
Checking Safety Properties

of

Sequential Programs via Static Analysis

Thomas Ball
Microsoft Research, Redmond, USA

At Microsoft, we now regularly apply a new generation of static analysis tools that can automatically
identify serious defects in programs. These tools examine millions of lines of code every day, long
before the software is released for general use. With these tools, we catch more defects earlier in the
software process, enabling Microsoft to deliver more reliable systems. A number of these tools have
been released for general use through Microsoft’s Visual Studio integrated development environment
as well as freely available development kits. In my lectures I will address the question: ”How does
one design and implement a static analysis tool chain to help people effectively address a software
reliability problem?” In particular, I will identify a set of basic techniques that have proven very useful
in constructing static analysis tools and have shown their worth through numerous applications.
Experience with these techniques suggests we are approaching an exciting time when more people
can contribute to the design and implementation of static analysis tools.

References

1. ASTREE:
Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., and
Rival, X. A Static Analyzer for Large Safety-Critical Software. In Proc of the ACM SIGPLAN
2003 Conference on Programming Language Design and Implementation, ACM, New York,
NY; pp 196–207; 2003. http://doi.acm.org/10.1145/781131.781153

2. ESPx:
Hackett, B., Das, M., Wang, D., and Yang, Z. Modular Checking for Buffer Overflows in the
Large. In Proc of the 28th International Conference on Software Engineering, ACM, New York,
NY; pp 232–241; 2006. http://doi.acm.org/10.1145/1134285.1134319

3. FindBugs:
Hovemeyer, D., Spacco, J., and Pugh, W. Evaluating and Tuning a Static Analysis to find Null
Pointer Bugs. In Proc of the 6th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, ACM, New York, NY; pp 13–19; 2005.
http://doi.acm.org/10.1145/1108792.1108798

4. Static Driver Verifier:
Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., Ondrusek, B.,
Rajamani, S. K., and Ustuner, A. Thorough Static Analysis of Device Drivers. In Proc of the
1st ACM Sigops/Eurosys European Conference on Computer Systems 2006, ACM, New York,
NY; pp 73–85; 2006. http://doi.acm.org/10.1145/1217935.1217943

5. Typestate Verification for Java:
Fink, S., Yahav, E., Dor, N., Ramalingam, G., and Geay, E. Effective Typestate Verification
in the Presence of Aliasing. In Proc of the 2006 International Symposium on Software Testing
and Analysis. ACM, New York, NY; pp 133–144; 2006.
http://doi.acm.org/10.1145/1146238.1146254

12


