
Security Analysis of

Network Protocols

Marktoberdorf Summer School

Reference: http://www.stanford.edu/class/cs259/

John Mitchell

Stanford

2007

It’s great to be here

�My third Summer School

• Other two were “red series”

�Some goals

• Meet old and new friends

• Sample five main kinds of beer made in Bavaria

• Swim in lake, after discussion before dinner (T,Th,F)

• Hike, weather and other factors permitting (W?)

Computer Security

�Cryptography

• Encryption, signatures, cryptographic hash, …

�Security mechanisms

• Access control policy

• Network protocols

� Implementation

• Cryptographic library

• Code implementing mechanisms

– Reference monitor and TCB

– Protocol

• Runs under OS, uses program library, network protocol stack

Analyze protocols, assuming crypto, implementation, OS correct

Cryptographic Protocols

�Two or more parties

�Communication over insecure network

�Cryptography used to achieve goal

• Exchange secret keys

• Verify identity (authentication)

Crypto (class poll):

Public-key encryption, symmetric-key encryption, CBC, hash,
signature, key generation, random-number generators

Correctness vs Security

�Program or System Correctness

• Program satisfies specification

– For reasonable input, get reasonable output

�Program or System Security

• Program properties preserved in face of attack

– For unreasonable input, output not completely disastrous

�Main differences

• Active interference from adversary

• Refinement techniques may fail

– More functionality can be worse

Security Analysis

�Model system

�Model adversary

�Identify security properties

�See if properties are preserved under attack

�Result
• No “absolute security”

• Security means: under given assumptions about
system, no attack of a certain form will destroy
specified properties.

Important Modeling Decisions

�How powerful is the adversary?

• Simple replay of previous messages

• Block messages; Decompose, reassemble and resend

• Statistical analysis, partial info from network traffic

• Timing attacks

�How much detail in underlying data types?

• Plaintext, ciphertext and keys

– atomic data or bit sequences

• Encryption and hash functions

– “perfect” cryptography

– algebraic properties: encr(x*y) = encr(x) * encr(y) for

RSA encrypt(k,msg) = msgk mod N

Protocol analysis spectrum

Low High

H
ig

h
L
o
w

M
o

d
e
li
n

g
 d

e
ta

il

Protocol complexity

Murϕ
�

FDR

� NRL
�Athena

�

Hand proofs

�

Paulson
�

Strand spaces

�

BAN logic

�

Spi-calculus �

Poly-time calculus

�

�

Model checking

Multiset rewriting with ∃

�
Protocol logic

��

Four “Stanford” approaches

�Finite-state analysis
• Case studies: find errors, debug specifications

�Symbolic execution model: Multiset rewriting
• Identify basic assumptions

• Study optimizations, prove correctness

• Complexity results

�Process calculus with probability and complexity
• More realistic intruder model

• Interaction between protocol and cryptography

• Equational specification and reasoning methods

�Protocol logic
• Axiomatic system for modular proofs of protocol properties

SRI, U Penn,
U Texas, Kiel,
INRIA, …

Some other projects and tools

�Exhaustive finite-state analysis

• FDR, based on CSP [Lowe, Roscoe, Schneider, …]

�Search using symbolic representation of states

• Meadows: NRL Analyzer, Millen: Interrogator

�Prove protocol correct

• Paulson’s “Inductive method”, others in HOL, PVS, …

• MITRE -- Strand spaces

• Process calculus approach: Abadi-Gordon spi-
calculus, applied pi-calculus, …

• Type-checking method: Gordon and Jeffreys, …

Many more – this is just a small sample

Example: Needham-Schroeder

�Famous simple example
• Protocol published and known for 10 years

• Gavin Lowe discovered unintended property while
preparing formal analysis using FDR system

�Background: Public-key cryptography
• Every agent A has

– Public encryption key Ka

– Private decryption key Ka-1

• Main properties
– Everyone can encrypt message to A

– Only A can decrypt these messages

Needham-Schroeder Key Exchange

{ A, NonceA }

{ NonceA, NonceB }

{ NonceB}

Ka

Kb

Result: A and B share two private numbers
not known to any observer without Ka-1, Kb -1

A B

Kb

Anomaly in Needham-Schroeder

A E

B

{ A, NA }

{ A, NA }{ NA, NB }

{ NA, NB }

{ NB }

Ke

KbKa

Ka

Ke

Evil agent E tricks
honest A into revealing
private key NB from B

Evil E can then fool B

[Lowe]

Explicit Intruder Method

Intruder

Model

Analysis
Tool

Formal

Protocol

Informal

Protocol
Description

Find error

Run of protocol

A

B
Initiate

Respond

C

D

Correct if no security violation in any run

Attacker

Automated Finite-State Analysis

�Define finite-state system

• Bound on number of steps

• Finite number of participants

• Nondeterministic adversary with finite options

�Pose correctness condition

• Can be simple: authentication and secrecy

• Can be complex: contract signing

�Exhaustive search using “verification” tool

• Error in finite approximation ⇒ Error in protocol

• No error in finite approximation ⇒ ???

Finite-state methods

�Two sources of infinite behavior

• Many instances of participants, multiple runs

• Message space or data space may be infinite

�Finite approximation

• Assume finite participants

– Example: 2 clients, 2 servers

• Assume finite message space

– Represent random numbers by r1, r2, r3, …

– Do not allow unbounded encrypt(encrypt(encrypt(…)))

Murϕ [Dill et al.]

�Describe finite-state system

• State variables with initial values

• Transition rules

• Communication by shared variables

�Scalable: choose system size parameters

�Automatic exhaustive state enumeration

• Space limit: hash table to avoid repeating states

�Research and industrial protocol verification

Applying Murϕ to security protocols

�Formulate protocol

�Add adversary

• Control over “network” (shared variables)

• Possible actions

– Intercept any message

– Remember parts of messages

– Generate new messages, using observed data and initial
knowledge (e.g. public keys)

Needham-Schroeder in Murϕ (1)

const

NumInitiators: 1; -- number of initiators

NumResponders: 1; -- number of responders

NumIntruders: 1; -- number of intruders

NetworkSize: 1; -- max. outstanding msgs in network

MaxKnowledge: 10; -- number msgs intruder can remember

type

InitiatorId: scalarset (NumInitiators);

ResponderId: scalarset (NumResponders);

IntruderId: scalarset (NumIntruders);

AgentId: union {InitiatorId, ResponderId, IntruderId};

Needham-Schroeder in Murϕ (2)

MessageType : enum { -- types of messages

M_NonceAddress, -- {Na, A}Kb nonce and addr

M_NonceNonce, -- {Na,Nb}Ka two nonces

M_Nonce -- {Nb}Kb one nonce

};

Message : record

source: AgentId; -- source of message

dest: AgentId; -- intended destination of msg

key: AgentId; -- key used for encryption

mType: MessageType; -- type of message

nonce1: AgentId; -- nonce1

nonce2: AgentId; -- nonce2 OR sender id OR empty

end;

Needham-Schroeder in Murϕ (3)

-- intruder i sends recorded message

ruleset i: IntruderId do -- arbitrary choice of

choose j: int[i].messages do -- recorded message

ruleset k: AgentId do -- destination

rule "intruder sends recorded message"

!ismember(k, IntruderId) & -- not to intruders

multisetcount (l:net, true) < NetworkSize

==>

var outM: Message;

begin

outM := int[i].messages[j];

outM.source := i;

outM.dest := k;

multisetadd (outM,net);

end; end; end; end;

Adversary Model

�Formalize “knowledge”

• initial data

• observed message fields

• results of simple computations

�Optimization

• only generate messages that others read

• time-consuming to hand simplify

�Possibility: automatic generation

number of sizeof
ini. res. int. network states time

1 1 1 1 1706 3.1s
1 1 1 2 40207 82.2s
2 1 1 1 17277 43.1s
2 2 1 1 514550 5761.1s

Run of Needham-Schroeder

�Find error after 1.7 seconds exploration

�Output: trace leading to error state

�Murϕ times after correcting error:

Limitations

�System size with current methods

• 2-6 participants

Kerberos: 2 clients, 2 servers, 1 KDC, 1 TGS

• 3-6 steps in protocol

• May need to optimize adversary

�Adversary model

• Cannot model randomized attack

• Do not model adversary running time

Security Protocols in Murϕ

�Standard “benchmark” protocols
• Needham-Schroeder, TMN, …

• Kerberos

�Study of Secure Sockets Layer (SSL)
• Versions 2.0 and 3.0 of handshake protocol

• Include protocol resumption

�Tool optimization

�Additional protocols
• Contract-signing

• Wireless networking

… ADD YOUR PROJECT HERE …

State Reduction on N-S Protocol

1706

17277

514550

980

6981

155709

58

222

3263

1

10

100

1000

10000

100000

1000000

1 init

1 resp

2 init

1 resp

2 init

2 resp

Base: hand
optimization
of model

CSFW:
eliminate
net, max
knowledge

Merge
intrud send,
princ reply

Plan for this another course

�Protocols

• Authentication, key establishment, assembling
protocols together (TLS ?), fairness exchange, …

�Tools

• Finite-state and probabilistic model checking,
constraint-solving, process calculus, temporal logic,
proof systems, game theory, polynomial time …

�Projects (You do this later on your own!)

• Choose a protocol or other security mechanism

• Choose a tool or method and carry out analysis

• Hard part: formulating security requirements

Reference Material (CS259 web site)

� Protocols
• Clarke-Jacob survey

• Use Google; learn to read an RFC

� Tools
• Murphi

– Finite-state tool developed by David Dill’s group at Stanford

• PRISM
– Probabilistic model checker, University of Birmingham

• MOCHA
– Alur and Henzinger; now consortium

• Constraint solver using prolog
– Shmatikov and Millen

• Isabelle
– Theorem prover developed by Larry Paulson in Cambridge, UK

– A number of case studies available on line

Plan for these 4 lectures

�Introduction

• Simple example, finite-state analysis

�Protocol examples

• SSL, 802.11i, Kerberos (PKINIT), IKEv2, …

�Security Proofs

• Symbolic model

– Paulson’s method

– Protocol composition logic (PCL)

• Cryptographic soundness

– Computational model for PCL: challenges, accomplishments

SSL / TLS Case Study

Reference: http://www.stanford.edu/class/cs259/

John Mitchell

Stanford

Marktoberdorf Summer School 2007

Overview

�Introduction to the SSL / TLS protocol

• Widely deployed, “real-world” security protocol

�Protocol analysis case study

• Start with the RFC describing the protocol

• Create an abstract model and code it up in Murϕ

• Specify security properties

• Run Murϕ to check whether security properties are
satisfied

What is SSL / TLS?

�Transport Layer Security protocol, ver 1.0

• De facto standard for Internet security

• “The primary goal of the TLS protocol is to provide
privacy and data integrity between two communicating
applications”

• In practice, used to protect information transmitted
between browsers and Web servers

�Based on Secure Sockets Layers protocol, ver 3.0

• Same protocol design, different algorithms

�Deployed in nearly every web browser

SSL / TLS in the Real World

History of the Protocol

�SSL 1.0
• Internal Netscape design, early 1994?

• Lost in the mists of time

�SSL 2.0
• Published by Netscape, November 1994

• Badly broken

�SSL 3.0
• Designed by Netscape and Paul Kocher, November 1996

�TLS 1.0
• Internet standard based on SSL 3.0, January 1999

• Not interoperable with SSL 3.0

Let’s Get Going…

Intruder

Model

Analysis
Tool

Formal

Protocol

Informal

Protocol
Description

Find error

RFC

(request for

comments)

Request for Comments

�Network protocols are usually disseminated in the
form of an RFC

�TLS version 1.0 is described in RFC 2246

�Intended to be a self-contained definition

• Describes the protocol in sufficient detail for readers
who will be implementing it and those who will be
doing protocol analysis (that’s you!)

• Mixture of informal prose and pseudo-code

�Read some RFCs to get a flavor of what protocols
look like when they emerge from the committee

Evolution of the SSL/TLS RFC

0

10

20

30

40

50

60

70

80

SSL 2.0 SSL 3.0 TLS 1.0

Page count

From RFC to Murϕ Model

Intruder

Model

Analysis
Tool

Formal

Protocol

Informal

Protocol
Description

Find error

Murϕ code
RFC

TLS Basics

�TLS consists of two protocols

�Handshake protocol

• Use public-key cryptography to establish a shared
secret key between the client and the server

�Record protocol

• Use the secret key established in the handshake
protocol to protect communication between the client
and the server

�We will focus on the handshake protocol

TLS Handshake Protocol

�Two parties: client and server

�Negotiate version of the protocol and the set of
cryptographic algorithms to be used

• Interoperability between different implementations of
the protocol

�Authenticate client and server (optional)

• Use digital certificates to learn each other’s public keys
and verify each other’s identity

�Use public keys to establish a shared secret

Handshake Protocol

ClientHello C → S C, VerC, SuiteC, NC

ServerHello S → C VerS, Suite, SuiteSS, N, NSS,, signCA{ S, KS, KSS }

ClientVerify C → S signCA{ C, VC }

{ VerC, SecretC }

signC { Hash(Master(NC, NNSS, SecretC) + Pad2 +

Hash(Msgs + C + Master(NC, NNSS, SecretC) + Pad1)) }

(Change to negotiated cipher)

ServerFinished S → C { Hash(Master(NC, NNSS, SecretC) + Pad2 +

Hash(Msgs + S + Master(NC, NNSS, SecretC) + Pad1))

}

ClientFinished C → S { Hash(Master(NC, NNSS, SecretC) + Pad2 +
Hash(Msgs + C + Master(NC, NNSS, SecretC) + Pad1))

}

KSS

Master(NC, NSS, SecretC)

Master(NC, NSS, SecretC)

Handshake Protocol Structure

C

ClientHello

ServerHello,

[Certificate],

[ServerKeyExchange],

[CertificateRequest],

ServerHelloDone

S[Certificate],

ClientKeyExchange,

[CertificateVerify]

Finished

switch to negotiated cipher

Finished

switch to negotiated cipher

Abbreviated Handshake

�The handshake protocol may be executed in an
abbreviated form to resume a previously
established session

• No authentication, key material not exchanged

• Session resumed from an old state

�For complete analysis, have to model both full
and abbreviated handshake protocol

• This is a common situation: many protocols have
several branches, subprotocols for error handling, etc.

Rational Reconstruction

� Begin with simple, intuitive protocol

• Ignore client authentication

• Ignore verification messages at the end of the
handshake protocol

• Model only essential parts of messages (e.g., ignore
padding)

�Execute the model checker and find a bug

�Add a piece of TLS to fix the bug and repeat

• Better understand the design of the protocol

Protocol Step by Step: ClientHello

C

ClientHello

S

Client announces (in plaintext):

• Protocol version he is running

• Cryptographic algorithms he supports

struct {

ProtocolVersion client_version;

Random random;

SessionID session_id;

CipherSuite cipher_suites;

CompressionMethod compression_methods;

} ClientHello

ClientHello (RFC)

Highest version of the protocol
supported by the client

Session id (if the client wants to
resume an old session)

Cryptographic algorithms
supported by the client (e.g.,
RSA or Diffie-Hellman)

ClientHello (Murϕ)

ruleset i: ClientId do
ruleset j: ServerId do
rule "Client sends ClientHello to server (new session)"
cli[i].state = M_SLEEP &
cli[i].resumeSession = false
==>
var
outM: Message; -- outgoing message
begin
outM.source := i;
outM.dest := j;
outM.session := 0;
outM.mType := M_CLIENT_HELLO;
outM.version := cli[i].version;
outM.suite := cli[i].suite;
outM.random := freshNonce();
multisetadd (outM, cliNet);
cli[i].state := M_SERVER_HELLO;
end;
end;
end;

ServerHello

C

C, Versionc, suitec, Nc

ServerHello

S
Server responds (in plaintext) with:

• Highest protocol version both client &

server support

• Strongest cryptographic suite selected

from those offered by the client

ServerHello (Murϕ)

ruleset i: ServerId do
choose l: serNet do
rule “Server receives ServerHello (new session)"
ser[i].clients[0].state = M_CLIENT_HELLO &
serNet[l].dest = i &
serNet[l].session = 0
==>
var
inM: Message; -- incoming message
outM: Message; -- outgoing message

begin
inM := serNet[l]; -- receive message
if inM.mType = M_CLIENT_HELLO then
outM.source := i;
outM.dest := inM.source;
outM.session := freshSessionId();
outM.mType := M_SERVER_HELLO;
outM.version := ser[i].version;
outM.suite := ser[i].suite;
outM.random := freshNonce();
multisetadd (outM, serNet);
ser[i].state := M_SERVER_SEND_KEY;

end; end; end;

ServerKeyExchange

C

Versions, suites, Ns,

ServerKeyExchange

SServer responds with his public-key

certificate containing either his RSA, or

his Diffie-Hellman public key

(depending on chosen crypto suite)

C, Versionc, suitec, Nc

“Abstract” Cryptography

�We will use abstract data types to model
cryptographic operations

• Assumes that cryptography is perfect

• No details of the actual cryptographic schemes

• Ignores bit length of keys, random numbers, etc.

�Simple notation for encryption, signatures, hashes

• {M}k is message M encrypted with key k

• sigk(M) is message M digitally signed with key k

• hash(M) for the result of hashing message M with a
cryptographically strong hash function

ClientKeyExchange

C

Versions, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc, suitec, Nc

ClientKeyExchange

Client generates some secret key material

and sends it to the server encrypted with

the server’s public key

struct {

select (KeyExchangeAlgorithm) {

case rsa: EncryptedPreMasterSecret;

case diffie_hellman: ClientDiffieHellmanPublic;

} exchange_keys

} ClientKeyExchange

struct {

ProtocolVersion client_version;

opaque random[46];

} PreMasterSecret

ClientKeyExchange (RFC)

Let’s model this as {Secretc}Ks

“Core” SSL

C

Versions, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc, suitec, Nc

{Secretc}Ks

switch to key derived

from secretc

If the protocol is correct, C and S share

some secret key material secretc at this point

switch to key derived

from secretc

Participants as Finite-State Machines

M_SLEEP

ClientHello

Murϕ rules define a finite-state machine for each protocol participant

Client state

M_SERVER_HELLO

M_SERVER_KEY

M_SEND_KEY

M_CLIENT_HELLO

Server state

M_SEND_KEY

M_CLIENT_KEY

M_DONE

ServerHello

ServerKeyExchange

ClientKeyExchange

Intruder Model

Intruder

Model

Analysis
Tool

Formal

Protocol

Informal

Protocol
Description

Find error

Murϕ code
RFC

Murϕ code,
similar for
all protocols

Intruder Can Intercept

�Store a message from the network in the data
structure modeling intruder’s “knowledge”

ruleset i: IntruderId do

choose l: cliNet do

rule "Intruder intercepts client's message"

cliNet[l].fromIntruder = false

==>

begin

alias msg: cliNet[l] do -- message from the net

…

alias known: int[i].messages do

if multisetcount(m: known,

msgEqual(known[m], msg)) = 0 then

multisetadd(msg, known);

end;

end;

end;

Intruder Can Decrypt if Knows Key

�If the key is stored in the data structure modeling
intruder’s “knowledge”, then read message

ruleset i: IntruderId do

choose l: cliNet do

rule "Intruder intercepts client's message"

cliNet[l].fromIntruder = false

==>

begin

alias msg: cliNet[l] do -- message from the net

…

if msg.mType = M_CLIENT_KEY_EXCHANGE then

if keyEqual(msg.encKey, int[i].publicKey.key) then

alias sKeys: int[i].secretKeys do

if multisetcount(s: sKeys,

keyEqual(sKeys[s], msg.secretKey)) = 0 then

multisetadd(msg.secretKey, sKeys);

end;

end;

end;

Intruder Can Create New Messages

�Assemble pieces stored in the intruder’s
“knowledge” to form a message of the right format

ruleset i: IntruderId do

ruleset d: ClientId do

ruleset s: ValidSessionId do

choose n: int[i].nonces do

ruleset version: Versions do

rule "Intruder generates fake ServerHello"

cli[d].state = M_SERVER_HELLO

==>

var

outM: Message; -- outgoing message

begin

outM.source := i; outM.dest := d; outM.session := s;

outM.mType := M_SERVER_HELLO;

outM.version := version;

outM.random := int[i].nonces[n];

multisetadd (outM, cliNet);

end; end; end; end;

Intruder Model and Cryptography

�There is no actual cryptography in our model

• Messages are marked as “encrypted” or “signed”, and
the intruder rules respect these markers

�Our assumption that cryptography is perfect is
reflected in the absence of certain intruder rules

• There is no rule for creating a digital signature with a
key that is not known to the intruder

• There is no rule for reading the contents of a message
which is marked as “encrypted” with a certain key,
when this key is not known to the intruder

• There is no rule for reading the contents of a “hashed”
message

Running Murϕ Analysis

Intruder

Model

Analysis
Tool

Formal

Protocol

Informal

Protocol
Description

Find error

Murϕ code
RFC

Murϕ code,
similar for
all protocols

Specify security
conditions and run Murϕ

Secrecy

�Intruder should not be able to learn the secret
generated by the client

ruleset i: ClientId do

ruleset j: IntruderId do

rule "Intruder has learned a client's secret"

cli[i].state = M_DONE &

multisetcount(s: int[j].secretKeys,

keyEqual(int[j].secretKeys[s], cli[i].secretKey)) > 0

==>

begin

error "Intruder has learned a client's secret"

end;

end;

end;

Shared Secret Consistency

�After the protocol has finished, client and server
should agree on their shared secret

ruleset i: ServerId do

ruleset s: SessionId do

rule "Server's shared secret is not the same as its client's"

ismember(ser[i].clients[s].client, ClientId) &

ser[i].clients[s].state = M_DONE &

cli[ser[i].clients[s].client].state = M_DONE &

!keyEqual(cli[ser[i].clients[s].client].secretKey,

ser[i].clients[s].secretKey)

==>

begin

error "S's secret is not the same as C's"

end;

end;

end;

Version and Crypto Suite Consistency

�Client and server should be running the highest
version of the protocol they both support

ruleset i: ServerId do

ruleset s: SessionId do

rule "Server has not learned the client's version or suite correctly"

!ismember(ser[i].clients[s].client, IntruderId) &

ser[i].clients[s].state = M_DONE &

cli[ser[i].clients[s].client].state = M_DONE &

(ser[i].clients[s].clientVersion != MaxVersion |

ser[i].clients[s].clientSuite.text != 0)

==>

begin

error "Server has not learned the client's version or suite correctly"

end;

end;

end;

Finite-State Verification

...

...

� Murϕ rules for protocol
participants and the intruder
define a nondeterministic state
transition graph

� Murϕ will exhaustively
enumerate all graph nodes

� Murϕ will verify whether
specified security conditions
hold in every reachable node

� If not, the path to the violating
node will describe the attack

Correctness

condition violated

When Does Murϕ Find a Violation?

�Bad abstraction

• Removed too much detail from the protocol when
constructing the abstract model

• Add the piece that fixes the bug and repeat

• This is part of the rational reconstruction process

�Genuine attack

• Yay! Hooray!

• Attacks found by formal analysis are usually quite
strong: independent of specific cryptographic
schemes, OS implementation, etc.

• Test an implementation of the protocol, if available

“Core” SSL 3.0

C

Versions=3.0, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc=3.0, suitec, Nc

{Secretc}Ks

switch to key derived

from secretc

If the protocol is correct, C and S share

some secret key material secretc at this point

switch to key derived

from secretc

Version Consistency Fails!

C

Versions=2.0, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc=2.0, suitec, Nc

{Secretc}Ks

C and S end up communicating using SSL 2.0

(weaker earlier version of the protocol)

Server is fooled into thinking he
is communicating with a client
who supports only SSL 2.0

Fixed “Core” SSL

C

Versions=3.0, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc=3.0, suitec, Nc

{Versionc,Secretc}Ks

switch to key derived

from secretc

If the protocol is correct, C and S share

some secret key material secretc at this point

switch to key derived

from secretc

Prevents version

rollback attack

Add rule to check that received version
is equal to version in ClientHello

struct {

select (KeyExchangeAlgorithm) {

case rsa: EncryptedPreMasterSecret;

case diffie_hellman: ClientDiffieHellmanPublic;

} exchange_keys

} ClientKeyExchange

struct {

ProtocolVersion client_version;

opaque random[46];

} PreMasterSecret

A Case of Bad Abstraction

Model this as {Versionc, Secretc}Ks

This piece matters! Need to add it to the model.

Summary of Reconstruction

�A = Basic protocol

�C = A + certificates for public keys
– Authentication for client and server

�E = C + verification (Finished) messages
– Prevention of version and crypto suite attacks

�F = E + nonces
– Prevention of replay attacks

�Z = “Correct” subset of SSL

Anomaly (Protocol F)

C S

… SuiteC …

… SuiteS …

…

Switch to negotiated cipher

Finished Finished

data data

Anomaly (Protocol F)

C S

… SuiteC …

… SuiteS …

…

Switch to negotiated cipher

Finished Finished

data data
X X

Modify

Modify

Protocol Resumption

C S

SessionId, VerC= 3.0, NC, ...

Finished Finished

data data

VerS= 3.0, NS, ...

Version Rollback Attack

C S

SessionId, VerC= 2.0, NC, ...

Finished Finished

data data

VerS= 2.0, NS, ...

XX
{ NS } SecretKey { NC } SecretKey

Basic Pattern for Doing This Yourself

�Read and understand protocol specification

• Typically an RFC or a research paper

• We’ll have a few on the CS259 website: take a look!

�Choose a tool

• Murϕ works, also many other tools

• Play with Murϕ now to get some experience
(installing, running simple models, etc.)

�Start with a simple (possibly flawed) model

• Rational reconstruction is a good way to go

�Give careful thought to security conditions

Additional Reading on SSL 3.0

� D. Wagner and B. Schneier. “Analysis of the SSL 3.0 protocol.”
USENIX Electronic Commerce ’96.

• Nice study of an early proposal for SSL 3.0

� J.C. Mitchell, V. Shmatikov, U. Stern. “Finite-State Analysis of SSL
3.0”. USENIX Security ’98.

• Murϕ analysis of SSL 3.0 (similar to this lecture)

• Actual Murϕ model available

� D. Bleichenbacher. “Chosen Ciphertext Attacks against Protocols
Based on RSA Encryption Standard PKCS #1”. CRYPTO ’98.

• Cryptography is not perfect: this paper breaks SSL 3.0 by directly
attacking underlying implementation of RSA

Many security protocols

�Challenge-response
• ISO 9798-1,2,3; Needham-Schroeder, …

�Authentication
• Kerberos

�Key Exchange
• SSL handshake, IKE, JFK, IKEv2,

�Wireless and mobile computing
• Mobile IP, WEP, 802.11i

�Electronic commerce
• Contract signing, SET, electronic cash, …

Mobile IPv6 Architecture

•IPv
6

Mobile Node (MN)

Corresponding Node (CN)

Home Agent (HA)

Direct connection via
binding update

�Authentication is a
requirement

�Early proposals weak

802.11i Wireless Authentication

Authentic

a-tion
Server

(RADIUS)

No Key

Authenticator

UnAuth/UnAssoc

802.1X Blocked

No Key

Supplicant

UnAuth/UnAssoc

802.1X Blocked

No Key

Supplicant

Auth/Assoc

802.1X Blocked

No Key

Authenticator

Auth/Assoc

802.1X Blocked

No Key

Authentic

a-tion
Server

(RADIUS)

No Key

802.11 Association

EAP/802.1X/RADIUS Authentication

Supplicant

Auth/Assoc

802.1X Blocked

MSK

Authenticator

Auth/Assoc

802.1X Blocked

No Key

Authentic

a-tion
Server

(RADIUS)

MSK

MSK

Supplicant

Auth/Assoc

802.1X Blocked

PMK

Authenticator

Auth/Assoc

802.1X Blocked

PMK

Authentic

a-tion
Server

(RADIUS)

No Key

4-Way Handshake

Supplicant

Auth/Assoc

802.1X

UnBlocked

PTK/GTK

Authenticator

Auth/Assoc

802.1X

UnBlocked

PTK/GTK

Authentic

a-tion
Server

(RADIUS)

No Key

Group Key Handshake

Supplicant

Auth/Assoc

802.1X

UnBlocked

New GTK

Authenticator

Auth/Assoc

802.1X

UnBlocked

New GTK

Authentic

a-tion
Server

(RADIUS)

No Key

802.11i Protocol

Data Communication

Supplicant

Auth/Assoc

802.1X

UnBlocked

PTK/GTK

Authenticator

Auth/Assoc

802.1X

UnBlocked

PTK/GTK

Authentic

a-tion
Server

(RADIUS)

No Key

Protocol Verification
Proofs of Correctness

John Mitchell

Stanford

Marktoberdorf Summer School 2007

Your mountains

Our mountains
Next picture from here

Our mountains

Analysis Techniques

Crypto Protocol Analysis

Formal Models Computational Models

Modal Logics Model Checking Inductive Proofs

Dolev-Yao
(perfect cryptography)

Random oracle
Probabilistic process calculi
Probabilistic I/O automata

…

Finite processes,

finite attacker

Process Calculi …

Finite processes,

infinite attacker

Spi-calculusBAN logic

Reference Material (CS259 web site)

� Protocols
• Clarke-Jacob survey
• Use Google; learn to read an RFC

� Tools
• Murphi

– Finite-state tool developed by David Dill’s group at Stanford

• PRISM
– Probabilistic model checker, University of Birmingham

• MOCHA
– Alur and Henzinger; now consortium

• Constraint solver using prolog
– Shmatikov and Millen

• Isabelle
– Theorem prover developed by Larry Paulson in Cambridge, UK
– A number of case studies available on line

Avispa Project

�Convenient web interface

�Several analysis methods
• Model checker, constraint checker, …

�Single input language
• Straightforward protocol definition

• Attacker is built-in
– Advantage: no need to specify

– Disadvantage: not easy to change
• Example: Mobile IPv6 security against “local”

attacker – requires a different attacker model

Analysis using theorem proving

�Correctness instead of bugs
• Use higher-order logic to reason about possible

protocol executions

�No finite bounds
• Any number of interleaved runs

• Algebraic theory of messages

• No restrictions on attacker

�Mechanized proofs
• Automated tools can fill in parts of proofs

• Proof checking can prevent errors in reasoning

[Paulson]

Recall: protocol state space

�Participant + attacker
actions define a state
transition graph

�A path in the graph is a
trace of the protocol

�Graph can be
• Finite if we limit number of

agents, size of message, etc.

• Infinite otherwise

...

...

Inductive proofs

�Define set of traces
• Given protocol, a trace is one possible

sequence of events, including attacks

�Prove correctness by induction
• For every state in every trace, no

security condition fails
– Works for safety properties only

• Proof by induction on the length of trace

Two forms of induction

�Usual form for ∀n∈Nat. P(n)
• Base case: P(0)

• Induction step: P(x) ⇒ P(x+1)

• Conclusion: ∀n∈Nat. P(n)

�Minimial counterexample form

• Assume: ∃x [¬P(x) ∧ ∀y<x. P(y)]
• Prove: contraction

• Conclusion: ∀n∈Nat. P(n)

Both equivalent to “the natural numbers are well-ordered”

Use second form

�Given set of traces
• Choose shortest sequence to bad state
• Assume all steps before that OK
• Derive contradiction

– Consider all possible steps

All states are good Bad state

Sample Protocol Goals

�Authenticity: who sent it?
• Fails if A receives message from B but thinks it

is from C
� Integrity: has it been altered?

• Fails if A receives message from B but message
is not what B sent

� Secrecy: who can receive it?
• Fails if attacker knows message that should be

secret
� Anonymity

• Fails if attacker or B knows action done by A

These are all safety properties

Inductive Method in a Nutshell

Attacker

inference
rules

Abstract

trace model

Informal

Protocol
Description

Theorem
is correct Try to prove

the theorem

Correctness

theorem
about traces

same for
all protocols!

Work by Larry Paulson

�Isabelle theorem prover
• General tool; protocol work since 1997

�Papers describing method

�Many case studies
• Verification of SET protocol (6 papers)

• Kerberos (3 papers)

• TLS protocol

• Yahalom protocol, smart cards, etc

http://www.cl.cam.ac.uk/users/lcp/papers/protocols.html

Isabelle

�Automated support for proof development
• Higher-order logic

• Serves as a logical framework

• Supports ZF set theory & HOL

• Generic treatment of inference rules

�Powerful simplifier & classical reasoner

�Strong support for inductive definitions

Agents and Messages

agent A,B,… = Server | Friend i | Spy

msg X,Y,… = Agent A
| Nonce N
| Key K
| { X, Y }

| Crypt X K

Typed, free term algebra, …

Protocol semantics

�Traces of events:
• A sends X to B

�Operational model of agents

�Algebraic theory of messages (derived)

�A general attacker

�Proofs mechanized using Isabelle/HOL

Define sets inductively

�Traces
• Set of sequences of events

• Inductive definition involves implications

if ev1, …, evn ∈ evs, then add ev’ to evs

�Information from a set of messages
• parts H : parts of messages in H

• analz H : information derivable from H

• synth H : msgs constructible from H

Protocol events in trace

�Several forms of events
• A sends B message X

• A receives X

• A stores X

If ev is a trace and Na is unused, add
Says A B Crypt(pk B){A,Na}

A→B {A,NA}pk(B)

B→A {NB,NA}pk(A)
If Says A’ B Crypt(pk B){A,X} ∈∈∈∈ ev

and Nb is unused, add
Says B A Crypt(pk A){Nb,X}

A→B {NB}pk(B) If Says ...{X,Na}... ∈∈∈∈ ev , add
Says A B Crypt(pk B){X}

Dolev-Yao Attacker Model

�Attacker is a nondeterministic process

�Attacker can
• Intercept any message, decompose into parts

• Decrypt if it knows the correct key

• Create new message from data it has observed

�Attacker cannot
• Gain partial knowledge

• Perform statistical tests

• Stage timing attacks, …

Attacker Capabilities: Analysis

X ∈ H ⇒ X ∈ analz H
{X ,Y} ∈ analz H ⇒ X ∈ analz H
{X ,Y} ∈ analz H ⇒ Y ∈ analz H

Crypt X K ∈ analz H

& K-1 ∈ analz H ⇒ X ∈ analz H

analz H is what attacker can learn from H

Attacker Capabilities: Synthesis

X ∈ H ⇒ X ∈ synth H
X ∈ synth H & Y ∈ synth H

⇒ {X ,Y} ∈ synth H
X ∈ synth H & K ∈ synth H

⇒ Crypt X K ∈ synth H

synth H is what attacker can create from H

infinite set!

Equations and implications

analz(analz H) = analz H
synth(synth H) = synth H
analz(synth H) = analz H ∪ synth H
synth(analz H) = ???

Nonce N ∈ synth H ⇒ Nonce N ∈ H
Crypt K X ∈ synth H ⇒ Crypt K X ∈ H

or X ∈ synth H & K ∈ H

Attacker and correctness conditions

If X ∈ synth(analz(spies evs)),
add Says Spy B X

X is not secret because attacker can construct it

from the parts it learned from events

If Says B A {Nb,X}pk(A) ∈ evs &
Says A’ B {Nb}pk(B) ∈ evs,

Then Says A B {Nb}pk(B) ∈ evs
If B thinks he’s talking to A,

then A must think she’s talking to B

Inductive Method: Pros & Cons

�Advantages
• Reason about infinite runs, message spaces
• Trace model close to protocol specification
• Can “prove” protocol correct

�Disadvantages
• Does not always give an answer
• Failure does not always yield an attack
• Still trace-based properties only
• Labor intensive

– Must be comfortable with higher-order logic

Intuition for protocol logic

�Reason about local information
• I chose a new number

• I sent it out encrypted

• I received it decrypted

• Therefore: someone decrypted it

�Incorporate knowledge about protocol
• Protocol: Server only answers if sent a request

• If server not corrupt and
– I receive an answer from the server, then

– the server must have received a request

Intuition: Picture

�Alice’s information
• Protocol

• Private data

• Sends and receives

Honest Principals,

Attacker
Protocol

Private
Data

Example: Challenge-Response

A B

m, A

n, sigB {m, n, A}

sigA {m, n, B}

�Alice reasons: if Bob is honest, then:
• only Bob can generate his signature. [protocol independent]

• if Bob generates a signature of the form sigB{m, n, A},
– he sends it as part of msg2 of the protocol and

– he must have received msg1 from Alice [protocol dependent]

• Alice deduces: Received (B, msg1) Λ Sent (B, msg2)

Formalizing the Approach

�Language for protocol description
• Write program for each role of protocol

�Protocol logic
• State security properties

• Specialized form of temporal logic

�Proof system
• Formally prove security properties

• Supports modular proofs

Cords

� Protocol programming language
– Server = [receive x; new n; send {x, n}]

�Building blocks
• Terms

– names, nonces, keys, encryption, …

• Actions
– send, receive, pattern match, …

Terms

t ::= c constant term

x variable

N name

K key

t, t tupling

sigK{t} signature

encK{t} encryption

Example: x, sigB{m, x, A} is a term

Actions and Cords

� Actions
• send t; send a term t
• receive x; receive a term into variable x
• match t/p(x); match term t against p(x)

�Cord
• Sequence of actions

�Notation
• Some match actions are omitted in slides

receive sigB{A, n} means
receive x; match x/sigB{A, n}

Challenge-Response as Cords

A B

m, A

n, sigB {m, n, A}

sigA {m, n, B}

InitCR(A, X) = [

new m;

send A, X, {m, A};

receive X, A, {x, sigX{m, x, A}};

send A, X, sigA{m, x, X}};

]

RespCR(B) = [

receive Y, B, {y, Y};

new n;

send B, Y, {n, sigB{y, n, Y}};

receive Y, B, sigY{y, n, B}};

]

Execution Model

�Protocol
• Cord gives program for each protocol role

�Initial configuration
• Set of principals and keys

• Assignment of ≥1 role to each principal

�Run

new x send {x}B

receive {x}B

A

B

C

Position in run

receive {z}B

new z send {z}B

Formulas true at a position in run

�Action formulas
a ::= Send(P,m) | Receive (P,m) | New(P,t)

| Decrypt (P,t) | Verify (P,t)

�Formulas
ϕ ::= a | Has(P,t) | Fresh(P,t) | Honest(N)

| Contains(t1, t2) | ¬ϕ | ϕ1∧ ϕ2 | ∃x ϕ

| �ϕ | �ϕ

�Example
After(a,b) = � (b ∧ ��a)

Modal Formulas

�After actions, postcondition
[actions] P ϕ where P = 〈princ, role id〉

�Before/after assertions
ϕ [actions] P ψ

�Composition rule

ϕ [S] P ψ ψ [T] P θ

ϕ [ST] P θ

Note: same P
in all formulas

Security Properties

�Authentication for Initiator
CR |= [InitCR(A, B)] A Honest(B) ⊃
ActionsInOrder(

Send(A, {A,B,m}),
Receive(B, {A,B,m}),
Send(B, {B,A,{n, sigB {m, n, A}}}),
Receive(A, {B,A,{n, sigB {m, n, A}}})

)

�Shared secret
NS |= [InitNS(A, B)] A Honest(B) ⊃

(Has(X, m) ⊃ X=A ∧ X=B)

Protocol Composition Logic

John Mitchell

Stanford

Marktoberdorf Summer School 2007

Intuition: Picture

�Alice’s information
• Protocol

• Private data

• Sends and receives

Honest Principals,

Attacker
Protocol

Private
Data

Formalization

�Language for protocol description
• Write program for each role of protocol

�Protocol logic
• State security properties

• Specialized form of temporal logic

�Proof system
• Formally prove security properties

• Supports modular proofs

Challenge-Response roles

A B

m, A

n, sigB {m, n, A}

sigA {m, n, B}

InitCR(A, X) = [

new m;

send A, X, {m, A};

receive X, A, {x, sigX{m, x, A}};

send A, X, sigA{m, x, X}};

]

RespCR(B) = [

receive Y, B, {y, Y};

new n;

send B, Y, {n, sigB{y, n, Y}};

receive Y, B, sigY{y, n, B}};

]

Execution Model

�Protocol
• Sequential program for each protocol role

�Initial configuration
• Set of principals and keys

• Assignment of ≥1 role to each principal

�Run

new x send {x}B

receive {x}B

A

B

C

Position in run

receive {z}B

new z send {z}B

Security Properties

�Authentication for Initiator
CR |= [InitCR(A, B)] A Honest(B) ⊃
ActionsInOrder(

Send(A, {A,B,m}),
Receive(B, {A,B,m}),
Send(B, {B,A,{n, sigB {m, n, A}}}),
Receive(A, {B,A,{n, sigB {m, n, A}}})

)

�Shared secret
NS |= [InitNS(A, B)] A Honest(B) ⊃

(Has(X, m) ⊃ X=A ∧ X=B)

Semantics

�Protocol Q
• Defines set of roles (e.g, initiator, responder)
• Run R of Q is sequence of actions by principals
following roles, plus attacker

�Satisfaction
• Q, RS |= ϕ [actions] P ψ

If ϕ at the end of trace R, and some role of P
does exactly actions in S, then ψ is true after RS

• Q |= ϕ [actions] P ψ
Q, R |= ϕ [actions] P ψ for all runs R of Q

Sample axioms about actions

�New data
• [new x] P Has(P,x)

• [new x] P Has(Y,x) ⊃ Y=P

�Actions
• [send m] P Send(P,m)

�Knowledge
• [receive m] P Has(P,m)

�Verify
• [match x/sigX{m}] P Verify(P,m)

Reasoning about posession

�Pairing
• Has(X, {m,n}) ⊃ Has(X, m) ∧ Has(X, n)

�Encryption
• Has(X, encK(m)) ∧ Has(X, K-1) ⊃ Has(X, m)

Encryption and signature

�Public key encryption
Honest(X) ∧ Decrypt(Y, encX{m}) ⊃ X=Y

�Signature
Honest(X) ∧ Verify(Y, sigX{m}) ⊃

∃ m’ (Send(X, m’) ∧ Contains(m’, sigX{m})

Sample inference rules

�Preservation rules
ψ [actions]P Has(X, t)

ψ [actions; action]P Has(X, t)

�Generic rules
ψ [actions]P φ ψ [actions]P ϕ

ψ [actions]P φ ∧ ϕ

Bidding conventions (motivation)

�Blackwood response to 4NT
– 5♣ : 0 or 4 aces
– 5♦ : 1 ace
– 5♥ : 2 aces
– 5♠ : 3 aces

�Reasoning
• If my partner is following Blackwood,
then if she bid 5♥, she must have 2 aces

Honesty rule (rule scheme)

∀roles R of Q. ∀ initial segments A ⊆ R.

Q |- [A]X φ

Q |- Honest(X) ⊃ φ

• This is a finitary rule:
– Typical protocol has 2-3 roles

– Typical role has 1-3 receives

– Only need to consider A waiting to receive

Honesty rule (example use)

∀roles R of Q. ∀ initial segments A ⊆ R.

Q |- [A]X φ

Q |- Honest(X) ⊃ φ

• Example use:
– If Y receives a message from X, and
Honest(X) ⊃ (Sent(X,m) ⊃ Received(X,m’))
then Y can conclude

Honest(X) ⊃ Received(X,m’))

Correctness of CR

CR |- [InitCR(A, B)] A Honest(B) ⊃
ActionsInOrder(

Send(A, {A,B,m}),
Receive(B, {A,B,m}),
Send(B, {B,A,{n, sigB {m, n, A}}}),
Receive(A, {B,A,{n, sigB {m, n, A}}})

)

InitCR(A, X) = [

new m;

send A, X, {m, A};

receive X, A, {x, sigX{m, x, A}};

send A, X, sigA{m, x, X}};

]

RespCR(B) = [

receive Y, B, {y, Y};

new n;

send B, Y, {n, sigB{y, n, Y}};

receive Y, B, sigY{y, n, B}};

]

Correctness of CR – step 1

1. A reasons about it’s own actions
CR |- [InitCR(A, B)] A

Verify(A, sigB {m, n, A})

InitCR(A, X) = [

new m;

send A, X, {m, A};

receive X, A, {x, sigX{m, x, A}};

send A, X, sigA{m, x, X}};

]

RespCR(B) = [

receive Y, B, {y, Y};

new n;

send B, Y, {n, sigB{y, n, Y}};

receive Y, B, sigY{y, n, B}};

]

Correctness of CR – step 2

2. Properties of signatures
CR |- [InitCR(A, B)] A Honest(B) ⊃

∃ m’ (Send(B, m’) ∧ Contains(m’, sigB {m, n, A})

InitCR(A, X) = [

new m;

send A, X, {m, A};

receive X, A, {x, sigX{m, x, A}};

send A, X, sigA{m, x, X}};

]

RespCR(B) = [

receive Y, B, {y, Y};

new n;

send B, Y, {n, sigB{y, n, Y}};

receive Y, B, sigY{y, n, B}};

]

Correctness of CR – Honesty

Honesty invariant
CR |- Honest(X) ∧

Send(X, m’) ∧ Contains(m’, sigx {y, x, Y}) ∧ ¬ New(X, y) ⊃

m= X, Y, {x, sigB{y, x, Y}} ∧ Receive(X, {Y, X, {y, Y}})

InitCR(A, X) = [

new m;

send A, X, {m, A};

receive X, A, {x, sigX{m, x, A}};

send A, X, sigA{m, x, X}};

]

RespCR(B) = [

receive Y, B, {y, Y};

new n;

send B, Y, {n, sigB{y, n, Y}};

receive Y, B, sigY{y, n, B}};

]

“If an honest X sends m containing sigx {y, x, Y}, and X did not create y,

then m is responders message and X receive initiators message 1”

Correctness of CR – step 3

3. From Honesty rule
CR |- [InitCR(A, B)] A Honest(B) ⊃

Receive(B, {A,B,m}),

InitCR(A, X) = [

new m;

send A, X, {m, A};

receive X, A, {x, sigX{m, x, A}};

send A, X, sigA{m, x, X}};

]

RespCR(B) = [

receive Y, B, {y, Y};

new n;

send B, Y, {n, sigB{y, n, Y}};

receive Y, B, sigY{y, n, B}};

]

Correctness of CR – step 4

4. Use properties of nonces for
temporal ordering
CR |- [InitCR(A, B)] A Honest(B) ⊃ Auth

InitCR(A, X) = [

new m;

send A, X, {m, A};

receive X, A, {x, sigX{m, x, A}};

send A, X, sigA{m, x, X}};

]

RespCR(B) = [

receive Y, B, {y, Y};

new n;

send B, Y, {n, sigB{y, n, Y}};

receive Y, B, sigY{y, n, B}};

]

Complete formal proof

Composition Rules

�Prove assertions from invariants
Γ |- ϕ […]P ψ

�Invariant weakening rule
Γ |- ϕ […]P ψ

Γ ∪ Γ’ |- ϕ […]P ψ

�Prove invariants from protocol
Q � Γ Q’ � Γ

Q • Q’ � Γ

If combining protocols, extend
assertions to combined invariants

Use honesty (invariant) rule to show
that both protocols preserve

assumed invariants

Combining protocols

DH � Honest(X) ⊃ … CR � Honest(X) ⊃ …

Γ Γ’

Γ |- Secrecy Γ’ |- Authentication

Γ∪Γ’ |- Secrecy Γ∪Γ’ |- Authentication

Γ∪Γ’ |- Secrecy ∧ Authentication

DH • CR � Γ∪Γ’

ISO � Secrecy ∧ Authentication

=

Protocol Templates

�Protocols with function variables
instead of specific operations
• One template can be instantiated to
many protocols

�Advantages:
• proof reuse

• design principles/patterns

Example

A → B: m

B → A: n, F(B,A,n,m)

A → B: G(A,B,n,m)

A → B: m

B → A: n,EKAB(n,m,B)

A → B: EKAB(n,m)

A → B: m

B → A: n,HKAB(n,m,B)

A → B: HKAB(n,m,A)

A → B: m

B → A: n, sigB(n,m,A)

A → B: sigA(n,m,B)

Challenge-Response Template

ISO-9798-2 ISO-9798-3SKID3

Abstraction

Instantiation

Sample projects using PCL

�Simple key exchange
• STS family
• Diffie-Hellman -> MQV
• GDOI [Meadows, Pavlovic]

�Larger protocols
• SSL verification
• Wireless 802.11i
• JFK, IKEv2
• Kerberos, including PKINIT, DHINIT

Symbolic vs Computational model

�Suppose Γ |- [actions]X ϕ
• If a protocol P satisfies invariants Γ,
then if X does actions, ϕ will be true

�Symbolic soundness
• No idealized adversary acting against
“perfect” cryptography can make ϕ fail

�Computational soundness
• No probabilistic polytime adversary can
make ϕ fail with nonnegligible probability

PCL → Computational PCL

PCL

Syntax

Proof System

Symbolic model

Computational PCL

Syntax ± ∆

Proof System ± ∆

Complexity-theoretic model

Some general issues

�Computational PCL
• Symbolic logic for proving security properties of network
protocols that use cryptography

�Soundness Theorem:
• If a property is provable in CPCL, then property holds in
computational model with overwhelming asymptotic
probability

�Benefits
• Retain compositionality
• Symbolic proofs about computational model
• Probability, complexity theory in soundness proof (only!)
• Different axioms rely on different crypto assumptions
– Competing symbolic ≈ computational methods generally requires
strong crypto assumptions

PCL → Computational PCL

�Syntax, proof rules mostly the same
• Retain compositional approach
• But some issues with propositional connectives…

�Significant differences
• Symbolic “knowledge”
– Has(X,t) : X can produce t from msgs that have been
observed, by symbolic algorithm

• Computational “knowledge”
– Possess(X,t) : can produce t by ppt algorithm
– Indist(X,t) : cannot distinguish from rand value in ppt

• More subtle system
– Some axioms rely on CCA2, some info-theoretically sound,
etc.

Recall Execution Model

�Protocol
• Sequential program for each protocol role

�Initial configuration
• Set of principals and keys

• Assignment of ≥1 role to each principal

�Run

new x send {x}B

receive {x}B

A

B

C

Position in run

receive {z}B

new z send {z}B

Computational Traces

�Computational trace contains
• Symbolic actions of honest parties

• Mapping of symbolic variables to bitstrings

• Send-receive actions (only) of the adversary

�Runs of the protocol
• Set of all possible traces
– Each tagged with random bits used to generate trace

– Tagging ⇒ set of equi-probable traces

Complexity-theoretic semantics

�Given protocol Q, adversary A, security
parameter n, define
• T=T(Q,A,n), set of all possible traces

• [[ϕ]](T) a subset of T that respects ϕ in a
specific way

�Intuition: ϕ valid when [[ϕ]](T) is an
asymptotically overwhelming subset of T

Semantics of trace properties

�Defined in a straight forward way

[[Send(X, m)]](T)

All traces t∈T such that
• t contains a Send(msg) action by X
• the bistring value of msg is
the bitstring value of m

Inductive Semantics

�[[ϕ1 ∧ ϕ2]] (T) = [[ϕ1]] (T) ∩ [[ϕ2]] (T)

�[[ϕ1 ∨ ϕ2]] (T) = [[ϕ1]] (T) ∪ [[ϕ2]] (T)

�[[¬ ϕ]] (T) = T - [[ϕ]] (T)

Implication uses form of conditional probability

�[[ϕ1 ⇒ ϕ2]] (T) = [[¬ϕ1]] (T)

∪ [[ϕ2]] (T’)

where T’ = [[ϕ1]] (T)

This seems needed for reduction proofs. What is logic of this ⇒ ?

Semantics of Indistinguishable

� Not a trace property

� Intuition: Indist(X, m) holds if no algorithm can distinguish
m from a random value, given X’s view of the run

Protocol Attacker

C D

m View(X)

if b then m

else rand
b’

[[Indist(X, m)]] (T, D,ε) = T if | #(t: b=b’)-|T|/2 | < ε

Validity of a formula

Q |= ϕ if ∀ adversary A ∀ distinguisher D
∃ negligible function f ∃ n0 s.t. ∀n > n0

[[ϕ]](T,D,f)

T(Q,A,n)

|[[ϕ]](T,D,f(n))| / |T| > 1 – f(n)

� Fix protocol Q, PPT adversary A

� Choose value of security parameter n

� Vary random bits used by all programs

� Obtain set T=T(Q,A,n) of equi-probable traces

Fraction of traces where “ϕ is true”

Advantages of Computational PCL

�High-level reasoning, sound for “real crypto”
• Prove properties of protocols without explicit reasoning
about probability, asymptotic complexity

�Composability
• PCL is designed for protocol composition
• Composition of individual steps
– Not just coarser composition available with UC/RSIM

�Can identify crypto assumptions needed
• ISO-9798-3 [DDMW2006]

Note: existing deployed protocols may have weak security
properties, assuming realistic but weak security properties of
primitives they use

CPCL analysis of Kerberos V5

� Kerberos has a staged architecture
• First stage generates a nonce and sends it encrypted
• Second stage uses nonce as key to encrypt another nonce
• Third stage uses second-stage nonce to encrypt other
msgs

� Secrecy
• Logic proves “GoodKey” property of both nonces

� Authentication
• Proved assuming encryption provides ciphertext integrity

� Modular proofs using composition theorems
• Applies to DHINIT, which is outside scope of competing
approaches

Challenges for computational reasoning

�More complicated adversary
• Actions of computational adversary do not have a simple
inductive characterization

�More complicated messages
• Computational messages are arbitrary sequences of bits,
without an inductively defined syntactic structure

�Different scheduler
• Simpler “non-preemptive” scheduling is typically used in
computational models (change symbolic model for equiv)

�Power of induction ?
• Indistinguishability, other non-trace-based properties
appear unsuitable as inductive hypotheses

• Solution: prove trace property inductively and derive
secrecy

Current and Future Work

�Investigate nature of propositional fragment
• Non-classical implication related to conditional
probability
– complexity-theoretic reductions
– connections with probabilistic logics (e.g. Nilsson86)

�Generalize reasoning about secrecy
• Work in progress, thanks to Arnab
• Need to incorporate insight of “Rackoff’s attack”

�Extend logic
• More primitives: signature, hash functions,…

� Complete case studies
• Produce correctness proofs for all widely deployed
standards

�Collaborate on
• Foundational work – please join us !
• Implementation and case studies – please help us !

Conclusions

� Protocol design is tricky and error-prone
• Model checking can find errors

• Proof method can show correctness

� Modular analysis is a challenge

� Closing gap between logical analysis and cryptography
• Symbolic model supports useful tools

• Computational model more informative
– Includes probability, complexity

– Does not require strong cryptographic assumptions

• Two approaches can be combined
– Several current projects and approaches [BPW, MW, Blan, CH, …]

– One example: computational semantics for symbolic protocol logic

� Research area coming of age
• Interactions with and impact on industry

Credits

�Collaborators
• M. Backes, A. Datta, A. Derek, N. Durgin, C. He,
R. Kuesters, D. Pavlovic, A. Ramanathan, A. Roy,
A. Scedrov, V. Shmatikov, M. Sundararajan, V. Teague,
M. Turuani, B. Warinschi, …

�More information
• Web page on Protocol Composition Logic
– http://www.stanford.edu/~danupam/logic-derivation.html

Science is a social process

