

http://www.microsoft.com/whdc/devtools/tools/sdv.mspx

http://en.wikipedia.org/wiki/Microsoft_Platform_SDK

http://www.microsoft.com/whdc/devtools/tools/sdv.mspx

http://en.wikipedia.org/wiki/Microsoft_Platform_SDK

http://www.microsoft.com/whdc/devtools/tools/sdv.mspx

http://www.gotdotnet.com/team/fxcop/

http://research.microsoft.com/specsharp/

void foo(int *arr, int len);

void foo(__ecount(len) int *arr, int len);

void foo(__ecount(len) int *arr, int len);

int a[20];
foo(a,21);

void foo(__ecount(len) int *arr, int len);

for(int i=0;i<=len;i++) {
arr[i] = 0;

}

SAL Ecosystem

Code Base

SALinfer

Code Review

Potential

Defects
SAL Fixes /

Code Fixes

SAL

Annotated

Code
Manual

Annotations
SALstats

espX/

PREfast/

PREfix /

Windows Vista
•mandate: Annotate 100,000 mutable buffers
•developers annotated 500,000+ parameters
•developers fixed 20,000+ bugs

Office 2007
•developers fixed 6,500+ bugs

Mathematical specification:

http://research.microsoft.com/users/lamport/tla/

Project X

http://research.microsoft.com/projects/X/

Model-based specification and testing: X→specexplorer

Languages: X∈{clrgen, comega, fsharp}

Modular verification of programs with contracts:

SAL and buffer overflows (Visual Studio)

X∈{specsharp, havoc}

Model checking (sequential programs): X→slam

Model checking (concurrent programs): X∈{zing, chess}

Security for web services: X→samoa

Test generation: X→pex

Automated theorem proving: X→z3

Worse is better, also called the New Jersey style,
is the name of a computer software design
approach (or design philosophy) in which simplicity
of both interface and implementation is more
important than any other system attribute (including
correctness, consistency, and completeness).

http://en.wikipedia.org/wiki/Worse_is_Better

http://en.wikipedia.org/wiki/Robert_Tappan_Morris

unreachable

States

reachable

init

unsafe

unsafe

State Machine
for Locking

state {

enum {unlocked,locked}

s := unlocked;

}

KeAcquireSpinLock.entry {

if (s=locked) error;

else s := locked;

}

KeReleaseSpinLock.entry {

if (s=unlocked) error;

else s := unlocked;

}

Locking Rule in
SLIC

do {
KeAcquireSpinLock();

nPacketsOld := nPackets;

if(request){
request := request->Next;
KeReleaseSpinLock();

nPackets++;
}

} while (nPackets != nPacketsOld);

KeReleaseSpinLock();

Example
Does this code

obey the
locking rule?

do {
KeAcquireSpinLock();

if(*){

KeReleaseSpinLock();

}
} while (*);

KeReleaseSpinLock();

Example
Model checking
boolean program

U

L

L

L

L

U

L

U

U

U

E

do {
KeAcquireSpinLock();

nPacketsOld := nPackets;

if(request){
request := request->Next;
KeReleaseSpinLock();

nPackets++;

}
} while (nPackets != nPacketsOld);

KeReleaseSpinLock();

Example
Is error path feasible

in C program?

U

L

L

L

L

U

L

U

U

U

E

b : (nPacketsOld = nPackets)

do {
KeAcquireSpinLock();

nPacketsOld := nPackets; b := true;

if(request){
request := request->Next;
KeReleaseSpinLock();

nPackets++; b := b ? false : *;

}
} while (nPackets != nPacketsOld); !b

KeReleaseSpinLock();

Example
Add new predicate
to boolean program

b : (nPacketsOld = nPackets)

U

L

L

L

L

U

L

U

U

U

E

do {
KeAcquireSpinLock();

b := true;

if(*){

KeReleaseSpinLock();

b := b ? false : *;

}
} while (!b);

KeReleaseSpinLock();

b

b

b

b

Example
Model checking

refined
boolean program

b : (nPacketsOld = nPackets)

U

L

L

L

L

U

L

U

U

U

E

b

b

!b

Example

do {
KeAcquireSpinLock();

b := true;

if(*){

KeReleaseSpinLock();

b := b ? false : *;

}
} while (!b);

KeReleaseSpinLock();

b : (nPacketsOld = nPackets)

b

b

b

b

U

L

L

L

L

U

L

U

U

b

b

!b

Model checking
refined

boolean program

Inferred Invariant

Counterexample-driven refinement

C
Program

predicate

abstraction

boolean

program

path

feasibility

check

symbolic

reachability

Env code
SLIC
Rule

+

new

predicates

error

path

Quote

• Ed Clarke
– “The SLAM model checker developed at

Microsoft Research for finding errors in
Windows device drivers is probably the most
successful software model checker.
However,…”

– July’08 CACM, page 111

C
Program

predicate

abstraction

boolean

program

path

feasibility

check

symbolic

reachability

Env code
SLIC
Rule

+

new

predicates

error

path

g, l h, m g, l

h,
m
n

g, l h,

CHESS: Systematic Concurrency Testing

Thomas Ball, Sebastian Burckhardt,

Madan Musuvathi, Shaz Qadeer

Software Reliability Research

Microsoft Research

Testing concurrent programs is HARD

� Bugs hidden in rare thread interleavings

� Today, concurrency testing == stress testing

� Poor coverage of interleavings

� Unpredictable coverage results in “Heisenbugs”

� The mark of reliability of the system still remains its

ability to withstand stress

CHESS in a nutshell

� Replace the OS scheduler with

a demonic scheduler

� Systematically explore all

scheduling choices

Concurrent

Program

Concurrent

Program

Win32 API

Kernel

Scheduler

Demonic

Scheduler

Enumerating thread interleavings

x++;

x++;

x++;

x++;

x*=2;

x*=2;

x*=2;

x*=2;

44

11

00

22

88

4433

22

5566

11

00

00

22

22 22

11

44 33

Demo: Don’t stress, use CHESS

CHESS goals

� Scale to large programs

� In the limit, verify that the program is correct for a

given input

� Provide qualified coverage guarantees

CHESS architecture

Kernel:

Threads, Scheduler,

Synchronization Objects

While(not done) {

TestScenario()

}

While(not done) {

TestScenario()

}

TestScenario() {

…

}

Program

CHESS
CHESS runs the scenario in a loop

• Every run takes a different interleaving

• Every run is repeatable

Win32 API

Intercept synch. & threading calls
• To control and introduce nondeterminism

Detect
• Assertion violations

• Deadlocks

• Dataraces

• Livelocks

Stateless model checking [Verisoft ‘97]

� Systematically enumerate all paths in a state-space

graph

� Don’t capture program states

� Capturing states is extremely hard for large programs

� Effective for message-passing programs

Outline

� Preemption bounding

� Makes CHESS effective on deep state spaces

� Fair stateless model checking

x = 1;

…

…

…

…

…

y = k;

x = 1;

…

…

…

…

…

y = k;

State space explosion

x = 1;

…

…

…

…

…

y = k;

x = 1;

…

…

…

…

…

y = k;

…

n threads

k steps

each

� Number of executions

= O(nnk)

� Exponential in both n and k

� Typically: n < 10 k > 100

� Limits scalability to large

programs

Goal: Scale CHESS to large programs (large k)

x = 1;

if (p != 0) {

x = p->f;

}

x = 1;

if (p != 0) {

x = p->f;

}

Preemption bounding

x = p->f;

}

x = p->f;

}

x = 1;

if (p != 0) {

x = 1;

if (p != 0) {

p = 0;p = 0;

preemption

non-preemption

Polynomial state space
� Terminating program with fixed inputs and deterministic

threads

� n threads, k steps each, c preemptions

� Number of executions <= nkCc . (n+c)!

= O((n2k)c. n!)

Exponential in n and c, but not in k

x = 1;

…

…

…

…

…

y = k;

x = 1;

…

…

…

…

…

y = k;

x = 1;

…

…

…

…

…

y = k;

x = 1;

…

…

…

…

…

y = k;

x = 1;

…

…

…

…

x = 1;

…

…

…

…

x = 1;

…

…

…

x = 1;

…

…

…

…

y = k;

…

y = k;

…

…

…

…

y = k;y = k;

• Choose c preemption points

• Permute n+c atomic blocks

Find lots of bugs with 2 preemptions
Program Lines of code Bugs

Work Stealing Q 4K 4

CDS 6K 1

CCR 9K 3

ConcRT 16K 4

Dryad 18K 7

APE 19K 4

STM 20K 2

TPL 24K 9

PLINQ 24K 1

Singularity 175K 2

37 (total)

Acknowledgement: testers from PCP team

Outline

� Preemption bounding

� Makes CHESS effective on deep state spaces

� Fair stateless model checking

� Makes CHESS effective on cyclic state spaces

� Enables CHESS to find liveness violations (livelocks)

Concurrent programs have cyclic state spaces

� Spinlocks
� Non-blocking algorithms
� Implementations of synchronization primitives
� Periodic timers
� …

L1: while(! done) {

L2: Sleep();

}

L1: while(! done) {

L2: Sleep();

}

M1: done = 1;M1: done = 1;

! done

L2

! done

L2

! done

L1

! done

L1

done

L2

done

L2

done

L1

done

L1

A demonic scheduler unrolls any cycle

ad-infinitum

! done! done

donedone! done! done

donedone! done! done

donedone

while(! done)

{

Sleep();

}

while(! done)

{

Sleep();

}

done = 1;done = 1;

! done! done

Depth bounding

! done! done

donedone! done! done

donedone! done! done

donedone! done! done

� Prune executions beyond a bounded number of steps

Depth bound

Problem 1: Ineffective state coverage

! done! done

! done! done

! done! done

! done! done

� Bound has to be large enough to

reach the deepest bug

� Typically, greater than 100

synchronization operations

� Every unrolling of a cycle

redundantly explores reachable

state space

Depth bound

Problem 2: Cannot find livelocks

� Livelocks : lack of progress in a program

temp = done;

while(! temp)

{

Sleep();

}

temp = done;

while(! temp)

{

Sleep();

}

done = 1;done = 1;

Key idea

� This test terminates only when the scheduler is fair

� Fairness is assumed by programmers

All cycles in correct programs are unfair

A fair cycle is a livelock

while(! done)

{

Sleep();

}

while(! done)

{

Sleep();

}

done = 1;done = 1;
! done! done! done! done

donedonedonedone

We need a fair demonic scheduler

� Avoid unrolling unfair cycles

� Effective state coverage

� Detect fair cycles

� Find livelocks

Concurrent

Program

Concurrent

Program

Test

Harness

Test

Harness

Win32 API

Demonic

Scheduler

Fair

Demonic

Scheduler

Good Samaritan violation

� Thread yield the processor when not making progress

� Forall threads t : GF scheduled(t) � GF yield(t)

� Found many such violations, including one in the

Singularity boot process

� Results in “sluggish I/O” behavior during bootup

while(! done)

{

;

}

while(! done)

{

;

}

done = 1;done = 1;

Conclusion

� Don’t stress, use CHESS

� CHESS binary and papers available at

http://research.microsoft.com/CHESS

Questions

	L1 intro
	L2 BP
	L3 reachability
	L4 interprocedural
	L5 mystery

