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At Microsoft, we now regularly apply a new generation of static analysis tools that can automatically
identify serious defects in programs. These tools examine millions of lines of code every day, long
before the software is released for general use. With these tools, we catch more defects earlier in the
software process, enabling Microsoft to deliver more reliable systems. A number of these tools have
been released for general use through Microsoft’s Visual Studio integrated development environment
as well as freely available development kits. In my lectures I will address the question: ”How does
one design and implement a static analysis tool chain to help people effectively address a software
reliability problem?” In particular, I will identify a set of basic techniques that have proven very useful
in constructing static analysis tools and have shown their worth through numerous applications.
Experience with these techniques suggests we are approaching an exciting time when more people
can contribute to the design and implementation of static analysis tools.
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