
Proofs with Feasible Computational Content

Helmut Schwichtenberg

Mathematisches Institut der Universität München

Summer School Marktoberdorf
1. - 11. August 2007

Why extract computational content from proofs?

I Proofs are machine checkable ⇒ no logical errors.

I Program on the proof level ⇒ maintenance becomes easier.
Possibility of program development by proof transformation
(Goad 1980).

I Discover unexpected content:
I Berger 1993: Tait’s proof of the existence of normal forms for

the typed λ-calculus ⇒ “normalization by evaluation”.
I Content in weak (or “classical”) existence proofs, of

∃̃xA := ¬∀x¬A,

via proof interpretations: (refined) A-translation or Gödel’s
Dialectica interpretation.

Proof and computation

I →, ∀, decidable prime formulas: negative arithmetic Aω.

I Computational content (Brouwer, Heyting, Kolmogorov):
by inductively defined predicates only. Examples: ∃xA, Acc≺.

I Induction ∼ (structural) recursion.

I Curry-Howard correspondence: formula ∼ type.

I Higher types necessary (nested →, ∀).

Base types

U := µαα,

B := µα(α, α),

N := µα(α, α → α),

L(ρ) := µα(α, ρ → α → α),

ρ ∧ σ := µα(ρ → σ → α),

ρ + σ := µα(ρ → α, σ → α),

(tree, tlist) := µα,β(N → α, β, β → α, α → β → β),

bin := µα(α, α → α → α),

O := µα(α, α → α, (N → α) → α),

T0 := N,

Tn+1 := µα(α, (Tn → α) → α).

Types

Definition

ρ, σ, τ ::= µ | ρ → σ.

A type is finitary if it is a base type

I with all its “parameter types” finitary, and

I all its “constructor types” without “functional” recursive
argument types.

In the examples above U, B, N, tree, tlist and bin are all finitary,
but O and Tn+1 are not. L(ρ) and ρ ∧ σ are finitary if their
parameter types ρ, σ are.

Recursion operators

ttB := CB
1 , ffB := CB

2 ,

Rτ
B : B → τ → τ → τ,

0N := CN
1 , SN→N := CN

2 ,

Rτ
N : N → τ → (N → τ → τ) → τ,

nilL(ρ) := CL(ρ)
1 , consρ→L(ρ)→L(ρ) := CL(ρ)

2 ,

Rτ
L(ρ) : L(ρ) → τ → (ρ → L(ρ) → τ → τ) → τ,(
∧+

ρσ

)ρ→σ→ρ∧σ
:= Cρ∧σ

1 ,

Rτ
ρ∧σ : ρ ∧ σ → (ρ → σ → τ) → τ.

We write x :: l for cons x l , and 〈y , z〉 for ∧+yz .

Terms and formulas

We work with typed variables xρ, yρ,

Definition (Terms)

r , s, t ::= xρ | C | (λxρrσ)ρ→σ | (rρ→σsρ)σ.

Definition (Formulas)

A,B,C ::= atom(rB) | A → B | ∀xρA.

atom is a predicate constant lifting a boolean term into a formula.
Hence atom(rB) means “r is true”.

Examples
Projections:

t0 := Rρ
ρ∧σtρ∧σ(λxρ,yσxρ), t1 := Rρ

ρ∧σtρ∧σ(λxρ,yσyσ).

The append-function :+: for lists is defined recursively by

nil :+: l2 := l2,

(x :: l1) :+: l2 := x :: (l1 :+: l2).

It can be defined as the term

l1 :+: l2 := RL(α)→L(α)
L(α) l1(λl2 l2)(λx ,l1,p,l2(x :: (pl2)))l2.

Using the append function :+: we can define list reversal R by

R nil := nil,
R(x :: l) := (R l) :+: (x :: nil).

The corresponding term is

R l := RL(α)
L(α)l nil(λx ,l ,p(p :+: (x :: nil)).

Induction

Indp,A : ∀p

(
A(tt) → A(ff) → A(pB)

)
,

Indn,A : ∀m

(
A(0) → ∀n(A(n) → A(Sn)) → A(mN)

)
,

Indl ,A : ∀l

(
A(nil) → ∀x ,l ′(A(l ′) → A(x :: l ′)) → A(lL(ρ))

)
.

We also require the truth axiom Axtt : atom(tt).

Natural deduction: assumptions, →-rules

derivation term

u : A uA

[u : A]

| M
B →+ uA → B

(λuAMB)A→B

| M
A → B

| N
A →−

B

(MA→BNA)B

Natural deduction: ∀-rules

derivation term

| M
A ∀+ x (VarC)
∀xA

(λxM
A)∀xA (VarC)

| M
∀xA(x) r

∀−
A(r)

(M∀xA(x)r)A(r)

Negative arithmetic Aω

→, ∀, decidable prime formulas. No inductively defined predicates.

F := atom(ff),

¬A := A → F ,

∃̃xA := ¬∀x¬A.

Lemma (Stability, or principle of indirect proof)

` ¬¬A → A, for every formula A in Aω.

Proof.
Induction on A. For the atomic case one needs boolean induction
(i.e., case distinction).

An alternative: falsity as a predicate variable ⊥

In Aω, we have an “arithmetical” falsity F := atom(ff). However,
in some proofs no knowledge about F is required. Then a
predicate variable ⊥ instead of F will do, and we can define

∃̃xA := ∀x(A → ⊥) → ⊥.

Why is this of interest? We then can substitute an arbitrary
formula for ⊥, for instance, ∃xA (the “proper” existential
quantifier, to be defined below). Then a proof of ∃̃xA is turned
into a proof of

∀x(A → ∃xA) → ∃xA.

The premise will be provable. Hence we have a proof of ∃xA.

2. Realizability interpretation

I Study the “computational content” of a proof.

I This only makes sense after we have added inductively defined
predicates to our “negative” →,∀-language of Aω.

I The resulting system will be called arithmetic with inductively
defined predicates, IDω.

Example of an inductively defined predicate

Consider the graph of the list reversal function. The clauses or
introduction axioms are

Rev+
0 : ∀U

v ,w (F → Rev(v ,w)),

Rev+
1 : Rev(nil,nil),

Rev+
2 : ∀U

v ,w∀x(Rev(v ,w) → Rev(v :+: x :, x :: w)).

The (strengthened) elimination axiom says that Rev is the least
predicate satisfying the clauses:

Rev− : ∀U
v ,w

(
∀U

v ,w (F → P(v ,w)) →
P(nil,nil) →
∀U

v ,w∀x

(
Rev(v ,w) → P(v ,w) → P(v :+: x :, x :: w)

)
→

Rev(v ,w) → P(v ,w)
)
.

The intended meaning of an inductively defined predicate I

I The clauses correspond to constructors of an appropriate
algebra µ (better: µI).

I We associate to I of arity ~ρ a new predicate I r, of arity (µ, ~ρ),
where the first argument r of type µ represents a generation
tree, witnessing how the other arguments ~r were put into I .

I This object r of type µ is called a realizer of the prime
formula I (~r).

Example (continued)

Recall the clauses for the graph of the list reversal function

Rev+
0 : ∀U

v ,w (F → Rev(v ,w)),

Rev+
1 : Rev(nil,nil),

Rev+
2 : ∀U

v ,w∀x(Rev(v ,w) → Rev(v :+: x :, x :: w)).

The algebra µRev is generated by

I two constants for the first two clauses, and

I a constructor of type N → µRev → µRev for the final clause.

Uniformity

I We want to select relevant parts of the computational content
of a proof.

I This will be possible if some uniformities hold; we express this
fact by using a uniform variant ∀U of ∀ (as done by Berger
2005) and →U of →.

I Both are governed by the same rules as the non-uniform ones.
However, we will put some uniformity conditions on a proof to
ensure that the extracted computational content is correct.

Example: existential quantifier

The (proper) existential quantifier is introduced as an inductively
defined predicate with parameters. We have four variants, whose
introduction axioms are

∃+ : ∀x(A → ∃xA),

(∃L)
+

: ∀x(A →U ∃L
xA),

(∃R)
+

: ∀U
x (A → ∃R

x A),

(∃U)
+

: ∀U
x (A →U ∃U

x A).

Here ∃xA abbreviates Ex(ρ, { xρ | A }) (similar for the others).

Example: existential quantifier (continued)

The elimination axioms are (with x /∈ FV(C))

∃− : ∃xA → ∀x(A → C) → C ,

(∃L)
−

: ∃L
xA → ∀x(A →U C) → C ,

(∃R)
−

: ∃R
x A → ∀U

x (A → C) → C ,

(∃U)
−

: ∃U
x A → ∀U

x (A →U C) → C .

Example: Leibniz equality

The introduction axioms are

Eq+
0 : ∀U

n,m(F → Eq(n,m)), Eq+
1 : ∀U

n Eq(n, n),

and the elimination axiom is

Eq− : ∀U
n,m

(
Eq(n,m) → ∀U

n P(n, n) → P(n,m)
)
.

One can prove symmetry, transitivity and compatibility of Eq:

Lemma (CompatEq)

∀U
n,m

(
Eq(n,m) → Q(n) → Q(m)

)
.

Proof.
Use Eq−, with P(n,m) := Q(n) → Q(m).

Example: falsity

This example is somewhat extreme: the only introduction axiom is

⊥+
id : F → ⊥id

and the elimination axiom

⊥−id : (F → C) → ⊥id → C .

Example: pointwise equality =ρ

For every arrow type ρ → σ we have the introduction axiom

∀U
x1,x2

(
∀y (x1y =σ x2y) → x1 =ρ→σ x2

)
.

Introduction axioms for =µ: Example with T := T1:

∀U
x1,x2

(F → x1 =T x2),

0 =T 0,

∀U
f1,f2(∀n(f1n =T f2n) → Supf1 =T Supf2).

The elimination axiom is

=−
T : ∀U

x1,x2

(
x1 =T x2 → P(0, 0) →

∀U
f1,f2

(
∀n(f1n =T f2n) → ∀nP(f1n, f2n) →
P(Supf1,Supf2)

)
→

P(x1, x2)
)
.

Example: pointwise equality (continued)

One can prove reflexivity of =ρ, using meta-induction on ρ:

Lemma (ReflPtEq)

∀n(n =ρ n).

A consequence is that Leibniz equality implies pointwise equality:

Lemma (EqToPtEq)

∀n1,n2

(
Eq(n1, n2) → n1 =ρ n2

)
.

Proof.
Use CompatEq and ReflPtEq.

Axioms

We express extensionality of our intended model by stipulating that
pointwise equality implies Leibniz equality:

PtEqToEq : ∀n1,n2

(
n1 =ρ n2 → Eq(n1, n2)

)
.

This implies

Lemma (CompatPtEqFct)

∀f ∀U
n1,n2

(n1 =ρ n2 → fn1 =σ fn2).

Proof.
We obtain Eq(n1, n2) by PtEqToEq. By ReflPtEq we have
fn1 =σ fn1, hence fn1 =σ fn2 by CompatEq.

We write E-IDω when the extensionality axioms are present.

In E-IDω we can prove properties of the constructors of base
types: they are injective, and have disjoint ranges.

Axioms (continued)

Let ∃̆ denote any of ∃,∃R,∃L,∃U. When ∃̆ appears more than once,
it is understood that it denotes the same quantifier each time.
The axiom of choice (AC) is the scheme

∀xρ ∃̆yσA(x , y) → ∃̆f ρ→σ∀xρA(x , f (x)).

Independence axioms express the intended meaning of uniformities.
The independence of premise axiom (IP) is

(A →U ∃̆xB) → ∃̆x(A →U B) (x /∈ FV(A)).

Similarly we have an independence of quantifier axiom (IQ) axiom

∀U
x ∃̆yA → ∃̆y∀U

x A.

3. Computational content

We define simultaneously

I the type τ(A) of a formula A;

I when a formula is computationally relevant;

I the formula z realizes A, written z r A, for a variable z of type
τ(A);

I when a formula is negative;

I when an inductively defined predicate requires witnesses;

I for an inductively defined I requiring witnesses, its base type
µI ;

I for an inductively defined predicate I of arity ~ρ requiring
witnesses, a witnessing predicate I r of arity (µI , ~ρ).

The type of a formula

I Every formula A possibly containing inductively defined
predicates can be seen as a computational problem. We define
τ(A) as the type of a potential realizer of A, i.e., the type of
the term (or program) to be extracted from a proof of A.

I More precisely, we assign to A an object τ(A) (a type or the
“nulltype” symbol ε). In case τ(A) = ε proofs of A have no
computational content.

τ(atom(r)) := ε, τ(I (~r)) :=

{
ε if I does not require witnesses

µI otherwise,

τ(A → B) := (τ(A) → τ(B)), τ(∀xρA) := (ρ → τ(A)),

τ(A →U B) := τ(B), τ(∀U
xρA) := τ(A)

with the convention

(ρ → ε) := ε, (ε → σ) := σ, (ε → ε) := ε.

Realizability

Let A be a formula and z either a variable of type τ(A) if it is a
type, or the nullterm symbol ε if τ(A) = ε. We define the formula
z r A, to be read z realizes A. The definition uses I r.

z r atom(s) := atom(s),

z r I (~s) :=

{
I (~s) if I does not require witnesses

I r(z ,~s) if not,

z r (A → B) := ∀x(x r A → zx r B),

z r (∀xA) := ∀x zx r A,

z r (A →U B) := (A → z r B),

z r (∀U
x A) := ∀x z r A

with the convention εx := ε, zε := z , εε := ε.
Formulas without inductively defined predicates requiring witnesses
are called negative. Example: z r A. For A negative, (ε r A) = A.

Witnesses

Definition (Uniform one-clause inductive definition)

I there is at most one clause apart from an efq-clause, and

I this clause is uniform, i.e., contains no ∀ but ∀U only, and its
premises are either negative or followed by →U.

Examples: ∃U, ⊥id, Eq.

An inductively defined predicate requires witnesses if it is not one
of those, and not one of the predicates I r introduced below.

For an inductively defined predicate I requiring witnesses, we
define µI to be the corresponding component of the types
~µ = µ~α~κ generated from “constructor types” κi := τ(Ki) for all
“constructor formulas” K0, . . . Kk−1 from ~I = µ~X

(K0, . . . Kk−1).

Extracted terms and uniform derivations

We define the extracted term of a derivation, and (using this
concept) the notion of a uniform proof, which gives a special
treatment to the uniform universal quantifier ∀U and uniform
implication →U.

More precisely, for a proof M in IDω + AC + IP + IQ, we
simultaneously define

I its extracted term [[M]], of type τ(A), and

I when M is uniform.

Extracted terms and uniform proofs

For derivations MA where τ(A) = ε (i.e., A is a Harrop formula)
let [[M]] := ε (the nullterm symbol); every such M is uniform. Now
assume that M derives a formula A with τ(A) 6= ε. Then

[[uA]] := x
τ(A)
u (x

τ(A)
u uniquely associated with uA),

[[(λuAM)A→B]] := λ
x

τ(A)
u

[[M]],

[[MA→BN]] := [[M]][[N]],

[[(λxρM)∀xA]] := λxρ [[M]],

[[M∀xAr]] := [[M]]r ,

[[(λU
uAM)A→

UB]] := [[MA→UBN]] := [[(λU
xρM)∀

U
x A]] := [[M∀U

x Ar]] := [[M]].

In all these cases uniformity is preserved, except possibly in those
involving λU:

Extracted terms and uniform proofs (continued)

Consider

[u : A]

| M
B

(→U)+ u
A →U B

or as term (λU
uAM)A→

UB .

(λU
uAM)A→

UB is uniform if M is and xu /∈ FV([[M]]). Similarly:
Consider

| M
A

(∀U)+ x
∀U

x A

or as term (λU
x M)∀

U
x A (VarC).

(λU
x M)∀

U
x A is uniform if M is and x /∈ FV([[M]]).

Extracted terms for axioms

The extracted term of an induction axiom is defined to be a
recursion operator. For example, in case of an induction scheme

Indn,A : ∀m

(
A(0) → ∀n(A(n) → A(Sn)) → A(mN)

)
we have

[[Indn,A]] := Rτ
N : N → τ → (N → τ → τ) → τ (τ := τ(A) 6= ε).

For the introduction/elimination axioms of an inductively defined
predicate I we define

[[(Ij)
+
i]] := C, [[I−j]] := Rj ,

and similary for the introduction and elimination axioms for I r.
As extracted terms of (AC), (IP) and (IQ) we take identities of
the appropriate types.

Uniform derivations

Lemma
There are purely logical uniform derivations of

I A → B from A →U B;

I A →U B from A → B, provided τ(A) = ε or τ(B) = ε;

I ∀xA from ∀U
x A;

I ∀U
x A from ∀xA, provided τ(A) = ε.

In formulas involving →U and ∀U we can replace a subformula by
an equivalent one:

Lemma
There are purely logical uniform derivations of

I (A →U B) → (B → B ′) → A →U B ′;

I (A′ → A) →U (A →U B) → A′ →U B;

I ∀U
x A → (A → A′) → ∀U

x A′.

Characterization

When a formula A and its modified realizability interpretation
∃x x r A are equivalent?

Theorem (Characterization)

In IDω + AC + IP + IQ we can derive

A ↔ ∃x x r A.

Proof.
Induction on A.

Soundness

Every theorem in E-IDω + AC + IP + IQ + Axε has a realizer.
Here (Axε) is an arbitrary set of Harrop formulas (i.e., τ(A) = ε)
viewed as axioms.

Theorem (Soundness)

We work in IDω + AC + IP + IQ. Let M be a derivation of A from
assumptions ui : Ci (i < n). Then we can find a derivation σ(M)
of [[M]] r A from assumptions ūi : xui r Ci for a non-uniform ui (i.e.,
xui ∈ FV([[M]])), and ūi : Ci for the other ones.

Proof.
Induction on A.

Example: list reversal, constructive proof

View Rev as a variable for a binary boolean-valued function. It is
axiomatized by

RevNil: Rev(Nil nat)(Nil nat)
RevCons: all v,w,x(Rev v w -> Rev(v:+:x:)(x::w))

Every non-empty list can be written in the form v :+: y :.

; "ListInitLastNat"
(set-goal (pf "all u,x ex v,y (x::u)=v:+:y:"))

Proof of ∀v∃wRev(v ,w), by induction on lh(v).

Step: since the list is non-empty, it can be written as v :+: y :.
v has a smaller length. Hence the IH yields its reversal w . Take
y :: w .

Example: list reversal, constructive proof (continued)

; "ListRevNatEx"
(set-goal
(pf "allnc Rev(

Rev(Nil nat)(Nil nat) ->
all v,w,x(Rev v w -> Rev(v:+:x:)(x::w)) ->
all n,v(n=Lh v -> ex w Rev v w))"))

Extracted term:

[x0]
(Rec nat=>list nat=>list nat)x0([v2](Nil nat))
([x2,f3,v4]
[if v4
(Nil nat)
([x5,v6][let p7 (cListInitLastNat v6 x5)

(right p7::f3 left p7)])])

Example: list reversal, constructive proof (continued)
More readable form: Recursion equations for
g := cListInitLastNat:

g(nil, z) = (nil, z),

g(x :: u, z) = let (v , y) = g(u, x) in (z :: v , y).

Recursion equations for h := cListRevNatEx:

h(0, u) = nil,
h(n + 1,nil) = nil,

h(n + 1, x :: u) = let (v , y) = g(u, x) in y :: h(n, v).

We have extracted a quadratic algorithm.

(animate "ListInitLastNat")
(animate "Id")
(pp (nt (mk-term-in-app-form

net (pt "4") (pt "1::2::3::4:"))))
; 4::3::2::1:

Example: list reversal, classical proof

From the “false” assumption ∀w (Rev(v0,w) → ⊥) we show that
all initial segments of v0 are non-revertible, by list induction:

; "InitSegNonRevStepU"
(set-goal
(pf "all Rev(
all v,w,x(Rev v w -> Rev(v:+:x:)(x::w)) ->
all v0,x,u(
allnc v(v:+:u=v0 -> all w(Rev v w -> bot)) ->
allnc v(v:+:(x::u)=v0 -> all w(Rev v w -> bot))))"))

(pp (proof-to-extracted-term
(theorem-name-to-proof "InitSegNonRevStepU")))

; [Rev,v0,x,u,h992,w]h992(x::w)

Note: h992(x::w) does not involve v. Hence allnc v is correct.

Example: list reversal, classical proof (continued)

; "InitSegNonRevU"
(set-goal
(pf "all Rev(
all v,w,x(Rev v w -> Rev(v:+:x:)(x::w)) ->
all v0(
all w(Rev v0 w -> bot) ->
all u allnc v(v:+:u=v0 -> all w(Rev v w -> bot))))"))

; "RevClassU"
(set-goal
(pf "all Rev,v(

Rev(Nil nat)(Nil nat) ->
all v,w,x(Rev v w -> Rev(v:+:x:)(x::w)) ->
excl w Rev v w)"))

Example: list reversal, classical proof (continued)

I Substitute ∃wRev(v ,w) for ⊥,

I insert the trivial proof of ∀w (Rev(v ,w) → ∃wRev(v ,w)),

I extract a term from the resulting proof of ∃wRev(v ,w) and

I normalize it, after “animating” InitSegNonRevU, and
InitSegNonRevStepU. Let net be the result.

(pp net)
; [Rev0,v1]
; (Rec list nat=>list nat=>list nat)v1([v2]v2)
; ([x2,v3,f4,v5]f4(x2::v5))
; (Nil nat)

More readable form: f (v1) = g(v1,nil) with

g(nil, v2) = v2, g(x :: v1, v2) = g(v1, x :: v2).

We have extracted the usual linear algorithm.

4. Complexity

I Practically far too high, already for ground type structural
(“primitive”) recursion.

I Bellantoni and Cook (1992) characterized the polynomial time
functions by the primitive recursion scheme, separating the
variables into two sorts, as proposed by Simmons (1988):

I Input (or normal) variables control the length of recursion.

I Output (or safe) variables mark positions where substitution is
allowed.

Here: extension to higher types.

The fast growing hierarchy {Fα}α<ε0

Grzegorczyk 1953, Robbin 1965, Löb and Wainer 1970, S. 1971

Fα(n) =


n + 1 if α = 0

F n+1
α−1(n) if Succ(α)

Fα(n)(n) if Lim(α)

where F n+1
α−1(n) is the n + 1-times iterate of Fα−1 on n.

I Fω is the Ackermann function.

I Fε0 grows faster than all functions definable in arithmetic.

The power of higher types: iteration functionals

Pure types ρn: defined by ρ0 := N and ρn+1 := ρn → ρn.
Let xn be of pure type ρn.

Fαxn . . . x0 :=


x0 + 1 if α = 0 and n = 0,

xx0
n xn−1 . . . x0 if α = 0 and n > 0,

F x0
α−1xn . . . x0 if Succ(α),

Fα(x0)xn . . . x0 if Lim(α).

Lemma
FαFβ = Fβ+ωα . Hence all Fα are definable from F0’s (= iterators).

A two-sorted variant T(;) of Gödel’s T

The two-sortedness restriction is lifted to higher types.

We shall work with two forms of arrow types and abstraction terms:{
N → σ

λnr
as well as

{
ρ (σ

λz r

and a corresponding syntactic distinction between input nN and
output aN, zρ (typed) variables. Intuition:

I A function of type N → σ may recurse on its argument, but

I a function of type N (σ may not.

The types are

ρ, σ, τ ::= N | N → ρ | ρ (σ.

The →-free types are called safe.

Constants, terms

The constants are 0 : N, S : N (N and, for safe τ ,

Cτ : N (τ ((N (τ) (τ,

Rτ : N → τ ((N → τ (τ) (τ.

The first argument of R is the input (recursion) argument. Hence
N → .

T(;)-terms (terms for short) are

r , s, t ::= x | C | (λnr)
N→σ | rN→σsN (s input term) |

(λz r)
ρ(σ | rρ(σsρ.

s is an input term if all its free variables are input variables.

Examples

Addition:
a + 0 := a, a + (Sn) := S(a + n).

Representing term:

t+ := λa,n.RNna(λn,p.Sp) : N (N → N.

Predecessor P:

tP := λa.CNa0(λbb) : N (N.

Modified subtraction −· :

a−· 0 := a, a−· (Sn) := P(a−· n).

Representing term:

t−· := λa,n.RNna(λn,p.Pp) : N → N.

Example: bounded summation, exponential

Let f (~n, n) :=
∑

i<n g(~n, i), i.e.,

f (~n, 0) := 0, f (~n,Sn) := f (~n, n) + g(~n, n).

Representing term:

tf := λ~n,n.RNn0(λn,p.p + (tg~nn)) : N(k+1) → N

Let B(n, a) := a + 2n, i.e.,

B(0, a) = a + 1,

B(n + 1, a) = B(n,B(n, a)).

Representing term:

tB := λn.RN(NnS
(
λm,p,a(p

N(N(pa))
)
: N → N (N

Elementary functions are definable in T(;)

The class E of elementary functions consists of those number
theoretic functions which can be defined from

I the initial functions: constant 0, successor S, projections
(onto the ith coordinate), addition +, modified subtraction
−· , multiplication · and exponentiation 2x

I by applications of composition and bounded minimization.

Bounded minimization

f (~n,m) = µk<m(g(~n, k) = 0)

is definable from bounded summation and −· :

f (~n,m) =
∑
i<m

(
1−·

∑
k≤i

(1−· g(~n, k))
)
.

The claim follows from the examples above.

Necessity of the restrictions on the type of R
Define the pure safe types ρk , by ρ0 := N and ρk+1 := ρk (ρk .
In T(;) we can define

Inak . . . a0 := an
kak−1 . . . a0,

with ak of type ρk . However, a definition F0ak . . . a0 := Ia0ak . . . a0

is not possible: Ia0 is not allowed.

The value type is a safe type:

IE := λn.RN→Nn(λmm)
(
λn,p,m(pN→N(Em)))

)
,

and IE (n,m) = En(m), a function of superelementary growth.

The “previous”-variable is an output variable:

S := λn.RNn0
(
λn,m(Em)

)
Then S(n) = En(0), which is superelementary.

Theorem (Normalization)

Let t be a closed T(;)-term of type N � . . .N � N
(�∈ {→,(}). Then t denotes an elementary function.

Proof.

I Let ~x be new variables such that t~x is of type N. The β
normal form β-nf(t~x) of t~x is computed in an amount of time
that may be large, but it is only a constant with respect to ~n.

I By R Elimination one reduces to an R-free term
rf(β-nf(t~x);~x ;~n) in time Ft(|~n|) with Ft elementary.

I Since the running time bounds the size of the produced term,
|rf(β-nf(t~x);~x ;~n)| ≤ Ft(|~n|).

I A further β-normalization computes
βR-nf(t~n) = β-nf(rf(β-nf(t~x);~x ;~n)) in time elementary in
|~n|.

I Finally in time linear in the result we can remove all
occurrences of C and arrive at a numeral.

A linear two-sorted variant LT(;) of Gödel’s T

Work with a binary representation of the natural numbers, with
two successors S0(a) = 2a and S1(a) = 2a + 1.

Recall: for B(n, a) = a + 2n we had the defining term

λn

(
RN(NnS

(
λm,p,a(p

N(N(pa))
))

with the higher type variable p for the “previous” value appearing
twice in the step term. Here:

I The term definition will now involve a linearity constraint.

I Change type of R: its (higher type) step argument will be
used many times, and hence we need a → after it.

Change names: input/output 7→ normal/safe variables.

Feasible computation with higher types: LT(;)

We work with two forms of arrow types and abstraction terms:{
ρ → σ

λx̄ρr
as well as

{
ρ (σ

λxρr

and a corresponding syntactic distinction between normal and safe
(typed) variables, x̄ and x . Intuition:

I A function of type ρ → σ
I may recurse on its argument (if of ground type), or
I use it many times (if of higher type).

I A function of type ρ (σ
I may not recurse on its argument (if of ground type), or
I can use it only once (if of higher type).

Types

The types are

ρ, σ, τ ::= U | B | L(ρ) | ρ → σ | ρ (σ | ρ ∧ σ,

and the level of a type is defined by

l(U) := 0,

l(B) := 0,

l(L(ρ)) := l(ρ),

l(ρ → σ) := l(ρ (σ) := max{l(σ), 1 + l(ρ)},
l(ρ ∧ σ) := max{l(ρ), l(σ)}.

The →-free types are called safe.

Constants

The constants are u : U, tt, ff : B, nilρ : L(ρ) and, for safe ρ, τ ,

::ρ : ρ (L(ρ) (L(ρ),

ifτ : B (τ (τ (τ,

Cρ
τ : L(ρ) (τ ((ρ (L(ρ) (τ) (τ,

Rρ
τ : L(ρ) → τ ((ρ → L(ρ) → τ (τ) → τ (ρ ground),

∧+
ρσ : ρ (σ (ρ ∧ σ,

∧−ρστ : ρ ∧ σ ((ρ (σ (τ) (τ,

Terms

LT(;)-terms are built from these constants and typed variables x̄σ

(normal variables) and xσ (safe variables) by introduction and
elimination rules for the two type forms ρ → σ and ρ (σ, i.e.,

x̄ρ | xρ | C ρ (constant) |
(λx̄ρrσ)ρ→σ | (rρ→σsρ)σ (s “normal”) |
(λxρrσ)ρ(σ | (rρ(σsρ)σ (higher type safe variables in r , s distinct),

where a term s is called normal if all its free variables are normal.

Examples

x ⊕ y concatenates |x | bits onto y :

1⊕ y = S0y ,

(Six)⊕ y = S0(x ⊕ y).

The representing term is

x̄ ⊕ y := λx̄ ,y .RW(Wx̄S0(λz̄ ,̄l ,p,y .S0(p
W(Wy))y : W → W (W.

x � y has output length |x | · |y |:

x � 1 = x ,

x � (Siy) = x ⊕ (x � y).

The representing term is

x̄ � ȳ := λx̄ ,ȳ .RWȳ x̄(λz̄ ,̄l ,p.x̄ ⊕ p) : W → W → W.

Polytime computable functions are definable in LT(;)

Bellantoni/Cook (1992) characterized the polynomial time
computable functions: some initial functions, safe composition

f (~x ;~y) := g(r1(~x ;), . . . , rm(~x ;); s1(~x ;~y), . . . , sn(~x ;~y))

and safe recursion:

f (1,~x ;~y) := g(~x ;~y),

f (Sin,~x ;~y) := hi (n,~x ;~y , f (n,~x ;~y)).

Representing term:

tf := λn̄,~̄x .Rτ n̄(tg ~̄x)s with

s := λx̄ ,̄l ,p,~y .ifW(Wx̄(λz .th0 l̄~̄x~yz)(λz .th1 l̄~̄x~yz)(p~y).

Note p is used only once.

Theorem (Normalization)

Let r be a closed LT(;)-term of type W � . . .W � W
(�∈ {→,(}). Then r denotes a polytime function.

Proof.

I Let ~x be new variables of types ~ρ. The normal form of t~x is
computed in an amount of time that may be large, but it is
still only a constant with respect to ~n.

I nf(t~x) is “simple” (i.e., no higher type normal variables).

I By R Elimination one reduces to an R-free simple term
rf(nf(t~x);~x ;~n) in time Pt(|~n|), w.r.t. to a dag model of
computation.

I Since the running time bounds the size of the produced term,
|rf(nf(t~x);~x ;~n)| ≤ Pt(|~n|).

I By Sharing Normalization one computes
nf(t~n) = nf(rf(nf(t~x);~x ;~n)) in time O(Pt(|~n|)2).

Future work

Arithmetic with inductively defined predicates: IDω.

I Fine tuning of computational content: ∀U and →U.

I Compare different proof interpretations: “refined”
A-translation and Gödel’s Dialectica interpretation.

I Solve
Arithmetic

Gödel’s T
=

A(;)

T(;)
=

LA(;)

LT(;)
.

I Terms: Gödel’s T over (possibly infinitary) base types, with
structural and general recursion.

I Standard semantics: Partial continuous functionals. Terms
denote computable functionals. Include formal neighborhoods
(consistent sets in the sense of Scott’s information systems)
into the language.

	Negative arithmetic
	Realizability interpretation
	Computational content
	Complexity

