadd (outM, cliNet);
    cli[i].state := M_SERVER_HELLO;
  end;
 end;
end;
```

ServerHello

ServerHello (Murφ)

```
ruleset i: ServerId do
 choose I: serNet do
  rule "Server receives ServerHello (new session)"
    ser[i].clients[0].state = M CLIENT HELLO &
    serNet[1].dest = i &
    serNet[1].session = 0
  ==>
  var
    inM: Message; -- incoming message
    outM: Message; -- outgoing message
  begin
    inM := serNet[1]; -- receive message
    if inM.mType = M CLIENT HELLO then
      outM.source := i:
      outM.dest := inM.source;
      outM.session := freshSessionId();
      outM.mType := M SERVER HELLO;
      outM.version := ser[i].version;
      outM.suite := ser[i].suite;
      outM.random := freshNonce();
      multisetadd (outM, serNet);
      ser[i].state := M SERVER SEND KEY;
  end; end; end;
```

ServerKeyExchange

"Abstract" Cryptography

- We will use abstract data types to model cryptographic operations
 - Assumes that cryptography is perfect
 - No details of the actual cryptographic schemes
 - Ignores bit length of keys, random numbers, etc.

Simple notation for encryption, signatures, hashes

- $\{M\}_k$ is message M encrypted with key k
- sig_k(M) is message M digitally signed with key k
- hash(M) for the result of hashing message M with a cryptographically strong hash function

ClientKeyExchange

ClientKeyExchange (RFC)

struct {

Let's model this as $\{\text{Secret}_c\}_{Ks}$

select (KeyExchangeAlgorithm) {

case rsa: EncryptedPreMasterSecret;

case diffie_hellman: ClientDiffieHellmanPublic;

- } exchange_keys
- } ClientKeyExchange

struct {

ProtocolVersion client_version; opaque random[46]; PreMasterSecret

Participants as Finite-State Machines

 $Mur\phi$ rules define a finite-state machine for each protocol participant

Intruder Model

Intruder Can Intercept

Store a message from the network in the data structure modeling intruder's "knowledge"

```
ruleset i: IntruderId do
 choose I: cliNet do
  rule "Intruder intercepts client's message"
    cliNet[1].fromIntruder = false
   ==>
  begin
    alias msg: cliNet[1] do -- message from the net
    alias known: int[i].messages do
      if multisetcount(m: known,
                      msqEqual(known[m], msq)) = 0 then
        multisetadd(msg, known);
      end;
    end;
  end;
```

Intruder Can Decrypt if Knows Key

If the key is stored in the data structure modeling intruder's "knowledge", then read message

```
ruleset i: IntruderId do
 choose I: cliNet do
  rule "Intruder intercepts client's message"
    cliNet[1].fromIntruder = false
  ==>
  begin
    alias msg: cliNet[1] do -- message from the net
    if msg.mType = M_CLIENT_KEY_EXCHANGE then
       if keyEqual(msg.encKey, int[i].publicKey.key) then
         alias sKeys: int[i].secretKeys do
           if multisetcount(s: sKeys,
             keyEqual(sKeys[s], msg.secretKey)) = 0 then
             multisetadd(msg.secretKey, sKeys);
           end;
       end:
    end;
```

Intruder Can Create New Messages

Assemble pieces stored in the intruder's "knowledge" to form a message of the right format

```
ruleset i: IntruderId do
 ruleset d: ClientId do
  ruleset s: ValidSessionId do
    choose n: int[i].nonces do
    ruleset version: Versions do
    rule "Intruder generates fake ServerHello"
      cli[d].state = M SERVER HELLO
     ==>
     var
      outM: Message; -- outgoing message
     begin
      outM.source := i; outM.dest := d; outM.session := s;
      outM.mType := M SERVER HELLO;
      outM.version := version;
      outM.random := int[i].nonces[n];
      multisetadd (outM, cliNet);
     end; end; end; end;
```

Intruder Model and Cryptography

There is no actual cryptography in our model

- Messages are marked as "encrypted" or "signed", and the intruder rules respect these markers
- Our assumption that cryptography is perfect is reflected in the absence of certain intruder rules
 - There is no rule for creating a digital signature with a key that is not known to the intruder
 - There is no rule for reading the contents of a message which is marked as "encrypted" with a certain key, when this key is not known to the intruder
 - There is no rule for reading the contents of a "hashed" message

Intruder should not be able to learn the secret generated by the client

```
ruleset i: ClientId do
ruleset j: IntruderId do
rule "Intruder has learned a client's secret"
    cli[i].state = M_DONE &
    multisetcount(s: int[j].secretKeys,
        keyEqual(int[j].secretKeys[s], cli[i].secretKey)) > 0
==>
    begin
    error "Intruder has learned a client's secret"
    end;
end;
end;
```

Shared Secret Consistency

After the protocol has finished, client and server should agree on their shared secret

Version and Crypto Suite Consistency

Client and server should be running the highest version of the protocol they both support

```
ruleset i: ServerId do
ruleset s: SessionId do
rule "Server has not learned the client's version or suite correctly"
!ismember(ser[i].clients[s].client, IntruderId) &
ser[i].clients[s].state = M_DONE &
cli[ser[i].clients[s].client].state = M_DONE &
(ser[i].clients[s].clientVersion != MaxVersion |
ser[i].clients[s].clientSuite.text != 0)
==>
begin
error "Server has not learned the client's version or suite correctly"
end;
end;
```

Finite-State Verification

- Murφ rules for protocol participants and the intruder define a nondeterministic state transition graph
- Murφ will exhaustively enumerate all graph nodes
- Murφ will verify whether specified security conditions hold in every reachable node
- If not, the path to the violating node will describe the attack

When Does Mur Find a Violation?

Bad abstraction

- Removed too much detail from the protocol when constructing the abstract model
- Add the piece that fixes the bug and repeat
- This is part of the rational reconstruction process

Genuine attack

- Yay! Hooray!
- Attacks found by formal analysis are usually quite strong: independent of specific cryptographic schemes, OS implementation, etc.
- Test an implementation of the protocol, if available

"Core" SSL 3.0

Version Consistency Fails!

Fixed "Core" SSL

A Case of Bad Abstraction

struct {

Model this as {Version_c, Secret_c}_{Ks}

select (KeyExchangeAlgorithm) {

case rsa: EncryptedPreMasterSecret;

case diffie_hellman: ClientDiffieHellmanPublic;

- } exchange_keys
- } ClientKeyExchange

Summary of Reconstruction

A = Basic protocol $\mathbf{O} = \mathbf{A} + \text{certificates for public keys}$ Authentication for client and server $\mathbf{E} = \mathbf{C} + \text{verification}$ (Finished) messages - Prevention of version and crypto suite attacks $\blacklozenge F = E + nonces$ Prevention of replay attacks $\diamond Z = "Correct" subset of SSL$

Anomaly (Protocol F)

Anomaly (Protocol F)

Protocol Resumption

Version Rollback Attack

Basic Pattern for Doing This Yourself

Read and understand protocol specification

- Typically an RFC or a research paper
- We'll have a few on the CS259 website: take a look!

Choose a tool

- Murφ works, also many other tools
- Play with Murφ now to get some experience (installing, running simple models, etc.)

Start with a simple (possibly flawed) model

Rational reconstruction is a good way to go

Give careful thought to security conditions

Additional Reading on SSL 3.0

- D. Wagner and B. Schneier. "Analysis of the SSL 3.0 protocol." USENIX Electronic Commerce '96.
 - Nice study of an early proposal for SSL 3.0
- J.C. Mitchell, V. Shmatikov, U. Stern. "Finite-State Analysis of SSL 3.0". USENIX Security '98.
 - Murφ analysis of SSL 3.0 (similar to this lecture)
 - Actual Murφ model available
- D. Bleichenbacher. "Chosen Ciphertext Attacks against Protocols Based on RSA Encryption Standard PKCS #1". CRYPTO '98.
 - Cryptography is <u>not</u> perfect: this paper breaks SSL 3.0 by directly attacking underlying implementation of RSA

Many security protocols

Challenge-response

- ISO 9798-1,2,3; Needham-Schroeder, ...
- Authentication
 - Kerberos
- Key Exchange
 - SSL handshake, IKE, JFK, IKEv2,
- Wireless and mobile computing
 - Mobile IP, WEP, 802.11i
- Electronic commerce
 - Contract signing, SET, electronic cash, ...

Mobile IPv6 Architecture

Mobile Node (MN)

802.11i Wireless Authentication

802.11i Protocol

Marktoberdorf Summer School

Protocol Verification Proofs of Correctness

John Mitchell Stanford

Your mountains

Next picture from here

Our mountains

Our mountains

Analysis Techniques

Reference Material (CS259 web site)

♦ Protocols

- Clarke-Jacob survey
- Use Google; learn to read an RFC
- ♦ Tools
 - Murphi
 - Finite-state tool developed by David Dill's group at Stanford
 - PRISM
 - Probabilistic model checker, University of Birmingham
 - MOCHA
 - Alur and Henzinger; now consortium
 - Constraint solver using prolog
 - Shmatikov and Millen
 - Isabelle
 - Theorem prover developed by Larry Paulson in Cambridge, UK
 - A number of case studies available on line

Avispa Project

Convenient web interface

- Several analysis methods
 - Model checker, constraint checker, ...
- Single input language
 - Straightforward protocol definition
 - Attacker is built-in
 - Advantage: no need to specify
 - Disadvantage: not easy to change
 - Example: Mobile IPv6 security against "local" attacker - requires a different attacker model

Analysis using theorem proving

Correctness instead of bugs

 Use higher-order logic to reason about possible protocol executions

[Paulson]

No finite bounds

- Any number of interleaved runs
- Algebraic theory of messages
- No restrictions on attacker

Mechanized proofs

- Automated tools can fill in parts of proofs
- Proof checking can prevent errors in reasoning

Recall: protocol state space

 Participant + attacker actions define a state transition graph
 A path in the graph is a trace of the protocol
 Graph can be

- Finite if we limit number of agents, size of message, etc.
- Infinite otherwise

Inductive proofs

Define set of traces

- Given protocol, a trace is one possible sequence of events, including attacks
- Prove correctness by induction
 - For every state in every trace, no security condition fails
 - Works for safety properties only
 - Proof by induction on the length of trace

Two forms of induction

♦ Usual form for $\forall n \in Nat. P(n)$

- Base case: P(0)
- Induction step: $P(x) \Rightarrow P(x+1)$
- Conclusion: ∀n∈ Nat. P(n)

Minimial counterexample form

- Assume: $\exists x [\neg P(x) \land \forall y < x. P(y)]$
- Prove: contraction
- Conclusion: ∀n∈ Nat. P(n)

Both equivalent to "the natural numbers are well-ordered"

Use second form

♦ Given set of traces

- Choose shortest sequence to bad state
- Assume all steps before that OK
- Derive contradiction
 - Consider all possible steps

Sample Protocol Goals

Authenticity: who sent it?

- Fails if A receives message from B but thinks it is from C
- Integrity: has it been altered?
 - Fails if A receives message from B but message is not what B sent
- Secrecy: who can receive it?
 - Fails if attacker knows message that should be secret
- ♦ Anonymity
 - Fails if attacker or B knows action done by A

These are all safety properties

Inductive Method in a Nutshell

Work by Larry Paulson

◆Isabelle theorem prover

- General tool; protocol work since 1997
- Papers describing method
- Many case studies
 - Verification of SET protocol (6 papers)
 - Kerberos (3 papers)
 - TLS protocol
 - Yahalom protocol, smart cards, etc

http://www.cl.cam.ac.uk/users/lcp/papers/protocols.html

🗿 Verifying Security Protocols Using Isabelle - Microsoft Internet Explorer															
	Eile	<u>E</u> dit	⊻iew	F <u>a</u> vorites	<u>T</u> ools	Help									.
14	A <u>d</u> dress	1	http://w	ww.cl.cam.a	ac.uk/use	ers/lcp/pa	pers/proto	ocols.html					× 🗲	Go	Links »
	()	Back	• 🕤) - 🗙	2	<u>ک</u>	Search	K Favorites	Media	Ø	3• 🎍	6	• 📃 🚳		
															~

Verifying Security Protocols Using Isabelle

- Introductory papers
- Verification of the SET protocol
- Other results
- The original papers (subsumed by the first paper below)

INTRODUCTORY PAPERS

- L C Paulson. The inductive approach to verifying cryptographic protocols. J. Computer Security 6 (1998), 85–128.
- Giampaolo Bella Inductive Verification of Cryptographic Protocols PhD Thesis, University of Cambridge (2000)
- L C Paulson. Security protocols and their correctness. Automated Reasoning Workshop 1998. St. Andrews, Scotland (1998) Slides available
- L C Paulson. Proving security protocols correct. IEEE Symposium on Logic in Computer Science. Trento, Italy (1999). Slides available
- L C Paulson. Seven Years of Verifying Security Protocols Schloß Dagstuhl Seminar 03451: Applied Deductive Verification (2003) Slides available

VERIFICATION OF THE SET PROTOCOL

Isabelle

Automated support for proof development

- Higher-order logic
- Serves as a logical framework
- Supports ZF set theory & HOL
- Generic treatment of inference rules

Powerful simplifier & classical reasoner

Strong support for inductive definitions

Agents and Messages

Server | Friend *i* | Spy Agent A Nonce N Key K { X, Y } Crypt X K

Typed, free term algebra, ...

Protocol semantics

Traces of events: A sends X to B Operational model of agents Algebraic theory of messages (derived) ♦ A general attacker Proofs mechanized using Isabelle/HOL

Define sets inductively

- Set of sequences of events
- Inductive definition involves implications if $ev_1, ..., ev_n \in evs$, then add ev' to evs

Information from a set of messages

- parts H : parts of messages in H
- analz H : information derivable from H
- synth H : msgs constructible from H

Protocol events in trace

Several forms of events

- A sends B message X
- A receives X
- A stores X
- $A \rightarrow B \{A, N_A\}_{pk(B)}$
- $B \rightarrow A \{N_B, N_A\}_{pk(A)}$
- $A \rightarrow B \{N_B\}_{pk(B)}$

If ev is a trace and Na is unused, add Says A B Crypt (pk B) {A, Na}

If Says A' B Crypt(pk B) {A, X} ∈ ev
and Nb is unused, add
Says B A Crypt(pk A) {Nb, X}

If Says ... {X, Na}... ∈ ev, add Says A B Crypt (pk B) {X}

Dolev-Yao Attacker Model

Attacker is a nondeterministic process Attacker can

- Intercept any message, decompose into parts
- Decrypt if it knows the correct key
- Create new message from data it has observed

Attacker cannot

- Gain partial knowledge
- Perform statistical tests
- Stage timing attacks, ...

Attacker Capabilities: Analysis

analz *H* is what attacker can learn from *H*

- Crypt $X K \in$ analz H& $K^{-1} \in$ analz $H \implies X \in$ analz H

Attacker Capabilities: Synthesis

synth *H* is what attacker can create from *H* infinite set!

Equations and implications

analz(analz H) = analz H synth(synth H) = synth H analz(synth H) = analz H \cup synth H synth(analz H) = ???

Nonce $N \in \text{synth } H \implies \text{Nonce } N \in H$ Crypt $KX \in \text{synth } H \implies \text{Crypt } KX \in H$ or $X \in \text{synth } H \& K \in H$
Attacker and correctness conditions

If $X \in \text{synth}(\text{analz}(\text{spies evs}))$, add *Says Spy B X*

> X is not secret because attacker can construct it from the parts it learned from *events*

If Says B A $\{N_b, X\}_{pk(A)} \in evs \&$ Says A' B $\{N_b\}_{pk(B)} \in evs$, Then Says A B $\{N_b\}_{pk(B)} \in evs$

> If B thinks he's talking to A, then A must think she's talking to B

Inductive Method: Pros & Cons

Advantages

- Reason about infinite runs, message spaces
- Trace model close to protocol specification
- Can "prove" protocol correct

Disadvantages

- Does not always give an answer
- Failure does not always yield an attack
- Still trace-based properties only
- Labor intensive
 - Must be comfortable with higher-order logic

Intuition for protocol logic

Reason about local information

- I chose a new number
- I sent it out encrypted
- I received it decrypted
- Therefore: someone decrypted it

Incorporate knowledge about protocol

- Protocol: Server only answers if sent a request
- If server not corrupt and
 - I receive an answer from the server, then
 - the server must have received a request

Intuition: Picture

Example: Challenge-Response

◆ Alice reasons: if Bob is honest, then:

- only Bob can generate his signature. [protocol independent]
- if Bob generates a signature of the form sig_B{m, n, A},
 - he sends it as part of msg2 of the protocol and
 - he must have received msg1 from Alice [protocol dependent]
- Alice deduces: Received (B, msg1) ∧ Sent (B, msg2)

Formalizing the Approach

Language for protocol description

Write program for each role of protocol

Protocol logic

- State security properties
- Specialized form of temporal logic

Proof system

- Formally prove security properties
- Supports modular proofs

Protocol programming language Server = [receive x; new n; send {x, n}] Building blocks

- Terms
 - names, nonces, keys, encryption, ...
- Actions
 - send, receive, pattern match, ...

Example: x, sig_B{m, x, A} is a term

Actions and Cords

Actions

- send t:
- receive x;

◆Cord

Sequence of actions

Notation

 Some match actions are omitted in slides receive sigB{A, n} means receive x; match x/sigB{A, n}

send a term t

- receive a term into variable x
- match t/p(x); match term t against p(x)

Challenge-Response as Cords

]

InitCR(A, X) = [

]

```
new m;
send A, X, {m, A};
receive X, A, {x, sig_{x}\{m, x, A\}};
send A, X, sig_{A}\{m, x, X\};
```

RespCR(B) = [receive Y, B, {y, Y}; new n; send B, Y, {n, sig_B{y, n, Y}}; receive Y, B, sig_y{y, n, B}};

Execution Model

Protocol

- Cord gives program for each protocol role
- Initial configuration
 - Set of principals and keys
 - Assignment of ≥ 1 role to each principal

♦Run

Formulas true at a position in run

Action formulas

a ::= Send(P,m) | Receive (P,m) | New(P,t) | Decrypt (P,t) | Verify (P,t)

Formulas

$$\begin{split} \phi &::= a \mid \mathsf{Has}(\mathsf{P},\mathsf{t}) \mid \mathsf{Fresh}(\mathsf{P},\mathsf{t}) \mid \mathsf{Honest}(\mathsf{N}) \\ &\mid \mathsf{Contains}(\mathsf{t}_1,\,\mathsf{t}_2) \mid \neg \phi \mid \phi_1 \land \phi_2 \mid \exists \mathsf{x} \ \phi \\ &\mid \ \bigcirc \phi \mid \diamondsuit \phi \end{split}$$

♦ Example

After(a,b) = \Diamond (b $\land \bigcirc \Diamond$ a)

Modal Formulas

 After actions, postcondition [actions] $\rho \phi$ where $P = \langle princ, role id \rangle$ Before/after assertions φ [actions]_P ψ Composition rule $\varphi[S]_{P}\psi \quad \psi[T]_{P}\theta$ *Note: same* P in all formulas φ[ST]_Pθ

Security Properties

◆ Authentication for Initiator
CR |= [InitCR(A, B)]_A Honest(B) ⇒
ActionsInOrder(
Send(A, {A,B,m}),
Receive(B, {A,B,m}),
Send(B, {B,A,{n, sig_B {m, n, A}}}),
Receive(A, {B,A,{n, sig_B {m, n, A}}}),

◆ Shared secret
NS |= [InitNS(A, B)]_A Honest(B) ⊃
(Has(X, m) ⊃ X=A ∧ X=B)

Marktoberdorf Summer School

Protocol Composition Logic

John Mitchell Stanford

Intuition: Picture

Formalization

Language for protocol description

Write program for each role of protocol

Protocol logic

- State security properties
- Specialized form of temporal logic

Proof system

- Formally prove security properties
- Supports modular proofs

Challenge-Response roles

InitCR(A, X) = [

]

```
new m;
send A, X, {m, A};
receive X, A, {x, sig_{X}{m, x, A}};
send A, X, sig_{A}{m, x, X};
```

RespCR(B) = [receive Y, B, {y, Y}; new n; send B, Y, {n, sig_B{y, n, Y}}; receive Y, B, sig_y{y, n, B}};

Execution Model

Protocol

- Sequential program for each protocol role
- Initial configuration
 - Set of principals and keys
 - Assignment of ≥ 1 role to each principal

Run

Security Properties

◆ Authentication for Initiator
CR |= [InitCR(A, B)]_A Honest(B) ⇒
ActionsInOrder(
Send(A, {A,B,m}),
Receive(B, {A,B,m}),
Send(B, {B,A,{n, sig_B {m, n, A}}}),
Receive(A, {B,A,{n, sig_B {m, n, A}}}),

◆ Shared secret
NS |= [InitNS(A, B)]_A Honest(B) ⊃
(Has(X, m) ⊃ X=A ∧ X=B)

Semantics

Protocol Q

- Defines set of roles (e.g, initiator, responder)
- Run R of Q is sequence of actions by principals following roles, plus attacker
- Satisfaction
 - Q, RS |= φ [*actions*]_P ψ
 - If ϕ at the end of trace R, and some role of P does exactly actions in S, then ψ is true after RS
 - $Q \models \varphi [actions]_P \psi$ $Q, R \models \varphi [actions]_P \psi$ for all runs R of Q

Sample axioms about actions

New data

- [new x]_P Has(P,x)
- [new x]_P Has(Y,x) \supset Y=P

♦ Actions

[send m]_P Send(P,m)

♦ Knowledge

[receive m]_P Has(P,m)

Verify

• [match x/sig_X{m}] P Verify(P,m)

Reasoning about posession

♦Pairing

• $Has(X, \{m,n\}) \supset Has(X, m) \land Has(X, n)$

Encryption

• $Has(X, enc_{K}(m)) \wedge Has(X, K^{-1}) \supset Has(X, m)$

Encryption and signature

◆Public key encryption Honest(X) \land Decrypt(Y, enc_x{m}) \supset X=Y

♦ Signature

Honest(X) ∧ Verify(Y, sig_X{m}) ⊃ ∃ m' (Send(X, m') ∧ Contains(m', sig_X{m})

Sample inference rules

Preservation rules ψ [actions]_P Has(X, t) ψ [actions; action]_P Has(X, t)

Bidding conventions (motivation)

Blackwood response to 4NT

- -5. :0 or 4 aces
- -5 🔹 : 1 ace
- -5•:2 aces
- -5. : 3 aces

Reasoning

 If my partner is following Blackwood, then if she bid 5♥, she must have 2 aces

$\forall \text{roles } \mathsf{R} \text{ of } \mathsf{Q}. \forall \text{ initial segments } \mathsf{A} \subseteq \mathsf{R}.$ $\begin{array}{c} \mathsf{Q} & |- & [\ \mathsf{A} \]_{\mathsf{X}} \phi \\ & \mathsf{Q} & |- & [\ \mathsf{A} \]_{\mathsf{X}} \phi \end{array}$ $\begin{array}{c} \mathsf{Q} & |- & \mathsf{Honest}(\mathsf{X}) \supset \phi \end{array}$

- This is a finitary rule:
 - Typical protocol has 2-3 roles
 - Typical role has 1-3 receives
 - Only need to consider A waiting to receive

$\forall \text{roles R of } Q. \forall \text{ initial segments } A \subseteq R.$ $Q \mid - [A]_X \phi$ $Q \mid - \text{Honest}(X) \supset \phi$

- Example use:
 - If Y receives a message from X, and Honest(X) \supset (Sent(X,m) \supset Received(X,m')) then Y can conclude Honest(X) \supset Received(X,m'))

Correctness of CR

```
InitCR(A, X) = [
                                         RespCR(B) = [
                                             receive Y, B, \{y, Y\};
   new m:
   send A, X, {m, A};
                                             new n:
   receive X, A, \{x, sig_X\{m, x, A\}\};
                                             send B, Y, {n, sig<sub>B</sub>{y, n, Y}};
   send A, X, sig<sub>A</sub>{m, x, X};
                                             receive Y, B, sig_{v}{y, n, B}};
]
    CR \mid - [InitCR(A, B)]_A Honest(B) \supset
         ActionsInOrder(
                   Send(A, \{A, B, m\}),
```

Receive(B, {A,B,m}), Send(B, {B,A,{n, sig_B {m, n, A}}}), Receive(A, {B,A,{n, sig_B {m, n, A}}})

Correctness of CR - step 1

InitCR(A, X) = [new m; $send A, X, {m, A};$ $receive X, A, {x, sig_{m, x, A}};$ $send A, X, sig_{m, x, X};$ $}$ RespCR(B) = [$receive Y, B, {y, Y};$ new n; $send B, Y, {n, sig_{B}{y, n, Y}};$ $receive Y, B, sig_{y}{y, n, B};$]

1. A reasons about it's own actions CR |- [InitCR(A, B)]_A Verify(A, sig_B {m, n, A})

Correctness of CR - step 2

InitCR(A, X) = [new m; $send A, X, {m, A};$ $receive X, A, {x, sig_{m, x, A}};$ $send A, X, sig_{m, x, X};$]<math display="block">RespCR(B) = [$receive Y, B, {y, Y};$ new n; $send B, Y, {n, sig_{B}{y, n, Y}};$ $receive Y, B, sig_{y}{y, n, B};$]

2. Properties of signatures $CR \mid - [InitCR(A, B)]_A$ Honest(B) \supset $\exists m' (Send(B, m') \land Contains(m', sig_B \{m, n, A\})$

Correctness of CR - Honesty

InitCR(A, X) = [

]

```
new m;
send A, X, {m, A};
receive X, A, {x, sig_{X}{m, x, A}};
send A, X, sig_{A}{m, x, X};
```

```
RespCR(B) = [
receive Y, B, {y, Y};
new n;
send B, Y, {n, sig<sub>B</sub>{y, n, Y}};
receive Y, B, sig<sub>y</sub>{y, n, B}};
```

Honesty invariant

CR |- Honest(X) ∧
Send(X, m') ∧ Contains(m', sig_x {y, x, Y}) ∧ ¬ New(X, y) ⊃
m= X, Y, {x, sig_B{y, x, Y}} ∧ Receive(X, {Y, X, {y, Y}})

"If an honest X sends m containing sig_x {y, x, Y}, and X did not create y, then m is responders message and X receive initiators message 1''

Correctness of CR - step 3

InitCR(A, X) = [Res
new m;
send A, X, {m, A};
receive X, A, {x, sig_x{m, x, A}};
send A, X, sig_A{m, x, X};
]

RespCR(B) = [receive Y, B, {y, Y}; new n; send B, Y, {n, sig_B{y, n, Y}}; receive Y, B, sig_y{y, n, B}};

```
3. From Honesty rule

CR \mid - [InitCR(A, B)]_A Honest(B) \supset

Receive(B, {A,B,m}),
```

Correctness of CR - step 4

4. Use properties of nonces for temporal ordering CR |- [InitCR(A, B)]_A Honest(B) ⊃ Auth

Complete formal proof

A M1	$(A B n)[]$, $Has(A A n) \wedge Has(A B n)$
4 N3	$[(um)] \leftarrow \operatorname{Fresh}(A, m, n)$
A A 1	$\left[\left(A B m \right) \right]_{A,\eta} \cap \left[\left(A A B m \right) n \right]_{A,\eta}$
A A 1	$[(\mathbf{A}, \mathbf{D}, \mathbf{m})]\mathbf{A}, \eta \bigtriangledown \mathbf{\nabla} Send(\mathbf{A}, \{\mathbf{A}, \mathbf{D}, \mathbf{m}\}, \eta)$ $[(\mathbf{B} \ \mathbf{A} \ \mathbf{n} \ \mathbf{J}\mathbf{m} \ \mathbf{n} \ \mathbf{A}[\mathbf{L}])]\mathbf{A}$
	$\triangle \text{Receive} \left(A \left\{ B A n \right\} m n A \mathbb{I} \rightarrow n \right)$
A A 1	$[(\lim n A \mathbb{Q} - / \lim n A \mathbb{Q} -)] \land \qquad \bigtriangleup \text{Verify} (A \lim n A \mathbb{Q} - n)$
A A 1	$[(\Lambda^{m,n},\Lambda,\Lambda^{r}_{B})]_{A,\eta} \bigtriangledown Verry(\Lambda,\Lambda^{n,n},\Lambda^{r}_{B})]_{A,\eta} \land Verry(\Lambda,\Lambda^{r},\Lambda^{r}_{B})$
4 F1 4 F2	$(A B n)[(\mu m)/A B m)(r)(r/B A n Jm n A)]$
AF 1, AF 2	$(A B \eta)[(\nu m)(A, B, m/(x)(x/B, A, n, \eta m, n, A f_B)]$ (Jm n A h - /Jm n A h -)/A B Jm n B h -)].
	$(\Pi^{m}, n, A[f_B] \setminus \Pi^{m}, n, A[f_B] \setminus A, D, \Pi^{m}, n, D[f_A]]A, \eta$ Actions In Order (Sand (A, [A, P, m], n) Parsive (A, [P, A, n, flow, n, A]],), n)
	$\operatorname{ActionsinOrder}(\operatorname{Send}(A, \{A, B, m_f, \eta\}, \operatorname{Receive}(A, \{B, A, n, \{m, n, A _B, \eta\}), \operatorname{Send}(A \mid A \mid B \mid m, n, B _{B}))$
N1	$ \triangle \operatorname{New}(A, [n, b], [n, n, b]]_A[, n]) $
5 VED	$\forall New(A, m, \eta) \supset \forall \forall New(B, m, \eta)$ Honort(<i>B</i>) $\land \land Norify(A, \exists m, n, A \exists m, n) \supset$
5, VER	$\exists n' \exists m' (\land CS end(R, \mathfrak{m}', n, A) \land (\mathfrak{lm}, \mathfrak{n}, \mathfrak{A}) - C m'))$
HON	$\exists \eta : \exists m : (\langle \bigcirc CSend(B, m, \eta) \land (\{[m, n, A]\}_{\overline{B}} \subseteq m))$
HON	$\operatorname{Homest}(B) \supset (\exists \eta : \exists m : ((\diamondsuit Csend(B, m, \eta)) \land ((\diamondsuit Csend(B, m, \eta)) \land ((\diamondsuit Csend(B, m, \eta))))))$
	$\{[m,n,A]\}_{\overline{B}} \subseteq m \land \neg \diamondsuit (B,m,\eta)\} \supset$
	$(m = \{B, A, \{n, \{m, n, A\}\}_{\overline{B}}\} \land \diamondsuit Receive(B, \{A, B, m\}, \eta) \land$
	ActionsinOrder(Receive($\mathcal{D}, \{A, \mathcal{D}, m\}, \eta$), New(\mathcal{D}, n, η),
0 9 11 A E 9	Send $(\mathcal{D}, \{\mathcal{D}, \mathcal{A}, \{n, \{ m, n, \mathcal{A} \}_{\overline{B}}\}\}, \eta))))$
2, 5 , 11, AF 5	$Honest(\mathcal{B}) \supset Arter(Send(\mathcal{A}, \{\mathcal{A}, \mathcal{B}, m\}, \eta)),$ $Passive(\mathcal{B} \left\{ \mathcal{A}, \mathcal{B}, m \right\}, \eta'))$
11 A TO	Hencet(P) \supset After(Passing(P [A, P, m], n')
11, AF 2	$Fond(\mathcal{B} \mid \mathcal{B} \mid A \mid \{n \in flow \mid n \in A\}, n'))$
11 / AF2	$Send(\mathcal{D}, \{\mathcal{D}, \mathcal{A}, \{n, \{m, n, \mathcal{A}\}_{B}\}\}, \eta))$ $Honort(\mathcal{R}) \supset After(Send(\mathcal{R} \setminus \mathcal{R} \setminus \{n, \{m, n, \mathcal{A}\}\}, \eta))$
11, 4, AF 3	$Paraiva(A \ \{B \ A \ \{m \ n \ A\}\} = A \ \{n, \{n, \{n, n, A\}\} = B \ \}, \{n, n\}, A \ \{n, \{n, n, A\}\} = A \ \{n, \{n, A\}\} = A \ \{n, A\}\} = A \ \{n, A\}\} = A \ \{n, \{n, A\}\} = A \ \{n, \{n, A\}\} = A \ \{n, A\}\} = A \ \{n, \{n, A\}\} = A \ \{n, A\}\} = A \ $
10 - 13 AF9	$Receive(A, \{\mathcal{D}, A, \{\mathcal{n}, \{\mathcal{m}, \mathcal{n}, A \}_{\overline{B}}\}, \mathcal{H}))$ $Honest(B) \supset \exists n' (ActionsInOrder(Send(A \land A \land B \land m) \land n))$
10 – 13, AF 2	$Paraiva(R \mid A \mid R \mid m) Sand(R \mid R \mid A \mid R \mid R \mid M) Sand(R \mid R \mid A \mid R \mid R \mid M) Sand(R \mid R \mid R \mid R \mid R \mid M) Sand(R \mid R \mid R \mid R \mid R \mid M) Sand(R \mid R \mid$
	Receive(D , $\{A, D, m\}, \eta$), send(D , $\{D, A, \{n, \{m, n, A\}\}_{\overline{B}}\}, \eta$), Receive(A , $\{B, A, \{n, \{m, n, A\}\}_{\overline{D}}\}$)
	$Receive(A, \{\mathcal{D}, A, \{\mathcal{H}, \{ \mathcal{H}, \mathcal{H}, A \} \mathbf{B}\}\}, \mathcal{H}))$

Table 8. Deductions of A executing Init role of CR

Composition Rules

Prove assertions from invariants Γ - φ [...]Ρ ψ Invariant weakening rule Γ - φ [...]Ρ ψ If combining protocols, extend assertions to combined invariants $\Gamma \cup \Gamma' \mid - \phi \mid ... \mid P \psi$ Prove invariants from protocol $Q \triangleright \Gamma \qquad Q' \triangleright \Gamma$ Use honesty (invariant) rule to show that both protocols preserve $Q \bullet Q' \triangleright \Gamma$ assumed invariants
Combining protocols

 $\mathsf{DH} \blacktriangleright \mathsf{Honest}(\mathsf{X}) \supset \dots$

 Γ |- Secrecy

 $\Gamma \cup \Gamma'$ |- Secrecy

 Γ' $CR \triangleright Honest(X) \supset \dots$ $\Gamma' \quad |- Authentication$

 $\Gamma \cup \Gamma'$ |- Authentication

 $\Gamma \cup \Gamma' \mid$ - Secrecy \land Authentication DH • CR $\triangleright \Gamma \cup \Gamma'$ II ISO \triangleright Secrecy \land Authentication

Protocol Templates

Protocols with function variables instead of specific operations

- One template can be instantiated to many protocols
- ♦ Advantages:
 - proof reuse
 - design principles/patterns

Challenge-Response Template

Sample projects using PCL

◆Simple key exchange

- STS family
- Diffie-Hellman -> MQV
- GDOI [Meadows, Pavlovic]

Larger protocols

- SSL verification
- Wireless 802.11i
- JFK, IKEv2
- Kerberos, including PKINIT, DHINIT

Symbolic vs Computational model

\diamond Suppose Γ [- [actions]_X ϕ

• If a protocol P satisfies invariants Γ , then if X does *actions*, φ will be true

Symbolic soundness

- No idealized adversary acting against "perfect" cryptography can make ϕ fail

Computational soundness

- No probabilistic polytime adversary can make $\phi\,$ fail with nonnegligible probability

$PCL \rightarrow Computational PCL$

Some general issues

Computational PCL

 Symbolic logic for proving security properties of network protocols that use cryptography

Soundness Theorem:

 If a property is provable in CPCL, then property holds in computational model with overwhelming asymptotic probability

♦ Benefits

- Retain compositionality
- Symbolic proofs about computational model
- Probability, complexity theory in soundness proof (only!)
- Different axioms rely on different crypto assumptions
 - Competing symbolic ~ computational methods generally requires strong crypto assumptions

$PCL \rightarrow Computational PCL$

Syntax, proof rules mostly the same

- Retain compositional approach
- But some issues with propositional connectives...

♦ Significant differences

- Symbolic "knowledge"
 - Has(X,t): X can produce t from msgs that have been observed, by symbolic algorithm
- Computational "knowledge"
 - Possess(X,t): can produce t by ppt algorithm
 - Indist(X,t) : cannot distinguish from rand value in ppt
- More subtle system
 - Some axioms rely on CCA2, some info-theoretically sound, etc.

Recall Execution Model

Protocol

- Sequential program for each protocol role
- Initial configuration
 - Set of principals and keys
 - Assignment of ≥ 1 role to each principal

♦Run

Computational Traces

Computational trace contains

- Symbolic actions of honest parties
- Mapping of symbolic variables to bitstrings
- Send-receive actions (only) of the adversary

Runs of the protocol

- Set of all possible traces
 - Each tagged with random bits used to generate trace
 - Tagging \Rightarrow set of equi-probable traces

Complexity-theoretic semantics

 Given protocol Q, adversary A, security parameter n, define

- T=T(Q,A,n), set of all possible traces
- [[φ]](T) a subset of T that respects φ in a specific way

Intuition: φ valid when [[φ]](T) is an asymptotically overwhelming subset of T

Semantics of trace properties

Defined in a straight forward way

[[Send(X, m)]](T)

All traces $t \in T$ such that

- t contains a Send(msg) action by X
- the bistring value of msg is the bitstring value of m

Inductive Semantics

 $\left\{ \begin{bmatrix} \phi_1 \land \phi_2 \end{bmatrix} (\mathsf{T}) = \begin{bmatrix} \phi_1 \end{bmatrix} (\mathsf{T}) \cap \begin{bmatrix} \phi_2 \end{bmatrix} (\mathsf{T}) \\ \left\{ \begin{bmatrix} \phi_1 \lor \phi_2 \end{bmatrix} (\mathsf{T}) = \begin{bmatrix} \phi_1 \end{bmatrix} (\mathsf{T}) \cup \begin{bmatrix} \phi_2 \end{bmatrix} (\mathsf{T}) \\ \left\{ \begin{bmatrix} \neg \phi \end{bmatrix} \end{bmatrix} (\mathsf{T}) = \mathsf{T} - \begin{bmatrix} \phi \end{bmatrix} (\mathsf{T})$

Implication uses *form* of conditional probability $\begin{aligned} & \left[\left[\phi_1 \Rightarrow \phi_2 \right] \right] (\mathsf{T}) = \left[\left[\neg \phi_1 \right] \right] (\mathsf{T}) \\ & \cup \left[\left[\phi_2 \right] \right] (\mathsf{T}') \\ & \text{where } \mathsf{T}' = \left[\left[\phi_1 \right] \right] (\mathsf{T}) \end{aligned}$

This seems needed for reduction proofs. What is logic of this \Rightarrow ?

Semantics of Indistinguishable

Not a trace property

 Intuition: Indist(X, m) holds if no algorithm can distinguish m from a random value, given X's view of the run

[[Indist(X, m)]] (T, D, ϵ) = T if | #(t: b=b')-|T|/2 | < ϵ

Validity of a formula

 $\begin{aligned} \mathbf{Q} &\models \phi \text{ if } \forall \text{ adversary } A \forall \text{ distinguisher } D \\ \exists \text{ negligible function } f \exists n_0 \text{ s.t. } \forall n > n_0 \\ &\left| \left[\left[\phi \right] \right] (\mathsf{T}, \mathsf{D}, \mathsf{f}(n)) \right] / |\mathsf{T}| > 1 - \mathsf{f}(n) \end{aligned}$

Fraction of traces where " ϕ is true"

- Fix protocol Q, PPT adversary A
- Choose value of security parameter n
- Vary random bits used by all programs
- Obtain set T=T(Q,A,n) of equi-probable traces

ī(O,A,n

Advantages of Computational PCL

High-level reasoning, sound for "real crypto"

 Prove properties of protocols without explicit reasoning about probability, asymptotic complexity

Composability

- PCL is designed for protocol composition
- Composition of individual steps
 - Not just coarser composition available with UC/RSIM
- Can identify crypto assumptions needed
 - ISO-9798-3 [DDMW2006]

Note: existing deployed protocols may have weak security properties, assuming realistic but weak security properties of primitives they use

CPCL analysis of Kerberos V5

Kerberos has a staged architecture

- First stage generates a nonce and sends it encrypted
- Second stage uses nonce as key to encrypt another nonce
- Third stage uses second-stage nonce to encrypt other msgs

♦ Secrecy

- Logic proves "GoodKey" property of both nonces
- Authentication
 - Proved assuming encryption provides ciphertext integrity
- Modular proofs using composition theorems
 - Applies to DHINIT, which is outside scope of competing approaches

Challenges for computational reasoning

More complicated adversary

Actions of computational adversary do not have a simple inductive characterization

More complicated messages

 Computational messages are arbitrary sequences of bits, without an inductively defined syntactic structure

Different scheduler

• Simpler "non-preemptive" scheduling is typically used in computational models (change symbolic model for equiv)

Power of induction ?

- Indistinguishability, other non-trace-based properties appear unsuitable as inductive hypotheses
- Solution: prove trace property inductively and derive secrecy

Current and Future Work

Investigate nature of propositional fragment

- Non-classical implication related to conditional probability
 - complexity-theoretic reductions
 - connections with probabilistic logics (e.g. Nilsson86)

Generalize reasoning about secrecy

- Work in progress, thanks to Arnab
- Need to incorporate insight of "Rackoff's attack"

♦ Extend logic

• More primitives: signature, hash functions,...

Complete case studies

Produce correctness proofs for all widely deployed standards

♦ Collaborate on

- Foundational work please join us !
- Implementation and case studies please help us !

Conclusions

Protocol design is tricky and error-prone

- Model checking can find errors
- Proof method can show correctness
- Modular analysis is a challenge
- Closing gap between logical analysis and cryptography
 - Symbolic model supports useful tools
 - Computational model more informative
 - Includes probability, complexity
 - Does not require strong cryptographic assumptions
 - Two approaches can be combined
 - Several current projects and approaches [BPW, MW, Blan, CH, ...]
 - One example: computational semantics for symbolic protocol logic

Research area coming of age

Interactions with and impact on industry

Credits

Collaborators

• M. Backes, A. Datta, A. Derek, N. Durgin, C. He,

R. Kuesters, D. Pavlovic, A. Ramanathan, A. Roy,

A. Scedrov, V. Shmatikov, M. Sundararajan, V. Teague,

M. Turuani, B. Warinschi, ...

More information

- Web page on Protocol Composition Logic
 - http://www.stanford.edu/~danupam/logic-derivation.html

Science is a social process