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What is a System?

• System (from Latin systēma, in turn from Greek σύστηµα
systēma) is a set of interacting or interdependent entities, 
real or abstract, forming an integrated whole.

◊ This means that a system has a border

◊ That interactions take place - inside the system or between the 
system and its environment 

◊ A system’s behaviour can be represented by a set of processes
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What is a System?

• In physics the word system has a technical meaning, 
namely, it is the portion of the physical universe chosen for 
analysis. 
◊ Everything outside the system is known as the environment, which 

in analysis is ignored except for its effects on the system. 

◊ The cut between system and environment is a free choice, 
generally made to simplify the analysis as much as possible. 

◊ An isolated system is one which has negligible interaction with its 
environment - a closed in contrast to an open system.
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Discrete Event Systems

• In physics, system behaviors are often modeled by 
continuous functions depending on time. 

◊ There, the dynamics of a system is captured by a set of variables 
that change their values continuously over time. 

◊ Dependencies between these variables are captured by continuous 
functions and expressed by formulas of differential calculus and 
integration theory, where time is represented by real numbers. 

◊ The values of the continuous functions represent the states of the 
system at the corresponding points in time.

• Discrete event systems provide a more abstract logical 
model of technical or economical systems:

◊ Discrete steps of the systems modeled by events capture the 
dynamics of digital systems and discrete state changes.
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Example: Adaptive Cruise Control (ACC)

• Continuous model:

The negative/positive acceleration a of the car is a 
continuous function of the distance d to the successor car 
and the current speed s:

a(t) = f(d(t), s(t))

• Discrete model:

If the distance d to the successor (relative to the current 
speed s) is below the target value, the brake is activated:

d(t) < w(s(t)) ⇒ braking

distance too small ⇒ braking
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Continuous and Discrete Modeling
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What is a process 

• A process is a run (an execution) of a system

• For discrete systems the runs are discrete processes

• A system is in turn modelled by a set of processes

• A digital process is a finite or even an infinite set E of 
discrete events. 

• With each event some (instance of an) action is related
Tony Hoare:

a trace
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System Behaviors: Processes

• A discrete system shows a set of behaviors represented by 
processes. 

◊ In the literature a discrete system is often described by a state 
transition machine, for instance, or by a set of concurrent 
cooperating state machines, or by a Petri-Net. 

◊ When executing such a state machine, actions are carried out that 
correspond to state transitions. 

◊ Each instance of an action is an event. 

• Thus we associate for an interpreted process P (generated by the 
system) an action with each of its events.
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System Behaviors: Processes

• Let Ep be the set of events forming a process P. The 
concept of a discrete interpreted process is defined by a 
mapping 

act: Ep → Action

where Action is the set of actions of the system. 

◊ Each action defines a state change, a timing action or a 
communication action. 

◊ This leads to a slightly more sophisticated notion of a system 
behavior represented by a set of processes where each event is 
timed and corresponds to an action.
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Time

• Timing properties of systems can be classified into quantitative and 
qualitative aspects. 

• The quantitative aspects aim at measuring time and talk about time 
distances between discrete events leading to questions such as:

◊ How much time does it take until event A happens?

◊ How much time does it take until event B happens after event A had 
happened?

• If we are not interested in measures of time distances between events 
as in hard real time applications there remain questions addressing the 
qualitative nature of timing properties, expressed by the after/before 
relation. 

• Given such relations we can ask questions such as:

◊ Does event A happen after event B?

◊ Do events A and B happen simultaneously?

◊ Does event A always happen only after event B?
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Selecting Models of Time

• As a first critical question for system models we address 
the nature of time and its models:

◊ For which engineering tasks and when is it necessary or at least 
more convenient to work with continuous, dense time (think about 
the reals IR) and when is a model of discrete time (think about the 
naturals IN) good enough or even more appropriate?

• We work with discrete time in the following! 

◊ Discrete time is typical for digital systems that are pulse driven and 
proceed in discrete time steps. 

◊ We want to demonstrate in the following that also discrete time 
allows for time models that are as flexible as continuous time.
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Timed processes

• For each timed process formed by a set of events E their 
timing is a mapping

time: E → TIME

• If for the time domain TIME a linear order ≤ is given, a 
partial order ∠ (dependency order) is induced by the 
mapping time onto the sets of events (e1, e2 ∈ E):

e1 ∠ e2 ⇔ (time(e1) < time(e2)) ∨ e1 = e2

• We may consider processes with a partial order ∠ on the 
set of events without specifying time
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Question

• Are there dependency orders that are not induced by time?
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Discrete Timed Processes

• Let E be a set of timed events; then each subset 

P ⊆ E 

defines a discrete timed (sub-)process. 

• If the set of events is finite then P is called a finite process; 
otherwise it is called infinite. 

• By TPROCESS we denote the set of all timed processes.
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Observations about a system 

• We assume that at each time t we observe a finite family 
of events. 

◊ In each run of the system we make a sequence of observations, 
one at each time point. 

◊ The timing introduces a structure on the events of a process. For 
each time t ∈ TIME we define the sub-process (the partial process)

{e ∈ P: time(e) ≤ t}

that consists of all events that take place till time t. This process is 
denoted by P↓t. 
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Observations about a system 

• A logical property of a timed process is represented by a 
predicate

Q: TPROCESS → IB

A property Q that holds at time t is a predicate on (finite) 
processes applied to the set P↓t of events. 
◊ Each predicate Q of that type applied to a process P↓t is called an 

observation about a system or about a process till time t.

◊ We write also Qt(P) for Q(P↓t). 
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Temporal Operators

• We get a kind of temporal logic if we define (for a given 
process P) 

◊ Q ≡ ∃ t ∈ TIME: Qt(P)

Q ≡ ∀ t ∈ TIME: Qt(P)

By these formulas we can introduce the temporal operators 
in a rather straightforward manner.
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Stable observation

• An observation (a predicate) Q is called stable, if the 
following proposition

Qt(P) ∧ t < t’ ⇒ Qt’(P)

holds for all processes P and all times t, t’.
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Causality

• Causality is a notion that is more sophisticated than that of time. 

◊ Time is used to capture straightforward observations about systems. 

◊ Referring to causality we speak about the rules (“the logics”) for the 
occurrence of events and actions in the executions (processes) of systems.

◊ Timing is an observation about a single process representing a run of a 
system. 

◊ Causality speaks about the properties and rules that hold for all processes 
of a system and therefore deals with the logical properties of the system. 

◊ Causality addresses the rules and thus the logics of systems.

Tony Hoare:

Dependence
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Causality

• Causality addresses the logical dependencies between the events and 
actions in the digital processes of a concurrent interactive system S. 

• Causality actually deals both with liveness and safety in observations:

◊ Liveness: Which observation A about the system S guarantees another 
observation B to follow later eventually: we say “in system S observation A
leads_to observation B”.

◊ Safety: Which observation B for the system S occurs only if another 
observation A was observed before: we may write “in system S observation 
B ⇒ observation A”; we write B requires A

◊ however, this expression using implication does not properly express the 
relation between the two observations stating that B follows only after A, 
since the causal relationship is expressed rather implicitly this way.
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Example. Airbag

• An airbag in a car is activated only if the crash sensor 
indicated a crash and whenever the crash sensor indicates a 
crash it is activated. 

• Both observations are stable. 

◊ Therefore if we do not consider time flow the two propositions: 
“crash sensor indicates crash” (csic) and “airbag is activated” (aia) 
are logical equivalent for completed processes.

• For time flow we require that 

∀ t: csic(P↓t) ⇐ aia(P↓t)

∀ t: csic(P↓t) ⇒ ∃ t’: t ≤ t’ ∧ aia(P↓t’)
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Example. Air Bag (continued) 

• For instance, in the case of an airbag

(*) crash_sensor_indicates_crash ⇒ airbag_is_activated

• This system property expresses that for each (complete) process of the 
airbag system this implication is valid. 

◊ if crash_sensor_indicates_crash, this leads_to airbag_is_activated. 

• For the airbag we also assume the validity of the formula:

airbag_is_activated ⇒ crash_sensor_indicates_crash

• Now the “leads-to” interpretation is no longer appropriate. A more 
accurate interpretation is: “If the air bag is activated then the crash 
sensor has indicated a crash before.”
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Causality contrasted with conditionals

• Conditional statements are not statements of causality. 

◊ Perhaps the most important distinction is that statements of 
causality require the antecedent to precede the consequent in time, 
whereas this temporal order is not required by a conditional 
statement. 

◊ Since many different statements may be presented using 
"If...then..." in English (and, arguably, because this form is far 
more commonly used to make a statement of causality), they are 
commonly confused; they are distinct, however.
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Stable Observations, Causality, and Conditional

• An observation is called stable for a process P, if in terms of temporal 
logic

(A ⇒ ◊ A)

• If A is causal for B and if A and B are stable then for each complete 
process P system causality boils down to implication:

A(P) ⇒ B(P) and B(P) ⇒ A(P)

• Here logically there is no asymmetry between A and B, which indicates 
that by simple implication the causal relationship between A and B are 
not modelled appropriately. 

◊ Causality is reduced to logical equivalence when abstracting from timing. If 
we include timing the asymmetry between A and B becomes observable. 

◊ There exist times t such that A(P↓t) holds but not B(P↓t). We get for all 
times t (recall that we assume that A and B are stable)

B(P↓t) ⇒ A(P↓t)
A(P↓t) ⇒ ∃ t’ : t ≤ t’ ∧ B(P↓t)
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Causality in systems

• Causality addresses the logical dependencies between the 
events (and in turn the actions) of a system. 

• Causality is a way to “understand” a system. 

◊ Certain events and actions may take place or not (such as input). 
Other events and actions can be caused by these events and 
actions (such as output). 

◊ If a system has no rules of causality it is chaotic. 

◊ Then all actions and events may occur at all times in a completely 
unrelated random manner.
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Causality: safety and liveness properties of systems

• An event A may guarantee an event B to happen later. This 
relationship is what is called a liveness property. 

• An event B may only happen if event A has happened before. This 
relationship is what is called a safety property. 

• There are basically two aspects of causality between two events (or 
actions) A and B. If A is causal for B, we may assume that

◊ A enforces (leads_to) B: this means that whenever event A occurs event 
B eventually occurs (later),

◊ B requires A: this means that event B does not occur if event A did not 
take place before.

Example. AirBag (continued)

• For the airbag we obviously get the rules

crash_sensor_indicates_crash enforces airbag_is_activated

as well as 

airbag_is_acivated requires crash_sensor_indicates_crash. 
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Causality  and system properties

• A property Q is called causal for a property Q’ if for each system run 

◊ whenever we observe Q at some time t at some time later t’ > t we 
observe Q’. 

◊ Whenever we observe Q’ at some time t’ there exists some time with t < t’
such that Q holds.

• We say “observation A is causal for observation B in system S” if for 
each process P ∈ S we have (for all times t ∈ TIME)

A(P↓t) ⇒ ∃ t’ ∈ TIME: t ≤ t’ ∧ B(P↓t’)

B(P↓t) ⇒ ∃ t’ ∈ TIME: t’ ≤ t ∧ A(P↓t’)

• The first formula is capturing what is called the “leads-to”-property in 
temporal logic expressed by temporal logic as follows:

(A ⇒ ◊ B)
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The very nature of causality

• If we assume in systems that there are mechanisms 
(“algorithms”) that enforce that certain actions are 
executed by some control flow, this gives us a very 
concrete (“operational”) idea of causality. 

◊ On the other hand we may develop some idea about causality only 
by observing systems and their generated actions and try to 
conclude causality relations from that. 
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The very nature of causality

• Actually there are along these lines two ways to look at the causality of a 
system:

◊ in an intentional view (“glass box view”) we study the internal structure and 
mechanisms of a system  to recognize that certain events A are causal for certain 
events B due to the technical mechanisms (the “algorithmics”) that control the 
behavior and the flow of actions and events of the system.

◊ in an extensional view (“black box view”) to causality we study only observations 
about a system in terms of its events and actions and their temporal relationships 
without any knowledge of the internal structure and mechanisms of the system. In 
the set of all observations we may recognize certain regularities that we then call 
causal dependencies.

• In the first case we can speak about the causality within a single process or a 
single instance. 

• In the second case we speak about the causality within the system considering 
all its processes. 
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Extensional causality

• Extensional causality can be seen as an abstraction of 
intentional causality. 

◊ By this abstraction some intentional causality may get hidden. 

◊ We get a universal notion of extensional (“observable”) causality for 
a system S modeled by its set of timed processes.
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Observing Causality

• If we can only observe runs of a system with the events 
and their timing we get processes that are sets of events 
with their timing. 

◊ From the set of all observations we cannot derive the intentional 
causality, in general. 

◊ Intentional causality allows us to talk about the causality within a 
single execution represented by a process, while extensional 
causality considers a system as a whole with all its processes.

• In spite of the example above, causality and 
nondeterminism are independent notions. We do not even 
have to have a notion of nondeterminism to introduce the 
concept of causality and vice versa.
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Causality and Time

• Of course, we can also model causality for event structures that model 
systems by concurrent traces. 

◊ There causality is a logical relationship between the events of a system. 

◊ We work with a universal notion of extensional causality for a system S
consisting of a set of timed processes.

• Time or at least a time-based ordering of the events are an indispensable 
instrument to capture and measure causality.

◊ If event A is causal for event B then it certainly holds that B happens after A. 

◊ The reverse does not hold. 

◊ If in an observation an event A is before an event B this does not mean 
necessarily that they are causally related. 

◊ However, if A occurs in all processes (all observations) before B (whenever A
occurs) then we may assume a causal relationship between the events A and 
B. 
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Strong and Weak Causality

• We call a system model strongly causal if all events that 
are intentionally causal to each other are strictly separated 
by their timing; more precisely the time scale is fine 
enough that whenever an event e1 is causal for an event 
e2 then we have

time(e1) < time(e2)

◊ Of course, in any case, we assume for causal events

time(e1) ≤ time(e2)

◊ We speak of weak causality if at least this property holds for a 
system model.

◊ Weak causality is what we at least expect for any faithful model of 
real world system. Only if we would include “incorrect” observations 
then the “law of weak causality” does not hold any longer.
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Time Granularity and Causality

• Given a timed process P with the event set E and the timing function

time: E → TIME

We can change (“transform”) the timing of the process P by a function

trans: TIME → TIME’

where we assume the following monotonicity property for all times t1, 
t2 ∈ TIME:

t1 ≤ t2 ⇒ trans(t1) ≤ trans(t2)
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Time Granularity and Causality

• Given a time transformation function we get a new timing for process P 
by the function

time’: E → TIME’

specified by the formula (for all events e ∈ E)

time’(e) = trans(time(e))

• As a result of a time transformation, the new timing may be coarser.

◊ Events e1 and e2 with the timing property time(e1) < time(e2) may become 
simultaneous events under time’. 

◊ In other words, we may get time’(e1) = time’(e2). 

◊ We speak of a time coarsening in this case.
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Interface View: Causality between Input and Output

• We study a specific form of causality for systems in the following, namely 
the causality between their input and output events. We work under 
following hypothesis:

◊ there is a canonical notion of extensional causality between input and output.

• This idea of causality captures the essential relationship between input 
and output. 

◊ For a system we assume that we have a clear notion of input, which means 
input events can be chosen arbitrarily by the environment (and must be 
accepted by the system). 

◊ The input events form a sub-process called the input process. The system may 
or must react to such input by output. 

◊ This manifests the fundamental principle of causality between input and 
output. 

◊ Of course, in addition, there may be a causal relationship between the output 
events observable, which manifests some additional logics of the system. 
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Hume and Causality

• Hume calls causality "the cement of the universe" --
implying that it holds everything together. 

• Causality is an important topic in philosophy generally and 
in the philosophy of science. 

• Understanding what 

◊ causes are helps us to understand how minds might (or might not)
relate to bodies, 

◊ how free will might (or might not) work, 

◊ how ideas might (or might not) influence action, and 

◊ how bodies might come to produce changes in other bodies.

David Hume (April 26, 1711 – August 25, 1776), Scottish 
philosopher, economist, and historian is considered among 
the most important figures in the history of Western 
philosophy and the Scottish Enlightenment.
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The Lectures I- IV
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Interactive Asynchronous Systems with Interfaces

An interactive asynchronous system  

• exchanges messages (input and output) with its 
environment via its input and output channels

• it has an interface which consists of its sets of input and 
output channels where for each channel a set of messages 
is specified

• the message exchange is carried out in a global time frame

• is an encapsulation of state (and corresponds to a state 
machine with input and output)
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System class: distributed, reactive systems

Towards a uniform model: Basic system model

lc

clLM Control RM

cr

rc

kc
component

channel

System consists of

• named components (with local state)

• named channels

driven by global, discrete clock

channel 
name

component 
name
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Basic Model

E

eq

qe
Q

t t+1 t+2 t+3

<a,d,a,b> <>

Timed Streams: Semantic Model for Black-Box-Behavior

Messages 
transmitted at time t

infinite channel 
history

Message set:

M = {a, b, c, ...}
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Streams

• A stream of a given set M is a finite or an infinite sequence 
elements from M
M* denotes the set of finite sequences over M including the empty

sequence 〈〉,

M∞ denotes the set of infinite sequences over M (that are represented 
by the total mappings ΙΝ\{0} → M). 

• A stream is a member of the set Mω that is defined by the 
equation

Mω = M* ∪ M∞
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Streams - Notation

〈〉 empty sequence or empty stream,

〈m〉 one-element sequence containing m as its only element,

x.t t-th element of the stream x, which is a sequence 

in the case of a timed stream

#x length of the stream x,

xˆz concatenation of the sequence x to the sequence or stream z, 

x↓t prefix of length t of the stream x  (which is a sequence with t elements, 

in the case of a timed stream a sequence with t sequences as elements), 

provided x has at least t elements (otherwise x↓t = x), 

Sx stream obtained from x by deleting all its messages that are not

elements of the set S.
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Timed Streams

• A timed stream over the set M is given by an infinite 
stream a sequences of messages from M

(M*)∞= ΙΝ\{0} → M*

An example of a timed stream over the set {a, b, c, ..., z}

  〈c e〉 〈〉 〈b a d〉 〈k a b b〉 〈d d〉 ... 
 
 1 2 3 4 5 ...  time 
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The Basic Behaviour Model: Streams and Functions

 

 
C     set of channels 
 
Type: C → TYPE  type assignment 
 
x : C → (IN\{0} → ) channel history for messages of type M 
 
    
r 
C  or IH[C]    set of channel histories for channels in C 
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System interface modelSystem interface model

 
x1: S 1 
xn: S n 

y1: T 1 

ym : T m  
F 

M  M  

Channel: Identifier of Type stream 
 
I = { x 1 , x2 , ... } set of typed input channels 
O = { y1 , y2 , ... }  set of typed output channels 
 
 
 

Interface behavior 
 
 
Set of interfaces: IF[I � O] 

F :   
r 
I  → ℘(  

r 
O ) 
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Specification of I/O-Behaviors

• An I/O-behavior represents a model of the behavior of a system. 

• By logical means, an I/O-behavior F can be described by a logical 
formula, called specifying assertion relating the streams on the input 
channels to the streams on the output channels. 

• In such a formula channel identifiers occur syntactically as identifiers 
(variables) for streams of the respective type. 

• The specifying formulas are interpreted in the standard way of typed 
higher order predicate logic.

• An abstract specification of a system provides the following 
information:

◊ its syntactic interface, describing the input and output channels by which 
the system interacts with its environment,

◊ its behavior by a specifying formula Φ relating input and output channel 
valuations.
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Example: Component interface specification

 

A transmission component TMC 

 
TMC 
  in    x: T 

  out  y: T 

  x ~ y 
 

x ~ y ≡ (  m ∈ T: {m} x = {m} y) 

TMC
x ~ y 

x:T y:T

Input channel

Output channel

Specifying assertion

Spec name
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I O

Component interface

System interfaces and Causality

(I � O) syntactic interface with set of
input channels I and of output channels O

F :   
r 
I  → ℘(  

r 
O ) semantic interface for (I � O)

with timing property addressing causality
 (let x, z ∈   

r 
I , y ∈   

r 
O , t ∈ IN):

x↓t = z↓t ⇒ {y ↓t+1: y ∈ F(x)} = {y ↓t+1: y ∈ F(z)}

x↓t   prefix of history x with t finite sequences

A system is a total behavior
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Causality

• Causality makes sure that there is a proper relationship 
between time and input/output

• Example: Causality for TCM

Channels Interval 
1 

Interval 
2 

Interval 
3 

Interval 
4 

Interval 
5 

x 〈a  b  b〉 〈 〉 〈c  b〉 〈d  b  e〉 〈 a d 〉 

y 〈 〉 〈b  a〉 〈 b 〉 〈 c 〉 〈         〉 
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Example: TMC with Causality

 
 

TMC 
  in    x: T 

  out  y: T 

    x ~ y 

∧  t ∈ IN:  m ∈ T: {m} (x↓ �t)  {m} (y↓t+1)  
 

TMC
x ~ y 

x:T y:T
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Delay by n Time Units

• We write delay(F, n), if F is a behavior with a delay by (at 
least) n time units:

delay(F, n) ≡ [∀ x, z, t: x↓t = z↓t ⇒ (F.x)↓t+n = (F.z)↓t+n]
• In other words, 

◊ F is (weakly) causal if delay(F, 0) holds and 

◊ strongly causal if delay(F, 1) holds.

• For all n, m ∈ IN (the proof is straightforward):

n ≤ m ∧ delay(F, m) ⇒ delay(F, n)

• There is a maximal number n such that delay(F, n) holds 

provided the input has effects on the output.
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Deterministic behaviour

An I/O-behavior: 

 F:   
r 
Ι → ℘(  

r 
Ο ) 

is isomorphic to a relation which is a subset of   
r 
Ι  ×   

r 
Ο .  

Given an input history x ∈   
r 
Ι , F.x denotes the se t of all output 

histories that F may show in reaction to the input x. 

F is called deterministic,  

if F.x is a one-element set for each x ∈   
r 
Ι .  

A deterministic I/O-behavior represents a function f:   
r 
Ι →  

r 
Ο .  

f is called a realization of a behavior F if f.x ∈ F.x for all x ∈   
r 
Ι  
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F1 ∈ IF[I1�O1] 
F2 ∈ IF[I2�O2] 
 
C1 = O1 ∩ I2  
C2 = O2 ∩ I1  
I = I1\C2 ∪ I2\C1 
O =  O1\C1 ∪ O2\C2 
 
F1⊗F2 ∈ IF[I � O], 
 
(F1⊗F2).x = {z|O: x = z|I ∧ z|O1 ∈ F1(z|I1) ∧ z|O2 ∈ F2(z|I2)} 

I2\C1

O2\C2C1

C2O1\C1

I1\C2 F1 F2

Composition of Systems
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f1 ∈ IF[I1�O1] deterministic 
f2 ∈ IF[I2�O2] deterministic 
 
C1 = O1 ∩ I2  
C2 = O2 ∩ I1  
I = I1\C2 ∪ I2\C1 
O =  O1\C1 ∪ O2\C2 
 
f1⊗f2 ∈ IF[I � O], 
 
(f1⊗f2).x = {z|O: x = z|I ∧ z|O1 = f1(z|I1) ∧ z|O2 = f2(z|I2)} 

 

I2\C1 

O2\C2 C1 

C2 O1\C1 

I1\C2 
f1 f2 

Composition of Deterministic Systems

This is a fixpoint definition
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Composition of Specifications into Architectures

 

Composed component spec 

  in   x1: M1 , x2: M2 , ... 

  out  y1: N1 , y2: N2 , ... 

 c1, c2 , ... : P1 ∧ ... ∧ Pn 
 

System composition = logical und

Channel Hiding = existential quantification

 

x3 : M3 
y
2
  : N

2
 x

2
 : M

2
 

y
1
: N

1
 x

1
: M

1
 

 Composed  
 Component 

P3 

P4 

P1 

P
2
 

c
1
 : T

1
 c2 : T2 

y2  : N2 

Input channels Output channels

Internal channels
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F1⊗F2 
  in    x1, x2: T 

  out  y1, y2: T 

 z12, z21: P1 ∧ P2 
 

Interface specification composition rule

 
 

F1 
  in    x1, z21: T 

  out  y1, z12: T 

  P1 
 

 
 

F2 
  in    x2, z12: T 

  out  y2, z21: T 

  P2 
 

 
F1⊗F2 

x2 

y2 z12 

z21 y1 

x1 
F1 F2 
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Composition for Strongly Causal Behaviors

• For deterministic strongly causal behaviors fk for k = 1, 2 

f1⊗f2 is a strongly causal deterministic behavior
◊ the prove uses an inductive construction and uses the existence of 

fixpoints

• If fk are realisations of Fk for k = 1, 2, then 

f1⊗f2 is a realisation of F1⊗F2
◊ every history y ∈ F1⊗F2 has a computational justification (is 

causally justified)
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Composition for Weakly Causal Behaviors

• For deterministic weakly causal behaviors fk for k = 1, 2 it 
is not guaranteed 
◊ that f1⊗f2 is a deterministic behavior

◊ that there exists outputs y ∈ (f1⊗f2)(x) at all for all input histories x

◊ that outputs y ∈ (f1⊗f2)(x) correspond to causal computations (we 
speak of causal loops)

since
◊ for deterministic weakly causal behaviors fixpoints are neither 

unique nor guaranteed to exist

• If weakly causal behaviors fk are realisations of Fk for k = 
1, 2, then it is not guaranteed that

f1⊗f2 is a realisation of F1⊗F2
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Grandfather paradox

• The grandfather paradox is a paradox of time travel, first described by 
the science fiction writer René Barjavel in his 1943 book Le Voyageur 
Imprudent (The Imprudent Traveller).
◊ The paradox is this: suppose a man traveled back in time and killed his 

biological grandfather before the latter met the traveller's grandmother. 

◊ As a result, one of the traveller's parents (and by extension, the traveller 
himself) would never have been conceived. 

◊ This would imply that he could not have travelled back in time after all, 
which in turn implies the grandfather would still be alive, and the traveller 
would have been conceived, allowing him to travel back in time and kill his 
grandfather. 

◊ Thus each possibility seems to imply its own negation, a type of logical 
paradox.

• An equivalent paradox is known (in philosophy) as autoinfanticide —
that is, going back in time and killing oneself as a baby — though when 
the word was first coined in a paper by Paul Horwich it was in the 
version autofanticide

• The grandfather paradox has been used to argue that backwards time 
travel must be impossible. 
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For strongly causal deterministic behavior  

 f:   
r 
I  →   

r 
I   

we calculate stepwise inductively a fixpoint y ∈   
r 
I .  

We start with t = 0; by definition y↓0 is empty. Given y↓t with 
y↓t = (f.y)↓t we get the sequence y.t+1 = (f.y’)↓t for arbitrary y’ 
∈   

r 
I  with y↓t = y’↓t. 

Note that by strong causality y↓t+1 = (f.y)↓t+1. 

By construction y = f.y.  

By construction y is a fixpoint and unique. 

Fixpoints of strongly causal functions



Manfred Broy 27Marktoberdorf Summer School, August 2008

For a weakly causal deterministic behavior  

 f:   
r 
I  →   

r 
I   

fixpoints are  

1) not guaranteed (may not exist) 

    f: (IN*)∞ → (IN*)∞ 

    (f.x).t = succ*(f.x) where succ.〈a1 ... an〉 = 〈a1+1 ... an+1〉 

2) are not unique (there may be several ones)  

    Example: f.x = x 

Fixpoints and weakly causal functions
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Advantages of strong causality

• Composition of data flow nodes corresponds to a fixpoint 
construction (in the presence of feedback loops)

• Strong causality makes the composition construction 
correct 
◊ Each fixpoint corresponds to a computation

◊ Every computation corresponds to a fixpoint

• No causal loops! (see Lecture III)
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The Lectures I- IV

• Causality and Time in Discrete Systems
◊ Discrete system models

◊ Causality in systems

◊ The role of time in system modeling

• A Modular System Model including Time and Causality
◊ System interface behaviors 

◊ Specification

◊ Composition

◊ Refinement

• Changing the Granularity of Time
◊ A flexible model of time

◊ Time abstraction

◊ Rules for Composition and Refinement

◊ Causal Fixpoints and Causal Loops

• Delay Calculus
◊ Flexible Timing of Systems

◊ Composition and Delay

◊ Optimal Delay Profile



Technische Universität München
Institut für Informatik

D-80290 München, Germany

Lecture III
Changing the Granularity of Time 

Manfred Broy
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A flexible model of time

Time is a key issue in embedded systems:

• Dealing with timing properties
◊ Specification 

◊ Analysis

◊ Verification 
• Analysis

• Testing

• Model checking

• Deduction based verification

• Transforming time

• Dedicated models of time
◊ Micro/Macro Step

◊ Perfect synchrony

◊ Scheduling

• Abstractions
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Example: TMC with Timing Restrictions

 
 

TMC 
  in    x: T 

  out  y: T 

 t ∈ IN:  m ∈ T:  

{m} (x↓ �t)  {m} (y↓t+delay)  

{m} (x↓t) Š {m} (y↓t+delay+deadline) 
 

TMCx:T y:T
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Making the time scale coarser for a history

Let n ∈ IN; to make for a history (or a stream)

x ∈  
r 
C 

the time scale coarser by the factor n we use the function

COA(n):   

r 
C  → ℘(  

r 
C )

defined by t ∈ IN:

COA(n)(x).t+1 = x.n*t+1ˆ...ˆx.n*t+n
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Making the time scale coarser for a behavior

To make for a behavior  

 F:   
r 
Ι → ℘(  

r 
Ο ) 

the time scalecoarser by the factor n, we define the coarsening 

operator  

 COA(F, n):   
r 
I  → ℘(  

r 
Ο ) 

as follows 

COA(F, n)(x) = { COA(n)(y):  x’: x = COA(n)(x’) ∧ y ∈ F(x’) } 

On histories, coarsening is a function that is not injective and 
thus there does not exist an inverse. 



Manfred Broy 8Marktoberdorf Summer School, August 2008

Making time granularity coarser

ID
x: IN y : IN

x =  1     4          7               8         9        5      3

y =        1    4                7              8          9    5                               3

Finer time scale

x =  1     4          7               8         9        5      3

y =        1    4                7              8          9    5                               3

We get nondeterminism in the timing of the output

we loose nondeterminism due to distinctions in the input
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Time abstraction

A coarsening factor n = ∞ in t ime coarsening mapps the inf inite 

number of time intervals in a timed stream is mapped into one. 
The infinite stream of sequences is concatenated into a nontimed 
stream.  

COA(�).x = x  

 

 



Manfred Broy 10Marktoberdorf Summer School, August 2008

Making the Time Scale Finer

Let n ∈ IN; to make for a history (or a stream)  

 x ∈   
r 

C  

its time scale finer by the factor n we use the function 

 FINE(n):   
r 
C  → ℘(  

r 
C ) 

defined by the equation:  

FINE(n)(x) =  

{x’ ∈   
r 
C :  t ∈ IN: x.t+1 = x’.(n*t+1)ˆ...ˆx’.(n*t+n)} 

FINE(n).x yields the set of histories where for each time interval 
the sequences of messages in this interval are arbitrarily 
subdivided into n sequences that are associated with n successive 
time intervals.  
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Making the Time Scale Finer

Another way to define the function FINE is demonstrated by the 
following formula 

FINE(n)(x) = {x’: COA(n).x’ = x} 

To make a time scale finer for behaviors we specify 

FINE(F, n)(x) =  

{y’ ∈ FINE(n).y:  x’: x = FINE(n)(x’) ∧ y ∈ F(x’)} 
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Rules for changing the time scale show that the func tions COA(n)
and FINE(n) form refinement pairs in the sense of granularity 
refinement: 

COA(n).FINE(n).x = {x} 

x ∈ FINE(n).COA(n).x 

 

Rules for Time Scale Refinement
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The following equations hold: 

COA(F, n) = FINE(n) ° F ° COA(n) 

FINE(F, n) = COA(n) ° F ° FINE(n) 

here F1 ° F2 denotes the pipeline composition of  

F1:   
r 

I 1 → ℘(  
r 
O 1) and F2:   

r 
I 2 → ℘(  

r 
O 2)  

where O1 = I2 and  

(F1 ° F2 ).x = {y: z: z ∈ F1.x ∧ y ∈ F2.z}) 

 

Time Scale Refinement as Granularity Refinement
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Property refinement allows us to replace an interface behavior by 
one having additional properties. An interface 

 F:   
r 
I → ℘(  

r 
O ) is refined by     ̂ F :   

r 
I → ℘(  

r 
O ) 

if 

  x ∈   
r 
I : ˆ F (x) ⊆ F(x) 

We write then 

 ˆ F  ⊆ F 

Obviously, property refinement is a partial order an d therefore 
reflexive, asymmetric, and transitive. 

Property Refinement of Interfaces
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 abstract level

 concrete level

F

ˆ F I2 O2

I1 O1

A I

. . .

. . .

RO

. . .

. . .

 
Refinement pairs 

 :   
r 
I 2 → ℘(  

r 
I 1) RI:   

r 
I 1 → ℘(  

r 
I 2) RIÞ  = Id 

 :   
r 
O 2 → ℘(  

r 
O 1) RO:   

r 
O 1 → ℘(  

r 
O 2) ROÞ = Id 

specify a relationship between streams 
 ˆ F :   

r 
I 2 → ℘(  

r 
O 2)  

is called granularity refinement 

 F:   
r 
I 1 → ℘(  

r 
O 1)  

if  

 ˆ F  ⊆ AI Þ F Þ RO U-1-simulation 

Granularity Refinement: Changing Levels of Abstraction
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We get the following obvious rules: 

FINE(n*m) = FINE(n) ° FINE(m) 

COA(n*m) = COA(n) ° COA(m) 

and the following equation (let m, n ∈  IN with m ≥ 1): 

 delay(F, n*m) ⇒ delay(COA(F, m), n) 

The proof of this rule is quite straightforward and us es the fact 
that 

 (COA(m).x)↓t = COA(m).(x↓(t*m)) 

holds. 

 

Rules for Composition and Refinement
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Monotonicity of coarsening with respect to delay properties: 

n < m ∧ delay(COA(F, m), k) ⇒ delay(COA(F, n), k)  

 

 

Rules for Delay of Coarsened Behaviours
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We can even change in a behavior the time by fractions m/n for 
m, n ∈ IN using the time change operator TCH. 

TCH(F, m/n) = COA(FINE(F, n), m) 

Note that a ll the rules introduced so far for COA and FINE carry 
obviously over to this case, since we expressed TCH in terms of
COA and FINE. 

 

Fractions of Time Changes
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Given a strongly causal function 

F:     

€ 

r 
C  →     

€ 

r 
C  

each fixpoint y ∈ F.y is called causally faithful or for short causal.  

 

In a causal fixpoint each sequence of values in a time interval t is 
triggered by the values that occurred in the history before t.  

 

Causal Fixpoints and Causal Loops
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Consider a coarsening of the time for the function F 

COA(F, n):     

€ 

r 
C  →     

€ 

r 
C  

We get for each fixpoint  

y ∈ F.y 

that COA(n).y is a fixpoint of COA(F, n), too.  

But there may be fixpoints COA(F, n) that do not correspond to
fixpoints of F.  

A fixpoint y’ ∈ (COA(F, n)).y’ is called causal w.r.t. F if there is a 
fixpoint y ∈ F.y such that y’ = COA(n).y.  

Otherwise y’ is called a causal loop.  

 

Causal Fixpoints and Causal Loops
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Causal Fixpoints and Causal Loops

• Considering COA(F, n) alone without knowing F we cannot 
distinguish, in general, causal fixpoints from causal loops. 
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IDS: C
r

→ ℘(C
r
) 

with  the specification (for all channels c ∈ C) 

(IDS.x).c = { 〈〈〉〉ˆ(x.c) } 

IDS is the identity on the  data streams shifted by one time 
interval. 

 

Example: Causal Fixpoints and Causal Loops
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Consider the history 

x.c = 〈〈1〉 〈〉〉∞ for all c ∈ C 

we get  

(IDS.x).c = 〈〈〉 〈1〉〉∞ for all c ∈ C 

This shows that x is not a fixpoint of IDS.  

 

Example: Causal Fixpoints and Causal Loops
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For COA(2).IDS we get: 

COA(2).〈〈1〉 〈〉〉∞ = { 〈〈1〉〉∞ } 

COA(2).〈〈〉 〈1〉〉∞ = { 〈〈1〉〉∞ } 

This proves the fixpoint property 

〈〈1〉〉∞ ∈ (COA(2).IDS).〈〈1〉〉∞ 

So 〈〈1〉〉∞ is a fixpoint of COA(2).IDS.  

However, this fixpoint is not causal, since 〈〈〉〉∞ is the only fixpoint
of IDS as well as COA(IDS, 2). 

 

Example: Causal Fixpoints and Causal Loops
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Coarsing time and causal fixpoints

• This shows that coarsening a behavior F leads to functions 
F’ with additional fixpoints 

◊ that are not causal in the case that F’ is, in contrast to F, not 
strongly but only weakly causal. 

◊ Moreover, we cannot distinguish, in general, for these functions
causal from non-causal fixpoints.
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Choosing the Appropriate Time Scale

• We establish and model different time scales for the 
subsystems of a composed system. 

• Then we can choose the time scales in a flexible way, 
according to the following observations:

• for each system composed of strongly causal components its time 
delay is greater than the length of the shortest path of channels 
through the system of components.

• therefore we can coarsen the interface abstraction of the system by 
the factor k without loosing strong causality provided the shortest path 
is ≥ k.

• This leads to hierarchical system models that support local 
islands (“subsystems”) of finer granularity of time. 

• A system may be composed of many subsystems with their 
own finer time scales. 
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Hume and Causality

• Hume calls causality "the cement of the universe" --
implying that it holds everything together. 

• Causality is an important topic in philosophy generally and 
in the philosophy of science. 

• Understanding what 
◊ causes are helps us to understand how minds might (or might not)

relate to bodies, 

◊ how free will might (or might not) work, 

◊ how ideas might (or might not) influence action, and 

◊ how bodies might come to produce changes in other bodies.

David Hume (April 26, 1711 – August 25, 1776), Scottish 
philosopher, economist, and historian is considered among 
the most important figures in the history of Western 
philosophy and the Scottish Enlightenment.
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The Lectures I- IV
• Causality and Time in Discrete Systems

◊ Discrete system models
◊ Causality in systems
◊ The role of time in system modeling

• A Modular System Model including Time and Causality
◊ System interface behaviors 
◊ Specification
◊ Composition
◊ Refinement

• Changing the Granularity of Time
◊ A flexible model of time
◊ Time abstraction
◊ Rules for Composition and Refinement
◊ Causal Fixpoints and Causal Loops

• Delay Calculus
◊ Composition and Delay
◊ Optimal Delay Profile
◊ Reasoning with and without Causality
◊ Flexible Timing of Systems
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Lecture VI
Delay Calculus

Manfred Broy
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Delay Calculus for System Architectures

• By composition of a family of components we can form a 
network (representing an architecture) of components with 
delays. 

 

F1 F2 

F4 F3 
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Delay Calculus for System Architectures

• This network is a directed graph with channels as arcs and 
components as nodes. 

• With each path in the graph leading from an input channel 
to an output channel c we can associate a delay which is 
the sum of all delays on that path (each component on the 
path adds to the delays). 

• For an output channel c the (guaranteed) delay in the 
system for c is the minimum over the sum of (guaranteed) 
delays on each of the paths from some input channel to 
the output channel c. 
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In a behavior function we can define the guaranteed delay 
between the input channels and an output channel c. Consider 

F:     

€ 

r 
I  → ℘(    

€ 

r 
O ) 

and an output channel c ∈ O. We define the guaranteed delay for 
the output channel c in F by the following formula: 

gardelay(F, c) =  

max {k ∈ IN ∪ {∞}:  x, x’, t ∈ IN: 

x↓t = x’↓t ⇒((F.x).c)↓t+k = ((F.x’).c)↓t+k} 

 

Delay Calculus for System Architectures
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A communication path p through a ne twork is a s equence of
channels  

p = 〈c0 c1 … ck〉  

such that for each index i < k there exists  

a component Fi in the system such that ci is an input channel 
of Fi and ci+1 is an output channel of that component.  

c0 is called the source of p and ck is called the target of p.  

By Path(c, c’) we denote the set of all paths with channel c as its 
source and c’channel as its target. 

 

Delay length of a path from input channel c to output channel c’
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The delay length of the path is given by the formula 

dl(p) = gardelay (Fi , c i )
i=1

k
∑  

For each output channel c of the network for the system F we 
obtain: 

gardelay(F, c) ≥ min {dl(p):  b ∈ I: p ∈ Path(b, c) } 

 

Delay length of a path from input to output channel c



Manfred Broy 9Marktoberdorf Summer School, August 2008

The flow of time: step 0

F1 F2

F4
F3

2

3

1

3

4 3 4

2

1
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The flow of time: step 1

F1 F2

F4
F3

2

3

1

3

4 3 4

2

1
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The flow of time: step 2

F1 F2

F4
F3

2

3

1

3

4 3 4

2

1
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The flow of time: step 3

F1 F2

F4
F3

2

3

1

3

4 3 4

2

1
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The flow of time: step 4

F1 F2

F4
F3

2

3

1

3

4 3 4

2

1
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For each component of the considered system, we can define a
(maximal) guaranteed delay for each output channel.  

Given a component  

 F:     

€ 

r 
I  → ℘(    

€ 

r 
O ) 

we introduce mappings  

d: I → IN ∪ {�}, e: O → IN ∪ {�} 

that associate a delay with every input and output channel.  

To calculate the guaranteed delay of a ne twork of components, 
we have to be able to determine the delay of F if for each  of its 
input channels a delay is given. 

 

Composition and Delay
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Composition and Delay

 
5 3 

9 7 

6 7 

8 9 

7 

F1 F2 

F4 F3 

Let C be a set of channels in the network. We 
are interested to calculate a delay profile

d: C → IN ∪ {∞}
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I 

time t

guaranteed delay 
on input 

guaranteed  
delay on output 

{

{O 

 

Relationship between input with guaranteed delay and output with 
guaranteed delay at time t 

Composition and Delay
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Delay Profile
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Delay Profile
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A System of Equations to Calculate Delay

• With every system behavior F we may associate a function
gdelF(c): IN ×... × IN → IN 

for every output channel c
defined by

gdelF(c)(d.c1, ..., d.cn) = 
max {k ∈ IN∪{∞} : ∀ x, z: 

[∀ b ∈ I: (x.b)↓(t-d.b) = (z.b)↓(t-d.b)] ⇒
{(y.c)↓t+k : y ∈ F.x} = {(y.c)↓t+k : y ∈ F.z}  

 
x1: S 1 
xn: S n 

y1: T 1 

ym : T m  
F 

M  M  
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From networks to equations

• Given a network with nodes 

• We associate with every node and every output channel c
of one of the nodes F the equation

d.c = gdelF(c)(d.x1, ..., d.xn)
to calculate for for every channel c in the network its delay 
d.c.

• For the input channels c we assume d.c = 0.

 
x1: S 1 
xn: S n 

y1: T 1 

ym : T m  
F 

M  M  
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Delay equations

• This gives a set of equations from a network, one for each 
channel c ∈ C

d.c = gdelF(c)(d.x1, ..., d.xn) if c has a system F as its source
d.c = 0 if c is input channel to the network

where 
d: C → IN ∪ {∞}

• We choose the least fixpoint for d to get the maximal 
guaranteed delays.
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Composition and the Choice of the Time Scale

• We study the question how time abstraction and composition fit 
together. 

• A compositional formula for time refinement should read as follows:

COA(F1 ⊗ F2, n) = COA(F1, n) ⊗ COA(F2, n)

• However, this formula does not hold, in general, since making a 
behavior coarser is an information loss that may result in the loss of 
strong causality and thus may introduce “causal loops”. 

◊ The time abstraction is the origin of the problems with causal loops in 
approaches advertised under the name “perfect synchrony” such as 
Esterel. 

◊ Moreover, the individual timing of the subcomponents may be highly 
relevant for selecting the behaviors (the output histories). 
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Composition and the Choice of the Time Scale

Theorem: Let F1 and F2 be behaviors that can be composed 

(according to consistent channel naming and typing); then 

COA(F1 ⊗ F2, n) ⊆ COA(F1, n) ⊗ COA(F2, n)

The theorem shows that

COA(F1 ⊗ F2, n)

is a refinement of

COA(F1, n) ⊗ COA(F2, n)

The converse statement is not true, in general.

• It holds only if both F1 and F2 are 
◊ strongly causal and

◊ not sensitive to the finer timing. 
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Composition and the Choice of the Time Scale

Theorem:

Let n > 1 hold. Assume for i = 1, 2 that we have (for all x, x’)

COA(n).x = COA(n).x’ ⇒ Fi.x  = Fi.x’

and that delay(Fi, n) holds, then we get: 

COA(F1, n) ⊗ COA(F2, n) ⊆ COA(F1 ⊗ F2, n)

Moreover, if a component is time independent, then we have:

COA(F, n).COA(n).x = COA(n).(F.x)
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Finer Time Granularity

Trivially, the equation

FINE(F1⊗F2, n) = FINE(F1, n) ⊗ FINE(F2, n)

does always hold, as long as F1 and F2 are strongly causal.
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Assumptions for Causality

• As formulated in the hypothesis above, we may assume 
◊ that for each model of a physical system behavior there is a time 

scale that is fine enough to capture all essential time differences 
especially for the delay between input and output to guarantee the 
property of strong causality. 

◊ Modeled in an appropriate time scale the behavior is always 
strongly causal according to the principle of strong causality.
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Pros for Strong Causality

• Strong causality has a number of significant advantages 
since 
◊ it makes the reasoning about systems more concrete and simpler 

since reasoning about feedback loops is reduced to induction. 

◊ In particular, it is easy to treat feedback loops by fixpoints for 
strongly causal behaviors since strong causality guarantees, in 
particular, the existence of unique fixpoints for deterministic 
functions. 

◊ In other words, for strongly causal, fully realizable system 
behaviors all fixpoints are causal and thus computationally 
appropriate in the sense that they faithfully reflect computations. 
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Let the behaviors 

F1: I1 → ℘(O1), F2: O1 → ℘(O2) 

be given. We obtain 

delay(F1, m) ∧ delay(F2, n) ⇒ delay(F1°F2, m+n)  

In the case of two strongly causal functions F1 and F2 we get (at 
least)  

delay(F1 ° F2, 2) 

On one hand th is observation is very satisfactory since it leads to 
a useful delay calculus.  

 

Cons for Strong Causality

F2
2

F1
0 1F1 ° F2
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Cons for Strong Causality

• This it shows an unfortunate inflexibility of the design 
calculus for timed systems. 
◊ If we want to represent a function by an architecture with two 

functions composed by pipelining we always have to accept a delay 
by at least 2 if the functions are strongly causal. 

◊ In fact, if we insist on a delay less than 2 then a component cannot 
be implemented by a system consisting of two components 
composed sequentially. 

◊ This seems unacceptable, since it makes the design very inflexible, 
and seems to be a good reason to reject our approach based on a 
global discrete time altogether. 
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In the following we finally discuss the p roblem of causal loops. 
We show how we can add st rong causality as a property to 
specifications to reason about feedback loops. 

Example: Interface specification 
Consider the following specification of a component that copies 
its input on channel x on both of its output channels y and r. 

Copy 

  in    x: T 

  out  y, r: T 

    x  =   

€ 

y∧  

€ 

x =   

€ 

r  

 

Strong causality as an assumption on the specification Copy 

Avoiding Causal Loops
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Given a set of specified components we get for each component 
F:     

r 
I → ℘(

r 
O )  with the relational specification (“specifying

assertion”) for y ∈ F.x in the form of a predicate P:  

P(x, y) 

by imposing causality the l ogical weakest specification Pc that 
fulfills the following equation 

 Pc(x, y) ≡ P(x, y) ∧  t ∈ IN:  x’ : x’↓t = x↓t ⇒  

                y’: Pc(x’, y’) ∧ y’↓t+1 = y↓t+1 

This way we can add the requirement  of strong causality to every 
specification to get a strongly causal specification.  

Causality and Composition
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Example: Interface specification 
Strong causality as an assumption on the specification Copy 
allows us to conclude: 

 t ∈ IN:  m ∈ T: 

  {m}#  

€ 

r ↓ t +1 Š {m}# x ↓ t   

 ∧  {m}#  

€ 

y ↓ t +1 Š {m}# x ↓ t  

where M#x denotes the number of c opies of messages in the set that 
occur in x.  

Avoiding Causal Loops
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Repeater 

  in    r: T 

  out  x: T 

 m ∈ T: {m}#r > 0 ⇒ {m}#x = ∞ 
             ∧ {m}#r = 0 ⇒ {m}#x = 0 

 

Strong causality allows us to c onclude in addition to the 
specifying assertion the following property 

    t ∈ IN:  m ∈ T: {m}#r↓t = 0 ⇒ {m}#x↓t+1 = 0 
 

Avoiding Causal Loops
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We compose the two components  

 Repeater ⊗ Copy 

 

Composition Repeater ⊗ Copy 

Copy 

Repeater 

x 

r 

r 

y 

x 

Avoiding Causal Loops
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Without strong causality arguments we get the following formula: 

   

€ 

x =   

€ 

y∧  

€ 

x =   

€ 

r  

∧   m ∈ T: {m}#  

€ 

r  > 0 ⇒ {m}#  

€ 

x  = ∞ 

              ∧ {m}#  

€ 

r  = 0 ⇒ {m}#  

€ 

x  = 0 

which simplifies to 

   

€ 

x =   

€ 

y∧  

€ 

x =   

€ 

r  ∧  m ∈ T: {m}#  

€ 

r  > 0 ⇒ {m}#  

€ 

r  = ∞ 

 

Avoiding Causal Loops

which indicates for the output y of the network only
∀ m ∈ T: {m}#y > 0 ⇒ {m}#y = ∞
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Without strong causality arguments we get the following formula: 

   

€ 

x =   

€ 

y∧  

€ 

x =   

€ 

r  

∧   m ∈ T: {m}#  

€ 

r  > 0 ⇒ {m}#  

€ 

x  = ∞ 

              ∧ {m}#  

€ 

r  = 0 ⇒ {m}#  

€ 

x  = 0 

With strong causality arguments we get in addition the assertion 

 t ∈ IN:  m ∈ T: 

 {m}#  

€ 

r ↓ t +1 Š {m}# x ↓ t  ∧ {m}#  

€ 

y ↓ t +1 Š {m} # x ↓ t  

∧  t ∈ IN:  m ∈ T:  
{m}#  

€ 

r ↓ t = 0 ⇒ {m}#  

€ 

x↓ t +1 = 0 

that allows us to conclude  

y  = 〈〉 

which cannot be concluded without strong causality. 

Avoiding Causal Loops



Manfred Broy 37Marktoberdorf Summer School, August 2008

 

Hierarchical Architectures of Components with Different Time Scales 

Local Timing



Manfred Broy 38Marktoberdorf Summer School, August 2008

Local Timing

• For each subsystem (subcomponent) of a network we can introduce a 
local time and a local time granularity. 

• Example: Architecture with local Time Granularities
• The following expression

COA(COA(F⊗G, 10)⊗COA(H⊗K, 20)⊗L, 2)

• denotes a system with a subsystem

◊ F⊗G which works in a 10 times faster mode

◊ H⊗K which works in a 20 times faster mode

• This way we get a system with different local time scales where 

◊ each time scale can be chosen fine enough for each of the components 
locally 

◊ to guarantee strong causality of each of its subcomponents such that all 
local computations are captured on the right level of time granularity. 
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Conclusion: Robust Flexible Timing

• Relationship between causality and the choice of the time scale and 
granularity as well as its influence onto compositionality. 

• If we choose the time scale fine enough the definition of faithful 
composition is quite straightforward. 

• Our approach supports flexibly chosen time scales. We worked out the 
following idea of flexible timing: 
◊ The leaves of the component hierarchy are state machines.
◊ Each state machine runs in its own local time scale that defines the time 

duration of each of its steps
◊ Each processor (CPU, controller) contains a family of state machines which 

run with different speed (time granularity). This defines the finest time 
grain steps and the set of steps (state transitions) that have to be executed 
(scheduled) in a time slot. This determines the workload.

• We can design a static schedule at the abstract level of behavior 
without being forced to address low-level technical issues such as 
schedulers or operating systems. 
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Conclusion: Robust Flexible Timing

• We obtain a flexible and modular theory of timing of systems and sub-
systems this way which provides the following helpful properties
◊ high level abstract and flexible modeling
◊ multiplexing and scheduling on abstract level
◊ application oriented time model close to hardware time model
◊ causality for inductive reasoning
◊ avoiding causal loops
◊ rich algebraic properties
◊ discrete model of time that provides the same flexibility as analog models 

of time (real time)
◊ time abstraction by coarsening the time granularity to get rid of unwanted 

delays.

• In the end we can generate from such a time model a static scheduling 
for the system.
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