
Methods and Tools for System and Software

Construction

1. Introduction

Jean-Raymond Abrial (ETHZ)

August 2008

Purpose of the Course 1

- To show that software (and systems) can be correct by construction

- Insights about modelling and formal reasoning using Event-B

- To show that this can be made practical with the Rodin Platform

- To illustrate this approach with examples

- small sequential programs

- a mechanical press controller

- a file transfer protocol (time permitting)

1

What you Will Learn 2

- By the end of the course you should be "comfortable" with:

- Modelling (versus programming)

- Abstraction and refinement

- Some mathematical techniques used for reasoning

- The practice of proving as a means to construct programs

- The usage of the Rodin Platform

2

Schedule 3

- 1. Introduction

- 2. Introduction (cont’d) and Rodin Platform

- 3. Mechanical Press

- 4. Mechanical Press (cont’d)

- 5. Transmission Protocol

3

Distributed Material 4

- Fours chapters of a book to be published this year by CUP

- I. Introduction

- III. A Mechanical Press Controller

- IV. A Simple File Transfer Protocol

- V. The Event-B Notation and Proof Obligation Rules

- Slides will be made available through the Summer School web site

4

Preamble 1: A bit of History 5

- 1968-2008: 40 years of Software "Engineering"

- Spending most of the time writing programs

- Would have been better (maybe) spending time designing programs

- How about generalizing the notion of program

- Comparing these 40 years with other scientific achievements

5

Measuring: Tycho Brahe (1546-1601) 6

6

Observing: Kepler (1571-1630) 7

7

Explaining: Newton (1643-1727) 8

8

Explaining More: Einstein (1879-1955) 9

- 400 years vs.40 years: we are still very young!
9

Preamble 2: The Vasa Disaster 10

10

The Story 11

- August 10, 1628: The Swedish warship Vasa sank.

- This was her maiden voyage.

- She sailed about 1,300 meters only in Stockholm harbor.

- 53 lives were lost in the disaster.

11

Problems with the Vasa Construction 12

1. Changing requirements (by King Gustav II Adolf).

2. Lack of specifications (by Ship Builder Henrik Hybertsson).

3. Lack of explicit design (by Subcontractor Johan Isbrandsson)

(No scientific calculation of the ship stability)

4. Test outcome was not followed (by Admiral Fleming)

12

References 13

- Enter keywords "Vasa disaster" in Google

- The Vasa: A Disaster Story with Software Analogies.

By Linda Rising.

The Software Practitioner, January-February 2001.

http://members.cox.net/risingl1/articles/Vasa.pdf

- Why the Vasa Sank: 10 Problems and Some Antidotes

for Software Projects.

By Richard E. Fairley and Mary Jane Willshire.

IEEE Software, March-April 2003.

http://www.cse.ogi.edu/ dfairley/The vasa.pdf
13

Preamble 3: The Ariane 5 Disaster 14

14

The Story 15

- June 4, 1996: The launch vehicle Ariane 5 exploded.

- This was its maiden voyage.

- It flew for about 37 Sec only in Kourou’s sky.

- No injury in the disaster.

15

The Story (cont’d) 16

- Normal behavior of the launcher for 36 Sec after lift-off

- Failure of both Inertial Reference Systems almost simultaneously

- Strong pivoting of the nozzles of the boosters and Vulcain engine

- Self-destruction at an altitude of 4000 m (1000 m from the pad)

16

More Details 17

- Both inertial computers failed because of overflow on one variable

- This caused a software exception and stops these computers

- These computers sent post-mortem info through the bus

- Normally the main computer receives velocity info through the bus

- The main computer was confused and pivoted the nozzles

17

More Details (cont’d) 18

- The faulty program was working correctly on Ariane 4

- The faulty program was not tested for A5 (since it worked for A4)

- But the velocity of Ariane 5 is far greater than that of Ariane 4

- The faulty program happened to be useless for Ariane 5

- It was kept for commonality reasons

18

References 19

- Enter keywords "flight 501" in Google

- Ariane 5 flight 501 Inquiry Board Report:

http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf

- INRIA report challenging the Inquiry Board Report:

ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RR/RR-3079.pdf

19

Topics of these Introductory Lectures 20

1.1 About formal methods in general

1.2. About modelling

1.3. A light introduction to Event-B (with small examples)

20

1.1. About formal methods in general

21

Formal Methods: a Great Confusion 21

- What are they used for?

- When are they to be used?

- Is UML a formal method?

- Are they needed when doing OO programming?

- What is their definition?

22

Purpose of Formal Methods 22

- Helping people in doing the following transformation:

Method

Formal
software requirements running code

- It does not seem to be different from ordinary programming

23

Purpose of Formal Methods 23

- Helping people in doing the following transformation:

Method

Formal
software requirements running code

- It does not seem to be different from ordinary programming

- It can be generalized to:

system requirements

Method

Formal
running system

24

Preliminary Definitions and Categories 24

- A formal method is a systematic approach used to determine

whether a program has certain wishful properties

- Different kinds of formal methods (according to this definition)

- Type checking

- Static analysis

- Model checking

- Theorem proving

25

Comparisons 25

Nature Checked
Properties

type checking programs internal

model checking models external

static ananlysis programs external

theorem proving models internal

26

Theorem Proving: Model Construction 26

- This is the approach developed in these lectures

- It concentrates on the construction of models by

successive refinements

- The properties to be proved are parts of the models:

invariants and refinement

- At the end of the process, the most refined model is

translated into a program

27

Why Using Formal Methods with Proofs? 27

- When there is nothing better available.

- When the risk is too high (e.g. in embedded systems).

- When people have already suffered enough.

- When people question their development process.

- Decision of using formal methods is always strategic.

28

Claimed Difficulties in Using Formal Methods with Proofs 28

- You have to be a mathematician.

- Formalism is hard to master.

- Not visual enough (no boxes, arrows, etc.).

- People will not be able to do formal proofs.

29

Genuine Difficulties (my own view) 29

- You have to think a lot before final coding.

- Incorporation in development process.

- Model building is an elaborate activity.

- Reasoning by means of proof is necessary.

- Poor quality of requirement documents.

30

What About Other Engineering Disciplines 30

- Some mature engineering disciplines:

- Avionics,

- Civil engineering,

- Mechanical engineering,

- Train systems,

- Ship building.

- Are there any equivalent approaches to Formal Methods with Proofs?

- Yes, BLUE PRINTS

31

What is a Blue Print? 31

- A certain representation of the system we want to build

- It is not a mock-up (although mock-ups can be very useful too)

- The basis is lacking (you cannot “drive” the blue print of a car)

- Allows to reason about the future system during its design

- Is it important? (according to professionals) YES

32

Reasoning about the Intended System? 32

- Defining and calculating its behavior (what it does)

- Incorporating constraints (what it must not do)

- Defining architecture

- Based on some underlying theories

- strength of materials,

- fluid mechanics,

- gravitation,

- etc.

33

Techniques of “Blue Printing” 33

- Using pre-defined conventions (often computerized these days)

- Conventions should help facilitate reasoning

- Adding details on more accurate versions

- Postponing choices by having some open options

- Decomposing one blue print into several

- Reusing “old” blue prints (with slight changes)

34

1.2. About modelling

35

Back to the Questions about Formal Methods 34

- What are they used for?

- When are they to be used?

- Is UML a formal method?

- Are they needed when doing OO programming?

- What is their definition?

36

Definitions of Formal Methods Used in this Course 35

- Formal methods are techniques for building and studying blue prints

ADAPTED TO OUR DISCIPLINE

- Our discipline is: design of hardware and software SYSTEMS

- Such blue prints are now called models

- Reminder:

- Models allow to reason about a FUTURE system

- The basis is lacking (hence you cannot “execute” a model)

37

Conventions for Model Writing and Reasoning 36

- Reminder (cont’d):

- Using pre-defined conventions

- Conventions should help facilitate reasoning (more to come)

- Consequence: Using ordinary discrete mathematical conventions:

- Classical Logic (Predicate Calculus)

- Basic Set Theory (sets, relations and functions)

38

Systems we are Interested to Develop 37

- a “classical” piece of software

- an electronic circuit

- a file transfer protocol

- an airline booking system

- a PC operating system

- a nuclear plant controller

- a Smart-Card electronic purse

- a launch vehicle flight controller

- a driverless train controller

- a mechanical press controller

- etc.

39

Characterizing such Systems (general) 38

- They are made of many parts

- They interact with a possibly hostile environment

- They involve several executing agents

- They require a high degree of correctness

- There construction spreads over several years

- Their specifications are subjected to many changes

40

Characterizing such Systems (more technical) 39

- These systems operate in a discrete fashion

- Their dynamical behavior can be abstracted by:

- A succession of steady states

- Intermixed with sudden jumps

- The possible number of state changes are enormous

- Usually such systems never halt

- They are called DISCRETE TRANSITION SYSTEMS

41

Reasoning about Discrete Transition Systems 40

- Test reasoning (a vast majority): VERIFICATION

- Blue Print reasoning (a very few): CORRECT CONSTRUCTION

42

Test Reasoning: VERIFICATION 41

- Based on laboratory execution

- Obvious incompleteness

- The oracle is usually missing

- Properties to be checked are chosen a posteriori

- Re-adapting and re-shaping after testing

- Reveals an immature technology

43

Blue Print Reasoning: CORRECT CONSTRUCTION 42

- Based on a formal model: the “blue print”

- Gradually describing the system with the needed precision

- Relevant Properties are chosen a priori

- Serious thinking made on the model, not on the final system

- Reasoning is validated by proofs

- Reveals a mature technology

44

Blue Print Reasoning: Outcome of Proving 43

- The proof succeeds

- The proof fails but refutes the statement to prove

- the model is erroneous: it has to be modified

- The proof fails but is probably provable

- the model is badly structured: it has to be reorganized

- The proof fails and is probably not provable nor refutable

- the model is too poor: it has to be enriched

45

About Formal Proofs in Industry (Some Figures) 44

- Rules of Thumb:

n lines of final code implies n/3 proofs

95% of proofs discharged automatically

5% of proofs discharged interactively

350 interactive proofs per man-month

- 60,000 lines of final code ; 20,000 proofs ; 1,000 int. proofs

- 1,000 interactive proofs ; 1000/350 ' 3 man-months

- Far less expensive than heavy testing

46

1.3. A Light Introduction to Event-B
(with Small Examples)

47

Topics 45

1.3.1. Introduction

1.3.2. First Example

1.3.3. Second Example

48

1.3.1. Introduction

49

Model Developments with Event-B 46

- Event-B is not a programming language (even very abstract)

- Event-B is a notation used for developing mathematical models

- Mathematical models of discrete transition systems

- http://www.event-b.org

50

Model Developments with Event-B (cont’d) 47

- Such models, once finished, can be used to eventually construct:

- sequential programs,

- distributed programs,

- concurrent programs,

- electronic circuits,

- large systems involving a possibly fragile environment,

- . . .

- The underlined statement is an important case.

- In this lecture, we shall construct small sequential programs.

51

Main Influences 48

Action Systems developed by the Finnish school (Turku):

R.J.R. Back and R. Kurki-Suonio

Decentralization of Process Nets with Centralized Control.

2nd ACM SIGACT-SIGOPS Symposium

Principles of Distributed Computing (1983)

M.J. Butler

Stepwise Refinement of Communicating Systems.

Science of Computer Programming (1996)

52

The State of a Model 49

- A discrete model is first made of a state

- The state is represented by some constants and variables

- Constants are linked by some axioms

- Variables are linked by some invariants

- Axioms and invariants are written using set-theoretic expressions

53

The Events of a Model (Transitions) 50

- A discrete model is also made of a number of events

- An event is made of a guard and an action

- The guard denotes the enabling condition of the event

- The action denotes the way the state is modified by the event

- Guards and actions are written using set-theoretic expressions

54

A Model Schematic View 51

Events

Variables

invariants

guards

actions

Constants

axioms

(Machines) (Contexts)

Dynamic Parts Static Parts

55

Operational Interpretation 52

- An event execution is supposed to take no time

- Thus, no two events can occur simultaneously

- When all events have false guards, the discrete system stops

- When some events have true guards, one of them is chosen

non-deterministically and its action modifies the state

- The previous phase is repeated (if possible)

56

Operational Interpretation 53

Initialize;
while (some events have true guards) {

Choose one such event;
Modify the state accordingly;

}

57

Comments on the Operational Interpretation 54

- Stopping is not necessary: a discrete system may run for ever

- This interpretation is just given here for informal understanding

- The meaning of such a discrete system will be given by the

proofs which can be performed on it.

58

Being more Precise: Machines and Contexts 55

- A model is made of several components

- A component is either a machine or a context:

ContextMachine
variables

events

theorems

invariants

theorems

axioms

constants

carrier sets

59

Machines and Contexts (cont’d) 56

- Contexts contain the static structure of a discrete system

(constants and axioms)

- Machines contain the dynamic structure of a discrete system

(variables, invariants, and events)

- Machines see contexts

- Contexts can be extended

- Machines can be refined

60

Relationship Between Machines and Contexts 57

refines

sees

sees

Machine

Machine

Context

Context

extends

refines extends

61

1.3.2. A First Simple Example

62

Requirements for a First Simple Example 58

We are given a non-empty finite array of natural
numbers FUN-1

We like to find the maximum of the range of this
array FUN-2

63

Requirements for a First Small Example 59

We are given a non-empty finite array of natural
numbers FUN-1

We like to find the maximum of the range of this
array FUN-2

We want to find that 10 is the greatest element of this array

9 3 8 3 510

64

Development Strategy 60

- First, we show an initial model specifying the problem

- Later, we refine our model to produce an algorithm.

- In the initial model, we have:

- a context where the constant array is defined

- a machine where the maximum is "computed"

65

Initial Model: the Context as presented in the slides 61

- Constant n denotes the size of the non-empty array,

- Constant f denotes the array,

- Constant M denotes a natural number.

constants: n
f
M

0 < n

f ∈ 1 .. n → 0 .. M

ran(f) 6= ∅

- Mind the inference typing

66

Initial Model: the Context as presented in the slides 62

- Constant n denotes the size of the non-empty array,

- Constant f denotes the array,

- Constant M denotes a natural number.

constants: n
f
M

axm0 1: 0 < n

axm0 2: f ∈ 1 .. n → 0 .. M

thm0 1: ran(f) 6= ∅

- Mind the inference typing

67

The Context as presented in the tool 63

Context

theorems

axioms

constants

sets

Notice that we have no set

context
maxi ctx 0

constants
n
f
M

axioms

axm1 : 0 < n

axm2 : f ∈ 1..n → 0 .. M

theorems

thm1 : ran(f) 6= ∅

end

68

Math Refresher: Total Function and Range 64

- We are given two sets S and T

S T

69

Math Refresher: Total Function and Range 65

- Here is a total function f from S to T : f ∈ S → T

S T

f

70

Math Refresher: Total Function and Range 66

- Here is the range of f

S T

f

71

D E M O (showing a context)

72

Context Structure 67

context
< context identifier >

sets
< set identifier >
. . .

constants
< constant identifier >
. . .

axioms
< label >: < predicate >
. . .

theorems
< label >: < predicate >
. . .

end

73

Explaining Context Sections 68

- "sets" lists various sets, which define pairwise disjoint types

- "constants" lists the different constants introduced in the context

- "axioms" defines the properties of the constants

- "theorems" denotes properties to be proved from the axioms

74

Initial Model: the Machine as presented in the slides 69

- Variable m denotes the result.

variable: m inv0 1: m ∈ N

- Next are the two events:

INIT
begin

m := 0
end

maximum
begin

m := max(ran(f))
end

- Event maximum presents the final intended result (in one shot)

75

Machine Example as presented in the tool 70

Machine
variables

invariants

theorems

events

machine
maxi 0

sees
ctx 0

variables
i

invariants

inv1 : i ∈ 1 .. n

events
. . .

end

76

Machine (and Context) Example as presented in the tool 71

machine
maxi 0

sees
maxi ctx 0

variables
m

invariants

inv1 : m ∈ N

events
. . .

end

context
maxi ctx 0

sets
D

constants
n
f
v

axioms

axm1 : 0 < n

axm2 : f ∈ 1..n → 0 .. M

theorems

thm1 : ran(f) 6= ∅

end

77

D E M O (showing a machine)

78

Machine Structure 72

machine
< machine identifier >

sees
< context identifier >
. . .

variables
< variable identifier >
. . .

invariants
< label >: < predicate >
. . .

theorems
< label >: < predicate >
. . .

events
. . .

end

79

Explaining Machine Sections 73

- "variables" lists the state variables of the machine

- "invariants" states the properties of the variables

- "theorems" are provable from invariants and seen axioms and thms

- "events" defines the dynamics of the transition system (next slides)

80

Event 74

- An event defines a transition of our discrete system

- An event is made of a Guard G and an Action A

- G defines the enabling conditions of the transition

- A defines a parallel assignment of the variables

81

Kind of Events 75

begin
A

end

No guard

when
G

then
A

end

Simple guard

any x where
G(x)

then
A(x)

end

Quantified guard

82

Kind of Events 76

begin
A

end

No guard

when
G

then
A

end

Simple guard

any x where
G(x)

then
A(x)

end

Quantified guard

Our event (so far) have no guards

INIT
begin

m := 0
end

maximum
begin

m := max(ran(f))
end

83

Summary 77

constants: n
f
M

variable: m

INIT
begin

m := 0
end

axm0 1: 0 < n

axm0 2: f ∈ 1 .. n → 0 .. M

thm0 1: ran(f) 6= ∅

inv0 1: m ∈ N

maximum
begin

m := max(ran(f))
end

84

Our Task is not Completed 78

- We have to perform some proofs:

- thm0 1 holds

- Invariant inv0 1 is established by event "INIT"

- Invariant inv0 1 is maintained by event "maximum"

- Expression "max(ran(f))" is well-defined

85

Summary of what is to be Proved 79

- Stated theorems

- Invariant maintenance

- Well-definedness

86

D E M O (showing proof obligations)

87

The Rodin Platform Kernel Tools 80

Generator
Proof Obligation ProverStatic Checker

Model

Proofs

88

Automatic and Interactive Modes for the Prover 81

Prover ProofProof Obligation

Prover ProofProof Obligation

Human Intervention

89

Refinement: the New Variables 82

- We introduce two new variables in our model

- Variables p and q denote two indices in the domain of f .

variables: m
p
q

inv1 1: p ∈ 1 .. n

inv1 2: q ∈ 1 .. n

90

Initial, Intermediate, and Final Situations 83

The maximum is always

"between" p and q

q

9 3 8 3 510

p q

p q

9 3 8 3 510

9 3 8 3 510

p

91

Refinement: the Main Invariant 84

- Interval p .. q is never empty (inv1 3)

- The maximum is always in the image of p .. q under f (inv1 4)

variables: m
p
q

inv1 1: p ∈ 1 .. n

inv1 2: q ∈ 1 .. n

inv1 3: p ≤ q

inv1 4: max(ran(f)) ∈ f [p .. q]

- inv1 4 is the main invariant

92

Math Refresher: Image 85

- B is the image of A under f : B = f [A]

S T

f

A

B

93

Refinement: Initial and Final Events 86

INIT
begin

m := 0
p := 1
q := n

end

maximum
when

p = q
then

m := f(p)
end

94

Refinement: two New Events 87

INIT
begin

m := 0
p := 1
q := n

end

maximum
when

p = q
then

m := f(p)
end

increment
when

p < q
f(p) ≤ f(q)

then
p := p + 1

end

decrement
when

p < q
f(q) < f(p)

then
q := q − 1

end

95

Trace 88

9 3 8 310 5

9 3 8 310 5

9 3 8 310 5

8<9 (decrement)

3<9 (decrement)

9<10 (increment)

3<10 (increment)

9 3 8 3 510

5<9 (decrement)

9 3 8 310 5

9 3 8 310 5

96

D E M O (showing a refinement)

97

Abstract and Concrete Traces 89

dec dec dec inc inc maxiINIT

INIT maxi

98

Old Events must Refine their Abstractions 90

dec dec dec inc inc maxiINIT

INIT maxi

99

How about New Events? 91

INIT maxi

dec dec dec inc inc maxiINIT

 ? ? ? ? ?

100

New Events refine "skip" 92

INIT maxi

dec dec dec inc inc maxiINIT

skip skip skip skip skip

101

To be Proved 93

- Invariant maintenance

- Event refinement

- guard strengthening

- concrete action simulates the abstract one

- Well-definedness

102

Pathologies which Must be Avoided on the Concrete Trace 94

- Early deadlock

dec dec dec maxiINIT

103

Pathologies which Must be Avoided on the Concrete Trace 95

- Early deadlock

dec dec dec maxiINIT

- Divergence

dec dec dec maxiINIT

104

To be Proved (more) 96

- Invariant maintenance

- Event refinement

- guard strengthening

- concrete action simulates the abstract one

- Well-definedness

- Trace refinement

- Disjunction of guards must hold (no early deadlock)

- New events must be convergent (must decrease a variant)

105

D E M O (showing more proof obligations)

106

Towards the Final Construction 97

INIT
begin

m := 0
p := 1
q := n

end

maximum
when

p = q
then

m := f(p)
end

increment
when

p 6= q
f(p) ≤ f(q)

then
p := p + 1

end

decrement
when

p 6= q
f(q) < f(p)

then
q := q − 1

end

107

D E M O (showing an animation)

108

Statements for a Pidgin Programming Language 98

while condition do statement end

if condition then statement else statement end

statement ; statement

variable list := expression list

109

IF Merging Rule 99

when
P
Q

then
S

end

when
P

¬ Q
then

T
end

;

when
P

then
if Q then

S
else

T
end

end

M IF

- The two events must have been introduced at the same step

110

Applying Rule M IF 100

decrement
when

p 6= q
f(q) < f(p)

then
q := q − 1

end

increment
when

p 6= q
f(p) ≤ f(q)

then
p := p + 1

end

decrement increment
when

p 6= q
then

if f(q) < f(p) then
q := q − 1

else
p := p + 1

end
end

111

WHILE Merging Rule (special case) 101

when
Q

then
S

end

when
¬ Q
then

T
end

;

while Q do
S

end;
T

M WHILE

- The first event must have been introduced at one

refinement step below the second one.

112

Applying Rule M WHILE (special case) 102

decrement increment
when

p 6= q
then

if f(q) < f(p) then
q := q − 1

else
p := p + 1

end
end

maximum
when

p = q
then

m := f(p)
end

decrement increment maximum
while p 6= q do

if f(q) < f(p) then
q := q − 1

else
p := p + 1

end
end;
m := f(p)

113

WHILE Merging Rule (general case) 103

when
P
Q

then
S

end

when
P

¬ Q
then

T
end

;

when
P

then
while Q do

S
end;
T

end

M WHILE

- P must be invariant under S

- The first event must have been introduced at one

refinement step below the second one.

114

Final Rule M INIT 104

- Once we have obtained an “event” without guard

- We add to it the event init by sequential composition

- We then obtain the final “program”

115

The Program: Putting the Events Together 105

m, p, q := 0, 1, n; INIT
while p < q do

if f(q) < f(p) then
q := q − 1 decrement

else
p := p + 1 increment

end
end;
m := f(p) maximum

INIT
begin

m := 0
p := 1
q := n

end

decrement
when

p < q
f(q) < f(p)

then
q := q − 1

end

increment
when

p < q
f(p) ≤ f(q)

then
p := p + 1

end

maximum
when

p = q
then

m := f(p)
end

116

Exercise 106

- Modify the development to search for the minimum of the array

m, p, q := 0, 1, n; INIT
while p < q do

if f(p) > f(q) then
p := p + 1 increment

else
q := q − 1 decrement

end
end;
m := f(p) maximum

117

1.3.3. A Second Simple Example

118

Requirements for a Second Simple Example 107

We are given a non-empty finite array FUN-1

We know that a value v is in this array FUN-2

We like to find an index with v FUN-3

119

Requirements for a Second Simple Example 108

We are given a non-empty finite array FUN-1

We know that a value v is in this array FUN-2

We like to find an index with v FUN-3

v

?

v

?

120

Development Strategy 109

- First, we show an initial model specifying the problem

- Later, we refine our model to produce an algorithm.

- In the initial model, we have:

- a context where the constant array is defined

- a machine where the search is done (non-deterministically)

121

Context 110

sets: D

constants: n
f
v

axm1: n ∈ N

axm2: f ∈ 1 .. n → D

axm3: v ∈ ran(f)

thm1: n > 0

- This context is generic: the set D is not specified

(just supposed to be non-empty)

122

Pictorial Representation of the Context 111

1

n

v ?

f

123

Machine 112

variables: i

INIT
begin

i := 1
end

Notice the quantified guard
in event "search"

inv1: i ∈ 1 .. n

search
any

k
where

k ∈ 1 .. n
f(k) = v

then
i := k

end

124

Pictorial Representation of the State after Event "search" 113

1

n

f

i v

125

Abstract Trace: Where is v? 114

1

v

v
n

126

Abstract Trace: v is in 4, v is in 8 115

1

v

v
n

1

4 v

8 v
n

The abstract trace is non-deterministic

127

Abstract Trace is Non-deterministic 116

search

searchINIT

128

D E M O (showing the context and the
machine)

129

Refinement: New Variable j and New Event progress 117

variables: i
j

inv1 1: j ∈ 0 .. n

inv1 2: v /∈ f [1 .. j]

thm1 1: j + 1 ∈ 1..n

INIT
when

i := 1
j := 0

end

progress
when

f(j + 1) 6= v
then

j := j + 1
end

success
when

f(j + 1) = v
then

i := j + 1
end

130

Pictorial Representation of the State 118

1

n

j

j+1

v not found

v is somewhere

f

131

Abstract Trace: Where is v? 119

1

v

v
n

132

Abstract Trace: v is in 4, v is in 8 120

1

v

v
n

1

4 v

8 v
n

The abstract trace is non-deterministic

133

Concrete Trace: v is not in 1 121

1

v

v
n

134

Concrete Trace: v is not in 2 122

1

v

v
n

1
2

v

v
n

135

Concrete Trace: v is not in 3 123

1

v

v
n

1
2

v

v
n

1
2
3

v

v
n

136

Concrete Trace: v is in 4 124

1

v

v
n

1
2

v

v
n

1
2
3

v

v
n

1
2
3
4 v

v
n

The concrete trace is deterministic

137

Concrete Trace is Deterministic 125

search

INIT searchprogress progress progress

searchINIT skipskipskip

138

D E M O (showing the proof obligation)

139

Constructing the Final Program 126

i, j := 1, 0 ; INIT
while f(j + 1) 6= v do

j := j + 1 progress
end ;
i := j + 1 search

INIT
begin

i := 1
j := 0

end

progress
when

f(j + 1) 6= v
then

j := j + 1
end

success
when

f(j + 1) = v
then

i := j + 1
end

140

Exercises 127

- Modify the development in order to obtain the following program:

i, j := 1, n + 1 ; INIT
while f(j − 1) 6= v do

j := j − 1 progress
end ;
i := j − 1 search

- Develop more elaborate array searching algorithms:

- from both sides alternatively,

- from somewhere inside and alternatively,

- on a sorted array

- . . .

141

Conclusion: Importance of Refinement 128

- Refinement allows us to build models gradually

- We build an ordered sequence of more precise models

- Each model is a refinement of the one preceding it

- A useful analogy: looking through a microscope

- Spatial (more variables) as well as temporal (more events)

extensions

142

Methods and Tools for System and Software

Construction

2. A Mechanical Press Controller

Jean-Raymond Abrial (ETHZ)

August 2008

Outline 1

1. Informal presentation of the example

2. Presentation of some design patterns

3. Writing the requirement document

4. Proposing a refinement strategy

5. Development of the model using refinements and design patterns

6. Demos

1

1. Informal Presentation of the Example

2

Presentation of the Example 2

- A mechanical press controller

- Adapted from a real system

- The real system is coming from INRST:

Institut National de la Recherche sur la Sécurité du Travail

3

Mechanical Press Schema 3

B1 B4B3B2

BUTTONS

MOTOR

ROD

SLIDE

PART

TOOL

4

Basic Equipment 4

- A Vertical Slide with a tool at its lower extremity

- An electrical Rotating Motor

- A Rod connecting the motor to the slide.

- A Clutch engaging or disengaging the motor on the rod

- When the clutch is disengaged, the slide stops “immediately”

5

Basic Commands 5

- Button B1: start motor

- Button B2: stop motor

- Button B3: engage clutch

- Button B4: disengage clutch

6

Basic User Actions 6

- Action 1: Change the tool at the lower extremity of the slide

- Action 2: Put a part to be treated under the slide

- Action 3: Remove the part

7

First Schematic View 7

EQUIPMENTCOMMANDS

8

A Typical User Session 8

1. start the motor (button B1)

2. change the tool (action 1)

3. put a part (action 2),

4. engage the clutch (button B3): the press now works,

5. disengage the clutch (button B4): the press does not work,

6. remove the part (action 3),

7. repeat zero or more times steps 3 to 6,

8. repeat zero or more times steps 2 to 7,

9. stop the motor (button B2).

9

Danger: Necessity of a Controller 9

- step 2 (change the tool),

- step 3 (put a part),

- step 6 (remove the part) are all DANGEROUS

10

Second Schematic View 10

CONTROLLER EQUIPMENT

COMMANDS

11

More Elaborate Commands for Protecting the User 11

- Controlling the way the clutch is engaged or disengaged

- Protection by means of a Front Door

12

The Front Door 12

open closed

13

The Front Door: Behavior 13

- Initially, the door is open

- When the user presses button B3 to engage the clutch,

the door is first closed BEFORE engaging the clutch

- When the user presses button B4 to disengage the clutch,

the door is opened AFTER disengaging the clutch

- Notice: The door has no button.

14

Summary of Connections 14

B1

C O N T R O L L E R

B2 B3 B4

MR

CL

DR

MR CL DR

15

Overview 15

StopStart
Motor

Start Stop

Clutch

MOTOR

motor_actuator

motor_sensor

CLUTCH

clutch_actuator

clutch_sensor

DOOR

door_sensordoor_actuator

CONTROLLER

16

2. Presentation of some Design Patterns

17

Motivations 16

- A number of similar behaviors

- Some complex situations to handle

18

Similar Behavior (1) 17

- A specific action results eventually in having a specific reaction:

- Pushing button B1 results eventually in starting the motor

- Pushing button B4 results eventually in disengaging the clutch

- . . .

19

Similar Behavior (2) 18

- Correlating two pieces of equipment:

- When the clutch is engaged then the motor must work

- When the clutch is engaged then the door must be closed

20

Similar Behavior (3) 19

- Making an action dependent of another one:

- Engaging the clutch implies closing the door first

- Disengaging the clutch means opening the door afterwards

21

Motivation: Example of Some Complex Situation 20

- Here is a sequence of events:

(1) User pushes button B1 (start motor)

(1’) User does not remove his finger from button B1

(2) Controller sends the starting command to the motor

(3) Motor starts and sends feedback to the controller

(4) Controller is aware that the motor works

(5) User pushes button B2 (stop motor)

(6) Controller sends the stop command to the motor

(7) Motor stops and sends feedback to the controller

(8) Controller is aware that the motor does not work

(9) Controller must not send the starting command to the motor

22

Motivation: Example of Some Complex Situation 21

- Here is a sequence of events:

(1) User pushes button B1 (start motor)

(2) Controller sends the starting command to the motor

(3.1) Motor starts and sends feedback to the controller

(3.2) User pushes button B2 (stop motor)

- (3.1) and (3.2) may occur simultaneously

- If controller treats (3.1) before (3.2): motor is stopped

- If controller treats (3.2) before (3.1): motor is not stopped

23

Design Patterns in Formal Developments 22

- We want to build systems which are correct by construction

- We want to have more methods for doing so

- "Design pattern" is an Object Oriented concept

- We would like to borrow this concept for doing formal developments

- A preliminary tentative with reactive system developments

- Advantage: systematic developments and also refinement of proofs

24

A Personal View on Design Patterns 23

- This is an engineering concept

- It can be used outside OO

- The goal of each DP is to solve a certain category of problems

- But the design pattern has to be adapted to the problem at hand

- Is it compatible with formal developments?

- Let’s apply this approach to the design of reactive systems

25

A Wikipedia View on Design Patterns (1) 24

- A design pattern isn’t a finished design that can be transformed

into code

- It is a template for how to solve a problem that can be used in

many different situations

- Patterns originated as an architectural concept by Christopher

Alexander

- "Design Patterns: Elements of Reusable Object-Oriented Software"

published in 1994 (Gamma et al)

26

A Wikipedia View on Design Patterns (2) 25

- Design pattern can speed up the development process by providing

tested and proven development paradigms

- The documentation for a design pattern should contain enough

information about the problem that the pattern addresses, the

context in which it is used, and the suggested solution.

- Some feel that the need for patterns results from using computer

languages or techniques with insufficient abstraction

27

An Action Pattern 26

Action

28

Action and Reaction Patterns 27

Action Reaction

29

Action and Weak Reaction Patterns 28

- Sometimes, the reaction has not enough time to react

- Because the action moves too quickly

30

Action and Strong Reaction Patterns 29

- Sometimes, the reaction always follows the action

- They are both synchronized

31

Constructing Models of Actions and Reactions 30

- We built first a model of a weak reaction

- The strong reaction will be a refinement of the weak one

32

Model for weak action and reaction: the State 31

variables: a
r

pat0 1: a ∈ {0, 1}

pat0 2: r ∈ {0, 1}

- a denotes the action

- r denotes the reaction

33

Model for weak action and reaction: the State 32

variables: a
r
ca
cr

pat0 1: a ∈ {0, 1}

pat0 2: r ∈ {0, 1}

pat0 3: ca ∈ N

pat0 4: cr ∈ N

pat0 5: cr ≤ ca

- ca and cr denote how many times a and r are set to 1

- pat0 5 formalizes the weak reaction

34

Model for weak action and reaction: the Events (1) 33

a on
when

a = 0
then

a := 1
ca := ca + 1

end

a off
when

a = 1
then

a := 0
end

a = 0

a = 1

a = 0

35

Model for weak action and reaction: the Events (2) 34

r on
when

r = 0
a = 1

then
r := 1
cr := cr + 1

end

r off
when

r = 1
a = 0

then
r := 0

end

r = 0 r = 0

r = 1

a = 0

a = 1

36

Summary of Events 35

a on
when

a = 0
then

a := 1
ca := ca + 1

end

a off
when

a = 1
then

a := 0
end

r on
when

r = 0
a = 1

then
r := 1
cr := cr + 1

end

r off
when

r = 1
a = 0

then
r := 0

end

a_on a_off

r_offr_on

37

Summary of Weak Synchronization 36

variables: a,
r,
ca,
cr

pat0 1: a ∈ {0, 1}

pat0 2: r ∈ {0, 1}

pat0 3: ca ∈ N

pat0 4: cr ∈ N

pat0 5: cr ≤ ca

init
a := 0
r := 0
ca := 0
cr := 0

a on
when

a = 0
then

a := 1
ca := ca + 1

end

a off
when

a = 1
then

a := 0
end

r on
when

r = 0
a = 1

then
r := 1
cr := cr + 1

end

r off
when

r = 1
a = 0

then
r := 0

end

Nothing guarantees that the invariants are preserved

38

D E M 0 (Showing a Problem and Finding a
Solution)

39

Intuition Behind the new Invariant 37

pat0 6: r = 0 ∧ a = 1 ⇒ cr < ca

cr<ca

a=1

r=0

ca is incremented

40

Summary of the State of the weak Reaction 38

pat0 1: a ∈ {0, 1}

pat0 2: r ∈ {0, 1}

pat0 3: ca ∈ N

pat0 4: cr ∈ N

pat0 5: cr ≤ ca

pat0 6: r = 0 ∧ a = 1 ⇒ cr < ca

41

Summary of the Events of the weak Reaction 39

The counters have

been removed

init
a := 0
r := 0

a on
when

a = 0
then

a := 1
end

r on
when

r = 0
a = 1

then
r := 1

end

a off
when

a = 1
then

a := 0
end

r off
when

r = 1
a = 0

then
r := 0

end

42

Weak Synchronization of Events 40

a_on a_off

r_offr_on

43

Refinement: Strong action and reaction 41

- We add the following invariant

pat1 1: ca ≤ cr + 1

- Remember invariant pat0 5

pat0 5: cr ≤ ca We have thus: cr ≤ ca ≤ cr + 1

44

Summary (so far) of the Strong Sncchronization 42

pat1 1: ca ≤ cr + 1

a on
when

a = 0
then

a := 1
ca := ca + 1

end

a off
when

a = 1
then

a := 0
end

r on
when

r = 0
a = 1

then
r := 1
cr := cr + 1

end

r off
when

r = 1
a = 0

then
r := 0

end

Nothing guarantees that the invariant is preserved

45

D E M 0 (Showing Problems and Finding
Solutions)

46

Merging the two invariants 43

- Putting together these two invariants

pat1 2: a = 0 ⇒ ca = cr

pat1 3: a = 1 ∧ r = 1 ⇒ ca = cr

- leads to the following

pat1 4: a = 0 ∨ r = 1 ⇒ ca = cr

47

Simplifying the Invariants 44

pat0 5: cr ≤ ca

pat0 6: a = 1 ∧ r = 0 ⇒ cr < ca

pat1 1: ca ≤ cr + 1

pat1 4: a = 0 ∨ r = 1 ⇒ ca = cr

This can be simplified to

pat2 1: a = 1 ∧ r = 0 ⇒ ca = cr + 1

pat2 2: a = 0 ∨ r = 1 ⇒ ca = cr

48

Summary of the State for the Strong Reaction 45

pat0 1: a ∈ {0, 1}

pat0 2: r ∈ {0, 1}

pat0 3: ca ∈ N

pat0 4: cr ∈ N

pat2 1: a = 1 ∧ r = 0 ⇒ ca = cr + 1

pat2 2: a = 0 ∨ r = 1 ⇒ ca = cr

49

Intuition Behind the two Invariants 46

pat2 1: a = 1 ∧ r = 0 ⇒ ca = cr + 1

pat2 2: a = 0 ∨ r = 1 ⇒ ca = cr

a=0

r=0

a=1 r=1

ca = crca = crca = cr

ca is incremented cr is incremented

ca=cr+1

pat2_1pat2_2 pat2_2

50

Summary of the Events for the Strong Reaction 47

The counters have

been removed

init
a := 0
r := 0

a on
when

a = 0
r = 0

then
a := 1

end

r on
when

r = 0
a = 1

then
r := 1

end

a off
when

a = 1
r = 1

then
a := 0

end

r off
when

r = 1
a = 0

then
r := 0

end

51

Strong Synchronization of Events 48

a_on a_off

r_offr_on

52

What we Have Learned 49

- Proof failures helped us improving our models

- When an invariant preservation proof fails on an event,

there are two solutions:

- adding a new invariant

- strengthening the guard

- Modelling considerations helped us choosing one or the other

- At the end, we reached a stable situation (fixpoint)

53

3. Writing the Requirement Document

54

Requirements: Describing Equipment 50

The system has got the following pieces of
equipment: a Motor, a Clutch, and a Door EQP 1

Four Buttons are used to start and stop the
motor, and engage and disengage the clutch EQP 2

A Controller is supposed to manage this equipment EQP 3

55

Requirements: Connection Constraints 51

Buttons and Controller are weakly synchronized FUN 1

Controller are Equipment are strongly synchronized FUN 2

56

Requirements: Relationship Between Motor and Clutch 52

When the clutch is engaged, the motor must work SAF 1

When the clutch is engaged, the door must be closed SAF 2

57

Requirements: Relationship Between Door and Clutch 53

When the clutch is engaged, the door cannot
be closed several times, ONLY ONCE FUN 3

When the door is closed, the clutch cannot
be disengaged several times, ONLY ONCE FUN 4

Opening and closing the door are not independent.
It must be synchronized with disengaging and
engaging the clutch

FUN 5

58

Overview 54

StopStart
Motor

Start Stop

Clutch

MOTOR

motor_actuator

motor_sensor

CLUTCH

clutch_actuator

clutch_sensor

DOOR

door_sensordoor_actuator

CONTROLLER

59

4. Proposing a Refinement Strategy

60

Refinement Strategy 55

- Initial model: Connecting the controller to the motor

- 1st refinement: Connecting the motor buttons to the controller

- 2nd refinement: Connecting the controller to the clutch

- 3rd refinement: Constraining the clutch and the motor

61

Refinement Strategy (cont’d) 56

- 4th refinement: Connecting the controller to the door

- 5th refinement: Constraining the clutch and the door

- 6th refinement: More constraints between clutch and door

- 7th refinement: Connecting the clutch buttons to the controller

62

5. Development of the Model using Refinements and

Design Patterns

63

Initial Model: Connecting the Controller to the Motor 57

Controller

Motor

Strong Reaction

Controller are Equipment are strongly synchronized FUN 2

64

Model for strong action and reaction: the Final Events 58

The counters have

been removed

init
a := 0
r := 0

a on
when

a = 0
r = 0

then
a := 1

end

r on
when

r = 0
a = 1

then
r := 1

end

a off
when

a = 1
r = 1

then
a := 0

end

r off
when

r = 1
a = 0

then
r := 0

end

65

Initial Model: the Context 59

set: STATUS
constants: stopped

working

axm0 1: STATUS = {stopped, working}

axm0 2: stopped 6= working

66

Initial Model: the State 60

variables: motor actuator
motor sensor

inv0 1: motor sensor ∈ STATUS

inv0 2: motor actuator ∈ STATUS

67

Initial Model: the Synchronization 61

MotorController

Action

motor_actuator

Strong Reaction

motor_sensor

68

Pattern Instantiation 62

- We instantiate the weak pattern as follows:

a ; motor actuator
r ; motor sensor
0 ; stopped
1 ; working

a on ; treat start motor
a off ; treat stop motor
r on ; Motor start
r off ; Motor stop

- Convention: Controller events start with "treat "

69

Initial Model: Initialization 63

init
a := 0
r := 0

init
motor actuator := stopped

motor sensor := stopped

70

Initial Model: Controller Events (1) 64

a on
when

a = 0
r = 0

then
a := 1

end

treat start motor
when

motor actuator = stopped

motor sensor = stopped
then

motor actuator := working
end

71

Initial Model: Environment Event (1) 65

r on
when

r = 0
a = 1

then
r := 1

end

Motor start
when

motor sensor = stopped

motor actuator = working
then

motor sensor := working
end

72

Initial Model: Controller Events (2) 66

a off
when

a = 1
r = 1

then
a := 0

end

treat stop motor
when

motor actuator = working

motor sensor = working
then

motor actuator := stopped
end

73

Initial Model: Environment Event (2) 67

r off
when

r = 1
a = 0

then
r := 0

end

Motor stop
when

motor sensor = working

motor actuator = stopped
then

motor sensor := stopped
end

74

Synchronization 68

a_on a_off

r_offr_on

Motor_start Motor_stop

treat_start_motor treat_stop_motor

75

Initial Model: Summary of the Events 69

- Environment

- motor start

- motor stop

- Controller

- treat start motor

- treat stop motor

76

1st Reft.: Connecting the Motor Buttons to the Controller 70

B2B1

Controller

Weak Reaction

Motor

Strong Reaction

Buttons and Controller are weakly synchronized FUN 1

77

Model for weak action and reaction: the Final Events 71

The counters have

been removed

init
a := 0
r := 0

a on
when

a = 0
then

a := 1
end

r on
when

r = 0
a = 1

then
r := 1

end

a off
when

a = 1
then

a := 0
end

r off
when

r = 1
a = 0

then
r := 0

end

78

First Refinement: the State 72

variables: . . .
start motor button
stop motor button
start motor impulse
stop motor impulse

inv1 1: stop motor button ∈ BOOL
inv1 2: start motor button ∈ BOOL
inv1 3: stop motor impulse ∈ BOOL
inv1 4: start motor impulse ∈ BOOL

79

First Refinement: the State 73

Button Button

Stop

start_motor_button stop_motor_button

start_motor_impulse stop_motor_impulse

Start

action action

CONTROLLER

weak reaction weak reaction

80

Pattern Instantiation 74

- We instantiate the pattern as follows:

a ; start motor button
r ; start motor impulse
0 ; FALSE
1 ; TRUE

a on ; push start motor button
a off ; release stop motor button
r on ; treat push start motor button
r off ; treat release start motor button

- We rename treat start motor as treat push start motor button

81

1st Refinement: Refinement of Initialization 75

init

a := 0
r := 0

init
motor actuator := stopped
motor sensor := stopped
start motor button := FALSE
start motor impulse := FALSE

82

First Refinement: New Environment Events (1) 76

a on
when

a = 0
then

a := 1
end

push start motor button
when

start motor button = FALSE
then

start motor button := TRUE
end

a off
when

a = 1
then

a := 0
end

release start motor button
when

start motor button = TRUE
then

start motor button := FALSE
end

83

First Refinement: Refining Controller Events (1) 77

r on

when
r = 0
a = 1

then
r := 1

end

treat push start motor button
refines

treat start motor
when

start motor impulse = FALSE

start motor button = TRUE
motor actuator = stopped
motor sensor = stopped

then
start motor impulse := TRUE
motor actuator := working

end

- This is the most important slide of the talk

- We can see how patterns can be superposed

84

a on
when

a = 0
r = 0

then
a := 1

end

treat start motor
when

motor actuator = stopped

motor sensor = stopped
then

motor actuator := working
end

r on
when

r = 0
a = 1

then
r := 1

end

treat push start motor button
when

start motor impulse = FALSE

start motor button = TRUE
motor actuator = stopped

motor sensor = stopped
then

start motor impulse := TRUE

motor actuator := working
end

85

Design Pattern Integration within a Development 78

 Refinement 1

Instantiated Pattern

Initial Model

refines

refines

 Refinement n

refines

86

First Refinement: New Controller Events (1) 79

r off
when

r = 1
a = 0

then
r := 0

end

treat release start motor button
when

start motor impulse = TRUE

start motor button = FALSE
then

start motor impulse := FALSE
end

87

Pattern Instantiation 80

- We instantiate the pattern as follows:

a ; stop motor button
r ; stop motor impulse
0 ; FALSE
1 ; TRUE

a on ; push stop motor button
a off ; release stop motor button
r on ; treat push stop motor button
r off ; treat release stop motor button

88

1st Refinement: More Refinement of Initialization 81

init

a := 0
r := 0

init
motor actuator := stopped
motor sensor := stopped
start motor button := FALSE
start motor impulse := FALSE
stop motor button := FALSE

stop motor impulse := FALSE

89

First Refinement: New Environment Events 82

a on
when

a = 0
then

a := 1
end

push stop motor button
when

stop motor button = FALSE
then

stop motor button := TRUE
end

a off
when

a = 1
then

a := 0
end

release stop motor button
when

stop motor button = TRUE
then

stop motor button := FALSE
end

90

First Refinement: Refining Controller Events (2) 83

r on

when
r = 0
a = 1

then
r := 1

end

treat push stop motor button
refines

treat stop motor
when

stop motor impulse = FALSE

stop motor button = TRUE
motor sensor = working
motor actuator = working

then
stop motor impulse := TRUE
motor actuator := stopped

end

91

First Refinement: New Controller Events (2) 84

r off
when

r = 1
a = 0

then
r := 0

end

treat release stop motor button
when

stop motor impulse = TRUE

stop motor button = FALSE
then

stop motor impulse := FALSE
end

92

Independent Synchronizations 85

push_start_motor_button release_start_motor_button

treat_release_start_motor_buttontreat_push_start_motor_button

93

Independent Synchronizations 86

push_start_motor_button release_start_motor_button

treat_release_start_motor_buttontreat_push_start_motor_button

treat_release_stop_motor_button

push_stop_motor_buttonrelease_stop_motor_button

treat_push_stop_motor_button

94

Independent Synchronizations 87

push_start_motor_button release_start_motor_button

treat_release_start_motor_buttontreat_push_start_motor_button

treat_release_stop_motor_button

push_stop_motor_buttonrelease_stop_motor_button

treat_push_stop_motor_button

Motor_start Motor_stop

treat_push_start_motor_button treat_push_stop_motor_button

95

Weak and Strong Reactions Together 88

Button Button

Stop

start_motor_button stop_motor_button

motor_actuator

motor_sensor

start_motor_impulse stop_motor_impulse

MOTOR

Start

action action

CONTROLLER

action

weak reaction weak reaction

strong reaction

96

Combined Synchronizations 89

treat_release_stop_motor_button

Motor_start

push_start_motor_button release_start_motor_button

Motor_stop

treat_release_start_motor_button

push_stop_motor_buttonrelease_stop_motor_button

treat_push_stop_motor_button

treat_push_start_motor_button

97

Problems with treat push start motor button 90

treat push start motor button
refines

treat start motor
when

start motor impulse = FALSE

start motor button = TRUE
motor actuator = stopped
motor sensor = stopped

then
start motor impulse := TRUE
motor actuator := working

end

- What happens when the following hold

¬ (motor actuator = stopped ∧ motor sensor = stopped)

- We need another event

98

Problems with treat push start motor button 91

treat push start motor button
refines

treat start motor
when

start motor impulse = FALSE

start motor button = TRUE
motor actuator = stopped
motor sensor = stopped

then
start motor impulse := TRUE
motor actuator := working

end

treat push start motor button false

when
start motor impulse = FALSE

start motor button = TRUE
¬ (motor actuator = stopped ∧

motor sensor = stopped)
then

start motor impulse := TRUE

end

- In the second case, the button has been pushed but the internal conditions are not met

- However, we need to record that the button has been pushed:

start motor impulse := TRUE

99

Problems with treat push stop motor button 92

treat push stop motor button
refines

treat stop motor
when

stop motor impulse = FALSE

stop motor button = TRUE
motor sensor = working
motor actuator = working

then
stop motor impulse := TRUE
motor actuator := stopped

end

treat push stop motor button false

when
stop motor impulse = FALSE

stop motor button = TRUE
¬ (motor sensor = working ∧

motor actuator = working)
then

stop motor impulse := TRUE

end

- In the second case, the button has been pushed but the internal conditions are not met

- However, we need to record that the button has been pushed:

stop motor impulse := TRUE

100

First Refinement: Summary of the Events (1) 93

- Environment

- motor start

- motor stop

- push start motor button

- release start motor button

- push stop motor button

- release stop motor button

101

First Refinement: Summary of the Events (2) 94

- Controller

- treat push start motor button

- treat push start motor button false

- treat push stop motor button

- treat push stop motor button false

- treat release start motor button

- treat release stop motor button

102

2nd Refinement: Connecting the Controller to the Clutch 95

Button
Start

Button
Stop

stop_motor_button

start_motor_impulse

stop_motor_impulse

CONTROLLER

MOTOR

motor_actuator

motor_sensor

start_motor_button

CLUTCH

clutch_actuator

clutch_sensor

103

2nd Refinement: Connecting the Controller to the Clutch 96

- We introduce the set in a new context:

CLUTCH = {engaged, disengaged}

- We copy the initial model where we instantiate:

motor ; clutch

STATUS ; CLUTCH

working ; engaged

stopped ; disengaged

104

Second Refinement: Summary of the Events (1) 97

- Environment

- motor start

- motor stop

- clutch start

- clutch stop

- push start motor button

- release start motor button

- push stop motor button

- release stop motor button

105

Second Refinement: Summary of the Events (2) 98

- Controller

- treat push start motor button

- treat push start motor button false

- treat push stop motor button

- treat push stop motor button false

- treat release start motor button

- treat release stop motor button

- treat start clutch

- treat stop clutch

106

Third Refinement: Constraining the Clutch and the Motor 99

- An additional safety constraint

When the clutch is engaged, the motor must work SAF 1

- For this we develop ANOTHER DESIGN PATTERN

- It is called: Weak synchronization of two Strong Reactions

107

Pattern: Weak Synchronization of Strong Reactions 100

motor works

clutch engaged

When the clutch is engaged

then

the motor must work

108

Pattern: Weak Synchronization of Strong Reactions 101

s=1

s=1 r=1=>

r=1

a r

sb

When the clutch is engaged

then

the motor must work

109

The Synchronization is Weak (1) 102

clutch

motor

clutch is disengaged

When the clutch is disengaged,

then

the motor can be started and stopped several times
110

The Synchronization is Weak (2) 103

motor

clutch

motor works

When the motor works,

then

the clutch can be engaged and disengaged several times
111

Putting the Two Together 104

112

Synchronizing the Reactions Without Touching them 105

a_on a_off

r_offr_on

b_on b_off

s_offs_on

113

The Initial State Situation 106

dbl0 1: a ∈ {0, 1}
dbl0 2: r ∈ {0, 1}
dbl0 3: ca ∈ N
dbl0 4: cr ∈ N
dbl0 5: a = 1 ∧ r = 0 ⇒ ca = cr + 1
dbl0 6: a = 0 ∨ r = 1 ⇒ ca = cr

dbl0 7: b ∈ {0, 1}
dbl0 8: s ∈ {0, 1}
dbl0 9: cb ∈ N
dbl0 10: cs ∈ N
dbl0 11: b = 1 ∧ s = 0 ⇒ cb = cs + 1
dbl0 12: b = 0 ∨ s = 1 ⇒ cb = cs

114

The Initial Event Situation (1) 107

a on
when

a = 0
r = 0

then
a := 1
ca := ca + 1

end

a off
when

a = 1
r = 1

then
a := 0

end

r on
when

r = 0
a = 1

then
r := 1
cr := cr + 1

end

r off
when

r = 1
a = 0

then
r := 0

end

115

The Initial Event Situation (2) 108

b on
when

b = 0
s = 0

then
b := 1
cb := cb + 1

end

b off
when

b = 1
s = 1

then
b := 0

end

s on
when

s = 0
b = 1

then
s := 1
cs := cs + 1

end

s off
when

s = 1
b = 0

then
s := 0

end

116

The Synchronizing Invariant 109

dbl1 1: s = 1 ⇒ r = 1

- It seems sufficient to add the following guards

s on
when

s = 0
b = 1
r = 1

then
s := 1
cs := cs + 1

end

r off
when

r = 1
a = 0
s = 0

then
r := 0

end

- But we do not want to touch these events
117

Introducing Additional Invariants to Remove the red guards 110

s on
when

s = 0
b = 1

r = 1
then

s := 1
cs := cs + 1

end

r off
when

r = 1
a = 0

s = 0
then

r := 0
end

- We introduce the following additional invariants

dbl1 2: b = 1 ⇒ r = 1

dbl1 3: a = 0 ⇒ s = 0

118

Maintaining Invariant dbl1 2 (1) 111

dbl1 2: b = 1 ⇒ r = 1

In order to maintain this invariant, we have to refine b on

b on
when

b = 0
s = 0

then
b := 1
cb := cb + 1

end

;

b on
when

b = 0
s = 0
r = 1

then
b := 1
cb := cb + 1

end

119

Maintaining (Contraposition of) Invariant dbl1 2 (2) 112

dbl1 2: b = 1 ⇒ r = 1 (r = 0 ⇒ b = 0)

In order to maintain this invariant, we have to refine r off

r off
when

r = 1
a = 0

then
r := 0

end

;

r off
when

r = 1
a = 0
b = 0

then
r := 0

end

- But, again, we do not want to touch this event
120

Introducing a new invariant to Remove the Red Guard 113

r off
when

r = 1
a = 0

b = 0
then

r := 0
end

- We introduce the following invariant

dbl1 4: a = 0 ⇒ b = 0

121

Maintaining Invariant dbl1 3 (1) 114

dbl1 3: a = 0 ⇒ s = 0

In order to maintain this invariant, we have to refine a off

a off
when

a = 1
r = 1

then
a := 0

end

;

a off
when

a = 1
r = 1
s = 0

then
a := 0

end

122

Maintaining (Contraposition of) Invariant dbl1 3 (2) 115

dbl1 3: a = 0 ⇒ s = 0 (s = 1 ⇒ a = 1)

In order to maintain this invariant, we have to refine s on

s on
when

s = 0
b = 1

then
s := 1
cs := cs + 1

end

;

s on
when

s = 0
b = 1
a = 1

then
s := 1
cs := cs + 1

end

- But, again, we do not want to touch this event
123

Introducing a new invariant to Remove the Red Guard 116

s on
when

s = 0
b = 1
a = 1

then
s := 1
cs := cs + 1

end

- We have to introduce the following invariant

b = 1 ⇒ a = 1

- Fortunately, this is dbl1 4 (a = 0 ⇒ b = 0) contraposed

124

Maintaining Invariant dbl1 4 (1) 117

dbl1 4: a = 0 ⇒ b = 0

In order to maintain this invariant, we have to refine a off again

a off
when

a = 1
r = 1
s = 0

then
a := 0

end

;

a off
when

a = 1
r = 1
s = 0
b = 0

then
a := 0

end

125

Maintaining (Contraposition of) Invariant dbl1 4 (2) 118

dbl1 4: a = 0 ⇒ b = 0 (b = 1 ⇒ a = 1)

In order to maintain this invariant, we have to refine b on again

b on
when

b = 0
s = 0
r = 1

then
b, cb := 1, cb + 1

end

;

b on
when

b = 0
s = 0
r = 1
a = 1

then
b, cb := 1, cb + 1

end

126

Summary of Refinement: Reactions have not been Touched 119

dbl1 1: s = 1 ⇒ r = 1
dbl1 2: b = 1 ⇒ r = 1
dbl1 3: a = 0 ⇒ s = 0
dbl1 4: a = 0 ⇒ b = 0

b on
when

b = 0
s = 0
r = 1
a = 1

then
b, cb := 1, cb + 1

end

a off
when

a = 1
r = 1
s = 0
b = 0

then
a := 0

end

127

Intuition about the Invariants 120

dbl1 1: s = 1 ⇒ r = 1
dbl1 2: b = 1 ⇒ r = 1
dbl1 3: a = 0 ⇒ s = 0 (s = 1 ⇒ a = 1)
dbl1 4: a = 0 ⇒ b = 0 (b = 1 ⇒ a = 1)

This can be put into a single invariant

dbl1 5: b = 1 ∨ s = 1 ⇒ a = 1 ∧ r = 1

with the following contraposed form

dbl1 6: a = 0 ∨ r = 0 ⇒ b = 0 ∧ s = 0

128

Intuition about the Invariants 121

a=0

 or

r=0

a=0

 or

r=0

a=0

 or

r=0

 or

b=1

s=1

 or

b=1

s=1

Reminder: - - - is the motor and - - - is the clutch

dbl1 5: b = 1 ∨ s = 1 ⇒ a = 1 ∧ r = 1

dbl1 6: a = 0 ∨ r = 0 ⇒ b = 0 ∧ s = 0

129

Weak Synchronization of Strong Reaction: the Problem 122

a_on a_off

r_offr_on

b_on b_off

s_offs_on

130

Weak Synchronization of Strong Reaction: the Solution 123

a_on a_off

r_offr_on

b_on b_off

s_offs_on

131

Back to 3rd Reft.: Constraining the Clutch and the Motor 124

When the clutch is engaged, the motor must work SAF 1

inv3 1: clutch sensor = engaged
⇒
motor sensor = working

- This is an instance of the previous design pattern

132

Pattern Instantiation 125

- We instantiate the pattern as follows:

a ; motor actuator
r ; motor sensor
0 ; stopped
1 ; working

a on ; treat push start motor button
a off ; treat push stop motor button
r on ; Motor start
r off ; Motor stop

b ; clutch actuator
s ; clutch sensor
0 ; disengaged
1 ; engaged

b on ; treat start clutch
b off ; treat stop clutch
s on ; Clutch start
s off ; Clutch stop

133

Translating the pattern invariants (1) 126

dbl1 1: s = 1 ⇒ r = 1

dbl1 2: b = 1 ⇒ r = 1

clutch sensor = engaged
inv3 1: ⇒

motor sensor = working

clutch actuator = engaged
inv3 2: ⇒

motor sensor = working

134

Translating the pattern invariants (2) 127

dbl1 3: a = 0 ⇒ s = 0

dbl1 4: a = 0 ⇒ b = 0

motor actuator = stopped
inv3 3: ⇒

clutch sensor = disengaged

motor actuator = stopped
inv3 4: ⇒

clutch actuator = disengaged

135

Adapting the Events of the Pattern (1) 128

b on
when

b = 0
s = 0
r = 1
a = 1

then
b := 1

end

treat start clutch
when

clutch actuator = disengaged
clutch sensor = disengaged
motor sensor = working

motor actuator = working
then

clutch actuator := engaged
end

136

Adapting the events of the pattern (2) 129

a off
when

a = 1
r = 1
s = 0
b = 0

then
a := 0

end

treat push stop motor button
when

stop motor impulse = FALSE
stop motor button = TRUE
motor actuator = working
motor sensor = working
clutch sensor = disengaged

clutch actuator = disengaged
then

motor actuator := stopped
stop motor impulse := TRUE

end

137

Third Refinement: Summary of the Events (1) 130

- Environment (no new events)

- motor start

- motor stop

- clutch start

- clutch stop

- push start motor button

- release start motor button

- push stop motor button

- release stop motor button

138

Third Refinement: Summary of the Events (2) 131

- Controller (no new events)

- treat push start motor button

- treat push start motor button false

- treat push stop motor button

- treat push stop motor button false

- treat release start motor button

- treat release stop motor button

- treat start clutch

- treat stop clutch

139

Fourth Refinement: Connecting the Controller to the Door 132

Button
Start

Button
Stop

stop_motor_button

start_motor_impulse

stop_motor_impulse

CONTROLLER

MOTOR

motor_actuator

motor_sensor

start_motor_button

CLUTCH

clutch_actuator

clutch_sensor

DOOR

door_sensordoor_actuator

- We copy (after renaming "motor" to "door") what has been done

in the initial model
140

Fourth Refinement: Connecting the Controller to the Door 133

- We introduce the set in a new context:

DOOR = {open, closed}

- We copy the initial model where we instantiate:

motor ; door

STATUS ; DOOR

working ; closed

stopped ; open

141

Fourth Refinement: Summary of the Events (1) 134

- Environment

- motor start

- motor stop

- clutch start

- clutch stop

- door close

- door open

- push start motor button

- release start motor button

- push stop motor button

- release stop motor button

142

Fourth Refinement: Summary of the Events (2) 135

- Controller

- treat push start motor button

- treat push start motor button false

- treat push stop motor button

- treat push stop motor button false

- treat release start motor button

- treat release stop motor button

- treat start clutch

- treat stop clutch

- treat close door

- treat open door

143

Fifth Refinement: Constraining the Clutch and the Door 136

- An additional safety constraint

When the clutch is engaged, the door must
be closed SAF 2

- We copy (after renaming "motor" to "door") what has been done

in the third model:

When the clutch is engaged, the motor must work SAF 1

144

Fifth Reft.: Something was forgotten Concerning the Door 137

145

Fifth Reft.: Something was forgotten Concerning the Door 138

- Can you guess it?

146

Fifth Reft.: Something was forgotten Concerning the Door 139

- Can you guess it?

- When the motor is not working, we must allow users:

- to change the tool

- to replace the part to be treated

147

Fifth Reft.: Something was forgotten Concerning the Door 140

- Can you guess it?

- When the motor is not working, we must allow users:

- to change the tool

- to replace the part to be treated

- Hence the following additional requirement (which was forgotten)

When the motor is stopped, the door must be open SAF 3

148

Fifth Reft.: Something was forgotten Concerning the Door 141

- Can you guess it?

- When the motor is not working, we must allow users:

- to change the tool

- to replace the part to be treated

- Hence the following additional requirement (which was forgotten)

When the door is closed, the motor must work SAF 3’

- SAF 3’ is the contraposed form of SAF 3

149

Fifth Refinement: Taking Care of the New Constraint 142

- Additional safety constraint

When the door is closed, the motor must work SAF 3’

- We copy (after renaming "clutch" to "door") what has been done

in the third model:

When the clutch is engaged, the motor must work SAF 1

150

Fifth Reft.: Summary of the Safety Requirements 143

When the clutch is engaged, the motor must work SAF 1

When the clutch is engaged, the door must
be closed SAF 2

When the door is closed, the motor must work SAF 3’

- Requirement SAF 1 is now redundant: SAF 2 ∧ SAF 3’ ⇒ SAF 1

151

Possible New Refinement Strategy 144

- Initial model: Connecting the controller to the motor

- 1st refinement: Connecting the motor button to the controller

- 2nd refinement: Connecting the controller to the clutch

- 3rd (4th) refinement: Connecting the controller to the door

152

Possible New Refinement Strategy (cont’d) 145

- 4th (5th) refinement: Constraining the clutch and the door

Constraining the motor and the door

- 5th (6th) refinement: More constraints between clutch and door

- 6th (7th) refinement: Connecting the clutch button to the controller

153

Fifth Refinement: Summary of the Events (1) 146

- Environment (no new events)

- motor start

- motor stop

- clutch start

- clutch stop

- door close

- door open

- push start motor button

- release start motor button

- push stop motor button

- release stop motor button

154

Fifth Refinement: Summary of the Events (2) 147

- Controller (no new events)

- treat push start motor button

- treat push start motor button false

- treat push stop motor button

- treat push stop motor button false

- treat release start motor button

- treat release stop motor button

- treat start clutch

- treat stop clutch

- treat close door

- treat open door

155

Sixth Reft.: More Constraints between Clutch and Door 148

- Adding two functional constraints

When the clutch is disengaged, the door cannot
be closed several times, ONLY ONCE FUN 3

When the door is closed, the clutch cannot
be disengaged several times, ONLY ONCE FUN 4

156

Problem with the Weak Synchronization of Strong Reactions
149

clutch disengaged

door closed

- When the clutch is disengaged, the door cannot be closed

several times

157

Problem with the Weak Synchronization of Strong Reactions
150

door closed

clutch
disengaged

- When the door is closed, the clutch cannot be disengaged

several times

158

The Full Picture 151

door is closed

clutch is engaged

door is open

clutch is disengaged

159

Strong Synchronization of two Strong Reactions 152

counter ca

counter cr

counter cb

counter cs

What we want:
ca = cb ∨ ca = cb + 1

cr = cs ∨ cr = cs + 1

160

How about counters ca and cb? 153

ca=cbca=cb+1

161

In Search of a Solution 154

ca=cbca=cb+1

a=1 and b=0

b=0

a=1

162

In Search of a Solution 155

ca=cbca=cb+1

a=1 and b=0

b=0

a=1

a = 1 ∧ b = 0 ⇒ ca = cb + 1 ?

163

This Solution Does not Work 156

a=1 and b=0 a=1 and b=0

ca=cbca=cb+1

b=0

a=1 a=1

b=0

164

The Solution: an Additional Variable m 157

ca=cbca=cb+1

m = 0m = 0

m = 1

m = 1 ⇒ ca = cb + 1
m = 0 ⇒ ca = cb

165

The Events 158

m = 0m = 0

m = 1

a_on

b_on

a_off

166

The Modified Events 159

a on
when

a = 0
r = 0

then
a := 1
ca := ca + 1
m := 1

end

b on
when

r = 1
a = 1
b = 0
s = 0
m = 1

then
b := 1
cb := cb + 1
m := 0

end

a off
when

a = 1
r = 1
b = 0
s = 0
m = 0

then
a := 0

end

167

How about counters cr and cs 160

m = 0m = 0

m = 1

cr=cscr=cs+1cr=cs

168

In Search of a Solution 161

m = 0m = 0

m = 1

cr=cscr=cs+1cr=cs

r=1 and s=0

s=0

r=1

s=0

169

In Search of a Solution 162

m = 0m = 0

m = 1

cr=cscr=cs+1cr=cs

r=1 and s=0

s=0

r=1

s=0

r = 1 ∧ s = 0 ⇒ cr = cs + 1 ?

170

This Solution Does not Work 163

m = 0

m = 1

cr=cscr=cs+1cr=cs

r=1 and

s=0

r=1

s=0

r=1 s=0and

s=0

r=1

m = 0s=0

171

The Solution 164

m = 0

cr=cscr=cs+1cr=cs

r=1 and

s=0

r=1

s=0

r=1 s=0and

s=0

r=1

m = 1

m = 1

b=1

b=0 m = 0

172

The Solution 165

m = 0

cr=cscr=cs+1cr=cs

r=1 and

s=0

r=1

s=0

r=1 s=0and

s=0

r=1

m = 1

m = 1

b=1

b=0 m = 0

r = 1 ∧ s = 0 ∧ (m = 1 ∨ b = 1) ⇒ cr = cs + 1

r = 0 ∨ s = 1 ∨ (m = 0 ∧ b = 0) ⇒ cr = cs

173

Summary of Refinement: the state 166

dbl2 1: m ∈ {0, 1}

dbl2 2: m = 1 ⇒ ca = cb + 1

dbl2 3: m = 0 ⇒ ca = cb

dbl2 4: r = 1 ∧ s = 0 ∧ (m = 1 ∨ b = 1) ⇒ cr = cs + 1

dbl2 5: r = 0 ∨ s = 1 ∨ (m = 0 ∧ b = 0) ⇒ cr = cs

174

Summary of Refinement: the state 167

dbl2 1: m ∈ {0, 1}

dbl2 2: m = 1 ⇒ ca = cb + 1

dbl2 3: m = 0 ⇒ ca = cb

dbl2 4: r = 1 ∧ s = 0 ∧ (m = 1 ∨ b = 1) ⇒ cr = cs + 1

dbl2 5: r = 0 ∨ s = 1 ∨ (m = 0 ∧ b = 0) ⇒ cr = cs

- The following theorems are easy to prove

thm2 1: ca = cb ∨ ca = cb + 1

thm2 2: cr = cs ∨ cr = cs + 1

175

More Invariants 168

dbl2 1: m ∈ {0, 1}

dbl2 2: m = 1 ⇒ ca = cb + 1

dbl2 3: m = 0 ⇒ ca = cb

dbl2 4: r = 1 ∧ s = 0 ∧ (m = 1 ∨ b = 1) ⇒ cr = cs + 1

dbl2 5: r = 0 ∨ s = 1 ∨ (m = 0 ∧ b = 0) ⇒ cr = cs

dbl2 6: r = 1 ∧ a = 0 ⇒ m = 0

dbl2 7: m = 1 ⇒ s = 0

- The two new invariants were discovered while doing the proof

- The proofs are now completely automatic

176

m = 1

r=1

a=0

m=0
s=0

177

Instantiation 169

door closed

clutch

engaged

treat_open_door

(a_off)

treat_close_door

(a_on)

treat_start_clutch (b_on)

178

Pattern Instantiation for the 6th Refinement 170

- We instantiate the pattern as follows:

a ; door actuator
r ; door sensor
0 ; open
1 ; closed

b ; clutch actuator
s ; clutch sensor
0 ; disengaged
1 ; engaged

a on ; treat close door
a off ; treat open door
b on ; treat start clutch

179

6th Refinement: Adapting the events of the pattern (2) 171

a on
when

a = 0
r = 0

then
a := 1
m := 1

end

treat close door
when

door actuator = open
door sensor = open
motor actuator = working
motor sensor = working

then
door actuator := closed
m := 1

end

180

6th Refinement: Adapting the events of the pattern (2) 172

b on
when

b = 0
s = 0
r = 1
a = 1
m = 1

then
b := 1
m := 0

end

treat start clutch
when

motor actuator = working
motor sensor = working
clutch actuator = disengaged
clutch sensor = disengaged
door sensor = closed
door actuator = closed
m = 1

then
clutch actuator := engaged
m := 0

end

181

6th Refinement: Adapting the events of the pattern (3) 173

a off
when

a = 1
r = 1
s = 0
b = 0
m = 0

then
a := 0

end

treat open door
when

door actuator = closed
door sensor = closed
clutch sensor = disengaged
clutch actuator = disengaged
m = 0

then
door actuator := open

end

182

The Complete Synchronization of Door and Clutch 174

treat_close_door

treat_start_clutch

treat_stop_clutch

push_stop_clutch_button (B4)

door_close

clutch_stop

treat_open_door

clutch_start

door_open

push_start_clutch_button (B3)

- treat close door is the result of depressing button B3

- treat stop clutch is the result of depressing button B4

- treat start clutch and treat open door are automatic
183

Sixth Refinement: Summary of the Events (1) 175

- Environment (no new events)

- motor start

- motor stop

- clutch start

- clutch stop

- door close

- door open

- push start motor button

- release start motor button

- push stop motor button

- release stop motor button

184

Sixth Refinement: Summary of the Events (2) 176

- Controller (no new events)

- treat push start motor button

- treat push start motor button false

- treat push stop motor button

- treat push stop motor button false

- treat release start motor button

- treat release stop motor button

- treat start clutch

- treat stop clutch

- treat close door

- treat open door

185

7th Reft.: Connecting the Controller to the Clutch Buttons 177

MOTOR

motor_actuator

motor_sensor

CLUTCH

clutch_actuator

clutch_sensor

DOOR

door_sensordoor_actuator

StopStart Start Stop

ClutchMotor

start_motor_impulse

stop_motor_impulse

start_clutch_impulse

stop_clutch_impulse

CONTROLLER

m

186

Reminder: Synchronizing Door and Clutch 178

- There are no door buttons

- The door must be closed before engaging the clutch

- The door must be opened after disengaging the clutch

- It is sufficient to connect:

- button B3 to the door (closing the door)

- button B4 to the clutch (disengaging the clutch)

187

Seventh Refinement: Summary of the Events (Environment) 179

- motor start

- motor stop

- clutch start

- clutch stop

- door close

- door open

- push start motor button

- release start motor button

- push stop motor button

- release stop motor button

- push start clutch button

- release start clutch button

- push stop clutch button

- release stop clutch button

188

Seventh Refinement: Summary of the Events (Controller) 180

- treat push start motor button

- treat push start motor button false

- treat push stop motor button

- treat push stop motor button false

- treat release start motor button

- treat release stop motor button

- treat start clutch

- treat stop clutch

- treat close door

- treat open door

- treat close door false

- treat stop clutch false

- treat release start clutch button

- treat release stop clutch button

189

Decomposing the Final Model: Environment 181

- The environment events

- The environment variables modified by environment events

- The sensor variables modified by environment events

- The actuator variables read by environment events

- The controller variables not seen by environment events

- No environment variables in this model

190

Decomposing the Final Model: Controller 182

- The controller events

- The controller variables modified by controller events

- The sensor variables read by controller events

- The actuator variables modified by controller events

- The environment variables not seen by controller events

- No environment variables in this model

191

Summary: Variables of the Last Refinement (1) 183

- 7 sensor variables:

- motor sensor

- clutch sensor

- door sensor

- start motor button

- stop motor button

- start clutch button

- stop clutch button

192

Summary: Variables of the Last Refinement (2) 184

- 3 actuator variables:

- motor actuator

- clutch actuator

- door actuator

- 5 controller variables (without the counter variables):

- start motor impulse

- stop motor impulse

- start clutch impulse

- stop clutch impulse

- m

193

Summary: Events of the Last Refinement 185

- 14 environment events,

- 14 controller events,

- 130 lines for environment events,

- 180 lines for controller events.

194

Summary: Usage of the Design Patterns 186

- 4 weak reactions: 4 buttons (B1, B2, B3, B4)

- 3 strong reactions: 3 devices (motor, clutch, door)

- 3 strong-weak reactions: motor-clutch, clutch-door, motor-door

- 1 strong-strong reaction: clutch-door

195

Summary: Number of Invariants 187

- Weak reaction: 6

- Strong reaction: 3

- Strong-weak reaction: 16

- Strong-strong reaction: 7

- Total: 32

- Press (typing): 15

- Total: 15

196

Summary: Number of Proof Obligations 188

- Weak reaction: 18

- Strong reaction: 12

- Strong-weak reaction: 60

- Strong-strong reaction: 40

- Total: 130

- Press: 0

- PO saving: 4x18 + 3x12 + 3x60 + 40 = 328

197

Summary: Proofs 189

- Design patterns: 2 easy interactive, out of 130

- Press: 0

198

Summary: Simulation 190

- 600 lines of C code for the simulation,

- 470 lines come from a direct translation of the last refinement,

- 130 lines correspond to the hand-written interface.

199

D E M 0-1 (Simulation)

D E M 0-2 (Animation)

200

Conclusion 191

- This design pattern approach seems to be fruitful

- It results in a very systematic formal development

- Many other patterns have to be developed

- More automation has to be provided (plug-in)

201

A Possible "Compiler" for Tomorrow 192

D E S I G N

D A T A B A S E

I N T E R F A C E

Provers
Checker

Static

Translator

Model

Checker
Animator

Generator

Tool

Proof

Obligation

UML

D E S I G N A N D V E R I F I C A T I O N P L U G − I N S

202

Thanks for Listening

203

	sld_intro_light
	sld.press

