
Incremental Design of

Distributed Systems

Michael Butler

University of Southampton

August 2008

Alternative titles:

Applying Event-B and Incremental

Refinement to Distributed Systems

Incremental Construction and

Verification of Models of Distributed

Systems

Building on Jean-Raymond’s lectures

I will assume (some) knowledge of

• Event-B language

• Refinement

• Invariants

• Proof obligations

• Rodin tool

Key themes of my lectures

• Concurrency and atomicity in Event-B

• Atomicity refinement

– Refining course-grained atomicity with more

fine-grained atomicity

• Decomposing models into sub-models

• Distributed systems (in this context) :

– Special case of concurrency where the only shared

variables are buffers used for message-passing

Example: abstract model of email service

Send Read Read Send

Email Service

inbox

inbox ∈ User ↔ Message

Refine to servers and middleware

Send Read

Forward Deliver

sendbuf s_inbox

middleware

Send Read

Forward Deliver

sendbuf s_inbox

Mail Server 1

Internet

Mail Server N

Data refinement: replace abstract inbox by sendbuf, s_inbox, middleware

Why incremental modelling?

• Abstraction gap between specification and implementation is

often too big for feasible reasoning (formal and informal)

• More effective to bridge the gap with a refinement chain of

intermediate models

• Smaller abstraction gap means more automated proof

• More automated proof makes it easier to change models

Refinement is not top down!

• A completed refinement chain (or tree) is usually
presented in a top-down manner.

• Construction of a refinement chain is rarely top-down

– Requirements change

– When proving M1 ⊑M2 , it may be more convenient to
find M3 such that

M1 ⊑M3 and M3 ⊑M2

– When proving M1 ⊑M2 , we discover problems with M1

– Our understanding of the system changes (improves) as
we elaborate the design

Overview of lectures

• Introduction ✔
• Modelling atomicity and concurrency

– behaviour traces

• Atomicity refinement

• Model composition and decomposition

• Incremental modeling of distributed systems
– File transfer

– Email service

– Replicated database

– Mondex

Atomicity and Concurrency

Simple concurrent program

processMain
varx : INT
begin
x := 0 ;
cobeginpin 1..Ndo// fork then join of N
Inc(p) // parallel processes
coend;
output(x)
end

processInc(p : 1..N)
begin
x := x+1 // atomic assignment
end

Simple concurrent program

processMain
varx : INT
begin
x := 0 ;
cobeginpin 1..Ndo
Inc(p)
coend;
output(x)
end

processInc(p : 1..N)
begin
x := x+1
end

What does this program achieve?

Why does it work?

How would we verify this?

Identify the atomic steps

processMain
varx : INT
begin
x := 0 ;
cobeginpin 1..Ndo
Inc(p)
coend;
output(x)
end

processInc(p : 1..N)
begin
x := x+1
end

InitalisexInitalisex

Individual sub-process Inc(p)

increments x exactly once

Individual sub-process Inc(p)

increments x exactly once

Output x after all sub-

processes have completed

Output x after all sub-

processes have completed

Event-B model with 3 events

• Initialisex

• Increment x

– parameterised by process identifier p

• Output x

Event-B context for model of the

concurrent program

context c1

sets PROC

constants N

axioms

axm2 : finite(PROC)

axm1 : N = card(PROC)

Variables of the model

machine M2

variablesx, oInc, oOut

invariants

inv1 : x ∈ ℕ

inv2 : oInc ⊆ PROC // set of processes for which

the increment event has occurred

inv3 : oOut ∈ BOOL // true when output event has occurred

initialisation ≙

act1 : x := 0

act2 : oInc := ⌀

act3 : oOut := FALSE

Events of the model

Inc ≙

anypwhere

grd1 : p ∉ oInc // Inc has not occurred for process p

then

act1 : x := x+1

act2 : oInc := oInc∪ {p}

end

Out ≙

anyv! where

grd1 : oInc = PROC // Inc has occurred for all processes

grd2 : oOut = FALSE // Out event has not occurred

grd3 : v! = x // v! is an output parameter

then

act1 : oOut := TRUE

end

Event traces of the model

Assume PROC = { p1, p2 } N = 2

Event traces of the model are

〈〈〈〈 Inc.p1, Inc.p2, Out.2 〉〉〉〉and 〈〈〈〈 Inc.p2, Inc.p1, Out.2 〉〉〉〉

Trace is a sequence of event labels.

Event label consists of event name + parameter values

Event traces provide a definition of the observable behaviour of an
Event-B model - interleaving semantics

Similar behavioural models are used in process algebra, e.g.,
CSP

Animation Demo

Abstract model of desired behaviour

machine M1

Out ≙ \\ Output the value N

anyv! where

grd1 : oOut = FALSE

grd2 : v! = N

then

act1 : oOut := TRUE

end

Traces of M1: 〈〈〈〈Out.N〉〉〉〉

Relationship between traces

Consider a trace of M2:〈〈〈〈 Inc.p1, Inc.p2, Out.2 〉〉〉〉

Use hiding to remove Inc events:

〈〈〈〈 Inc.p1, Inc.p2, Out.2 〉〉〉〉\ Inc = 〈〈〈〈 Out.2 〉〉〉〉

By treating Inc as a hidden event, traces of M2 look like
traces of M1

Event hiding operator in CSP is defined in this way

Refinement proof in Rodin

Proof obligation for M1 ⊑ M2

N = card(PROC) // from context

oInc = PROC // guard of Out in M2

⊢
x = N // output values are equal

What invariant could we use?

(Hint: x and oInc are variables)

Refinement proof in Rodin

Proof obligation for M1 ⊑ M2

N = card(PROC) // from context

oInc = PROC // guard of Out in M2

⊢
x = N // output values are equal

Invariant: x = card(oInc)

Proof Demo

Some answers

• What does this program achieve?
– output(N)

• Why does it work?
– Invariant: x = card(oInc)

• How would we verify this?
– Discharging refinement proof obligations

Verification helped us uncover why it works

Compare with Owicki-Gries method

• Owicki-Gries:
– Rule for composing Hoare triples for each subprocess

– Noninterference side-condition: process P1 must preserve
any pre and post conditions of P2 (and vice versa)

– Auxiliary variables required in example: oInc1 and oInc2

• Refinement
– All preconditions and postconditions are encapsulated by

a single invariant

– All proof obligations become invariant preservation
obligations, including the non-interference obligations

– Set theory allows for a succint invariant: x = card(oInc)

Deterministic or nondeterministic?

processMain
varx : INT
begin
x := 0 ;
cobeginpin 1..Ndo
Inc(p)
coend;
output(x)
end

processInc(p : 1..N)
begin
x := x+1
end

traces(M2) =

{ 〈 Inc.p1, Inc.p2, Out.2 〉,
〈 Inc.p2, Inc.p1, Out.2 〉 }

so M2 is nondeterministic

traces(M2) \ Inc =

{ 〈 Out.2 〉 }

so we observe deterministic
behaviour

Observations

• We refined a deterministic model by a

non-deterministic model

– We usually think of refinement as reducing non-

determinism!

• Event-B modelling of simple concurrent was

presented bottom-up!

Next lecture

• More detail on atomicity refinement

Lecture 2:

More on event refinement

Michael Butler

University of Southampton

August 2008

Simple concurrent program

processMain
varx : INT
begin
x := 0 ;
cobeginpin 1..Ndo
Inc(p)
coend;
output(x)
end

processInc(p : 1..N)
begin
x := x+1
end

What does this program achieve?

Why does it work?

How would we verify this?

Some answers

• What does this program achieve?
– output(N)

• Why does it work?
– Invariant: x = card(oInc)

• How would we verify this?
– Discharging refinement proof obligations

Verification helped us uncover why it works

Compare with Owicki-Gries method

• Owicki-Gries:

– Rule for composing Hoare triples for each subprocess

– Noninterference side-condition:

• process P1 must preserve assertions used for P2 (and vice versa)

– Auxiliary variables usually required: e.g., oInc1 and oInc2

• Refinement

– All preconditions and postconditions are encapsulated by
a single invariant

– Proof obligations become invariant preservation
obligations, including the non-interference obligations

Single invariant

• Merging assertions from Owicki-Gries for N=2:

¬oInc1 ∧ ¬oInc2 ⇒ x=0

¬oInc1 ∧ oInc2 ⇒ x=1

oInc1 ∧ ¬oInc2 ⇒ x=1

oInc1 ∧ oInc2 ⇒ x=2

• Set theory allows for a succint invariant (for any
N):

card(oInc) = x

Deterministic or nondeterministic?

processMain
varx : INT
begin
x := 0 ;
cobeginpin 1..Ndo
Inc(p)
coend;
output(x)
end

processInc(p : 1..N)
begin
x := x+1
end

traces(M2) =
{ 〈 Inc.p1, Inc.p2, Out.2 〉,

〈 Inc.p2, Inc.p1, Out.2 〉 }

so M2 is nondeterministic

traces(M2) \ Inc =
{ 〈 Out.2 〉 }

so we observe deterministic
behaviour by hiding Inc

Some important points

• Global invariants are easy to deal with when
using set theory

• We refined a deterministic model by a
non-deterministic model
– Rrefinement is usually thought of as reducing

non-determinism

• Event-B modelling of the simple concurrent
program was presented bottom-up!

Event traces of a system M

Event labelsEv
States S
Initial statesI
Labelled transition relation A ∈Ev→ (S ↔ S)

Lift A to sequences AA ∈seq(Ev) → (S ↔ S) :

AA(〈〉〈〉〈〉〈〉) = ID
AA(〈〈〈〈e〉〉〉〉t) = A(e) ; AA(t)

AA(t)[I] is the set of states reachable by executing trace t

t∈traces(M) iffAA(t)[I] ≠ ∅∅∅∅

Note: traces are prefix-closed.

Event traces with hidden events

Transition relations
A∈Ev→ (S ↔ S)
H∈ S ↔ S

Lift AA:
AA(〈〉〈〉〈〉〈〉) = H*
AA(〈〈〈〈e〉〉〉〉t) = H* ;A(e) ; H* ; AA(t)

t∈traces(M) iffAA(t)[I] ≠ ∅∅∅∅

Refinement

• M1 refined by M2

• Semantically: traces(M2)⊆traces(M1)

• Proof rule using gluing invariant J:

Each M1.Ai is (data) refined by M2.Ai under J

Each M2.Hi refines skip under J

• THEOREM: These are sufficient conditions for trace
refinement

Simple file store example
sets FILE, PAGE, DATA

CONT = PAGE ↛ DATA

machine filestore
variables file, dsk
invariant

file ⊆FILE ∧
dsk∈ file → CONT

initialisation
file := { } || dsk := { }

events

CreateFile = …

WriteFile = // set contents of f to be c
anyf, cwhere

f∈ file
c∈ CONT
then

dsk(f) := c
end

ReadFile = // return data in page p of f
anyf, p, d! where

f∈ file
p∈ dom(dsk(f))
d! = dsk(f)(p)
end

Sample event traces of file store

All prefixes of:
〈〈〈〈 CreateFile.f1,

WriteFile.f1.c1,
ReadFile.f1.p3.c1(p3), … 〉〉〉〉

All prefixes of:
〈〈〈〈 CreateFile.f1,
CreateFile.f2,
WriteFile.f2.c4,
WriteFile.f1.c6, … 〉〉〉〉

An (infinitely) many more traces.

Refinement of file store

• Instead of writing entire contents of a file in one atomic step,
each page is written separately.

machinefilestore2

refinesfilestore

variables file,dsk, writing,writebuf, sdsk

invariant

writing ⊆ file

writebuf∈ writing →CONT

sdsk∈ writing → CONT // shadow disk

Refining the WriteFile event

• Abstract: WriteFile

• Refinement:

StartWriteFile

WritePage

EndWriteFile (refines WriteFile)

AbortWriteFile

Events of refinement
StartWriteFile=

anyf, cwhere

f∈ (file \ writing)
c∈ CONT
then

writing := writing∪{f}

wbuf(f) := c

end

WritePage =

anyf, p, dwhere

f∈ writing
p↦ d∈ wbuf(f)
then

sdsk(f) := sdsk(f) ∪ { p↦d}
end

Events of refinement
EndWriteFile

refines WriteFile

anyf, cwhere

f∈ writing
c = sdsk(f)
dom(sdsk(f)) =

dom(wbuf(f))

then

writing := writing \ { f }

wbuf := wbuf \ { f↦c}

dsk(f) := sdsk(f)

sdsk := sdsk\ { f↦ c }

end

AbortWriteFile

anyf, cwhere

f∈ writing
c= sdsk(f)
then

writing := writing \ { f }

wbuf := wbuf \ { f↦c}

sdsk := sdsk \ { f↦ c }

end

Comparing abstract and refined traces

〈〈〈〈 CreateFile.f1,
CreateFile.f2,
WriteFile.f2.c2,
WriteFile.f1.c1

… 〉〉〉〉

〈〈〈〈 CreateFile.f1,
StartWriteFile.f1.c1,
CreateFile.f2,
WritePage.f1.p1.c1(p1),
StartWriteFile.f2.c2,
WritePage.f1.p2.c1(p2),
WritePage.f2.p1.c2(p1),
WritePage.f2.p2.c2(p2),
EndWriteFile.f2.c2,
WritePage.f1.p3.c1(p2),
EndWriteFile.f1.c1

… 〉〉〉〉

Gluing invariant for file refinement

Gluing invariant

∀f · f∈ writing ⇒ sdsk(f) ⊆ writebuf(f)

The Rodin tool Rodin tool Rodin tool Rodin tool was used to
– generate refinement obligations
– discharge the obligations
– guide the discovery of the invariant

Preserving liveness in refinement

• Enabledness preservation POs (not yet in Rodin tool):

J∧∧∧∧grd(A) ⇒

grd(A’) ∨∨∨∨grd(H1) ∨∨∨∨ … ∨∨∨∨grd(Hn)

• Convergence POs using a variant V:

each Hidecreases V

• THEOREM: Data refinement and liveness POs are
sufficient for failure-divergence refinement (cf CSP)

Liveness POs for Owicki-Gries example

Enabledness :

grd(M1.Output) ⇒
grd(M2.Output) ∨ grd(M2.Inc)

i.e.,

(∃v! �oOut=FALSE ∧ v!=N) ⇒
(∃v! �oOut=FALSE ∧ oInc=PROC ∧ v!=N)

(∃p�p ∉ oInc)

Convergence:

M2.Inc decreases variant PROC \ oInc

Lecture 3

Michael Butler

University of Southampton

August 2008

Progress obligations in refinement

Enablednesspreservation POs (not yet in Rodin tool):

J∧∧∧∧grd(M1.A) ⇒
grd(M2.A) ∨∨∨∨grd(H1) ∨∨∨∨ … ∨∨∨∨grd(Hn)

• Convergence POs using a variant V:
each Hidecreases V

• THEOREM: Data refinement and liveness POs are
sufficient for failures-divergence refinement (cf CSP)

Liveness POs for Owicki-Gries example

Enabledness :

grd(M1.Output) ⇒
grd(M2.Output) ∨ grd(M2.Inc)

i.e.,

(∃v! �oOut=FALSE ∧ v!=N) ⇒
(∃v! �oOut=FALSE ∧ oInc=PROC ∧ v!=N)

(∃p�p ∉ oInc)

Convergence:

M2.Inc decreases variant PROC \ oInc

References on failures-divergence

treatment of action systems

Michael Butler

Stepwise Refinement of Communicating Systems

Science of Computer Programming, 27 (2), 1996

Michael Butler

A CSP Approach to Action Systems

PhD Thesis 1992

Some Event-B Experiments

• Replicated database

• Mondex electronic purse system

Replicated data base

• Abstract model

db ∈object →DATA

Update = /* update a set of objects os */

anyos,upd

where

os⊆ object∧
update ∈(os→ DATA) → (os→ DATA)

then

db := db<+update(os⊲db)

end

Refinement by replicated database

sdb∈ site → (object → DATA)

Update is by two phase commit:

Global commit if all sitespre-commit

Global abort if at least one site aborts

First refinement

• Introduce transaction identifiers
– Each transaction has an object set and an update

function on that object set

• Still use db (not yet sdb)

Events:

StartTrans(t) refines skip

AbortTrans(t) refines skip

CommitTrans(t) refines Update

Read(o,d!)refines Read

Second refinement

Replace db with sdb. Introduce 2 phases.

Events
StartTrans(t) refines StartTrans
PreCommit(t,s) refines skip, locks objects used in t
CommitTrans(t) refines CommitTrans
LocalCommit(t,s) refines skip,

updates sdb(s), releases objects
GlobalAbort(t) refinesAbortTrans
LocalAbort(t,s)refines skip, releases objects
Read(o,d) refines Read guard: object is not locked

Key gluing invariants

∀s,o · o ∉ dom(lock(s)) ⇒ (sdb(s))(o) = db(o)

If an object is not locked at a site

then the value of the object at that site is the

same as its value in the abstract global

database

Key gluing invariants

∀t,s,o ·

t∈ trans ∧ s ↦ t∈precommit ∧
t ∉ commit ∧ t ↦ o∈tos ⇒

(sdb(s))(o) = db(o)

If a transaction t

is in the precommit state at a site and

t has not yet globally committed and

o is an object of t

then the value of the object at that site is the same
as its value in the abstract global database

Key gluing invariants

∀t,s,o · t∈ commit ∧
s ↦ t∈ precommit ∧ t ↦ o∈ tos ⇒

((tupd(t)) (tos[{t}] ◁ sdb(s))) (o) = db(o)

If a transaction t

is in the precommit state at a site and

t has globally committed and

o is an object of t

then the value of the object at that site is found by
applying the update associated with the transaction to
the database at the local site.

Object contention

• Deadlock can occur when transactions require the same
objects:
– t1 locks o at site s1

– t2 locks o at site s2

• Solutions
– Abort a transaction when a required object is already locked

– Use a global ordering on the transactions using Atomic
Broadcasting primitives

• DivakarYadav. Rigorous Design of Distributed Transactions.
PhD thesis, University of Southampton 2008.

Incremental development of Mondex in

Event-B (with DivakarYadav)

• Constructed a refinement proof between

– Abstract model of system of purses including balance

transfer, loss, recovery and balance check

– Detailed model of distributed system of purses including

abort, archiving, messaging

• Very high degree of automatic proof (B4Free tool)

• Refinement chain with 10 levels

– Small abstraction gap at each stage – simpler invariants

– Not top down

Abstract spec of Mondex purses

TransferOk =

whenbal(p1) ≥ a then

bal(p1) := bal(p1)-a || bal(p2) := bal(p2)+a end

LoseValue =

when bal(p1) ≥ a then

bal(p1) := bal(p1)-a || lost(p1) := lost(p1)+a end

Recover =

when lost(p1) ≥ a then

bal(p1) := bal(p1)+a || lost(p1) := lost(p1)-a end

Protocol steps

decrease balance p1

increase balance p2

epr

epv

epa

end

end

req

val

ack

Source purse Target purse

Also: a transaction can be aborted at any point

Abort caused by timeout or by card removal

Intermediate abstraction

• Abstraction gap is too big

• Introduce transactions:

– Uniquely identified

– Have attributes (source, target, amount)

– Have abstract end-to-end state:

pending, ended, recoverable

– pending: val is in transit

– recoverable: amount has been added to lost

Overview of refinement chain

• L1: Atomic transfer of value and recovery of lost
value

• L2:Transactions introduced with end-to-end state.
– Balance transfer split into 2 events

– Freshness of new transactions based on history

• L3: Remove some redundancy

• L4: End-to-end state replaced by dual state

(epr, epv, abortepv, …)

• L5: Explicit messaging between terminal and purses
and between purses

Overview of refinement chain

• L6: Introduce for each purse
– 1 current trans + archive of aborted trans

• L7: Remove global history
– Freshness ensured by individual purses with fresh

transaction numbers

• L8: Make fresh purse number sequential

• L9: Change representation of messages to a
record structure

• L10: Change representation of transaction
states from disjoint sets to state function

Guideline

• Use separate disjoint sets instead of single function to
represent the discrete control states

• Good:
pending⊆ Transaction
recoverable⊆ Transaction
ended⊆ Transaction
disjoint (pending, recoverable, ended)

Get quantifier-free gluing invariant:
abortepas∩abortepvs⊆ recover

• Not so good:
status ∈ trans → Status

• Function form can be introduced later as a refinement (which is provable
completely automatically)

Proof statistics with B4Free tool
Level POs Interactive

L1 24 0

L2 91 15 (av 10 steps) (sum, finiteness)

L3 14 0

L4 143 0 (end-to-end)

L5 57 0 (messaging)

L6 183 0 (localise to purses)

L7 25 0

L8 23 2 (av 5 steps)

L9 73 0

L10 46 0

totals 679 17

97.5% of POs proved fully automatically

Refinement of Recovery

Abstract:
when lost(p1) ≥ a then

bal(p1) := bal(p1)+a ||
lost(p1) := lost(p1)-a

end

Concrete:
when

t∈ archive(p1) ∧t∈ archive(p2)
p1 = from(t)∧p2 = to(t) ∧ a = am(t)

then

cbal(p1) := cbal(p1)+a
archive(p1) := archive(p1) \ {t}
archive(p2) := archive(p2) \ {t}

end

Observation: importance of global

reasoning

• Two cases for p2 aborting in epv state:

– AbortEPV1: p1 has already aborted

– AbortEPV2: p1 has not aborted

The distinction cannot be made locally

• AbortEPV1 refines LoseValue

• AbortEPV2 refines skip

• Similarly 2 cases for AbortEPA

Multiway Refinement in Mondex

TransferOk skipLoseValue

ReceiveVal

AbortEPV1 AbortEPV2

AbortEPA1 AbortEPA2

AbortEPV

AbortEPA

Refines

Balance Check

• Abstract:

ExactBalanceCheck(p) b! = bal(p)

InexactBalanceCheck(p) b! ≤ bal(p)

• Concrete:

ExactBalanceCheck(p) is guarded by
• p not involved in a transaction and

• p has no outstanding aborted transactions

InexactBalanceCheck(p) is guarded by negation of
these conditions

Overview of effort

• Approx 2 weeks devoted to modelling and
proof (but longer elapse time)

• Interactive proof was mostly used for
discovering invariants and fine tuning of
models

• Most invariants were discovered by inspecting
unproved POs

• Re-enforced key guidelines for minimising
proof effort

Guideline

• Keep data As Abstract As Possible when

introducing algorithmic / distributed / fined-

grained structure

• Example: intermediate end-to-end state for

transactions made it easy to express the

invariant required to break the atomicity of

the abstract transfer events

Lecture 4

Decomposition of Models

Michael Butler

University of Southampton

August 2008

Decomposition

• When models become too big we need to decompose
them

• Decomposition also reflects architectural structure

• Approach: we define a (parallel) composition operator
on Event-B machines
– M1 || M2

• Decomposition: refine model to a sufficient degree
that the composition operator can be applied (in
reverse)
– M ⊑⊑⊑⊑ M1 || M2

• M1 and M2 can be further refined and decomposed

Decomposition – by example

A

v

Events

Variables

B C

w

A = v := v+1

B = when v>0 ∧w<M then v := v-1 || w := w+1 end

C = whenw>0 thenw := w-1 end

Decompose by partitioning variables

A

v

Events

Variables

B C

w

A = v := v+1

B = when v>0 ∧w<M then v := v-1 || w := w+1 end

C = whenw>0 thenw := w-1 end

N1 N2

Parallel Event Split

A

v

Events

Variables

B C

w

B1 = whenv>0 thenv := v-1 end

B2 = whenw<M thenw := w+1 end

B is split into two parallel events operating on independent vars:

B = when v>0∧w<Mthenv := v-1 || w := w+1end

N1 N2

Synchronised events with parameter

passing

B =any xwhere0 <x≤v

thenv := v-x || w := w+xend

B1 = any xwhere0 <x≤vthenv := v-xend

B2 = any xwherex∈ℕthen w := w+xend

B can be split into 2 events that have x in common:

B1 constrains the value for xby 0 <x≤v (output)

B2 just constrains the value of x to a type (input)

Synchronised Composition Operator

• Synchronised composition operator for Event-B
machines is syntactic
– combine guards and combine actions of events to be

synchronised

– no shared state variables

– common event parameters represent values to be agreed
on synchronisation by both parties

• Corresponds to parallel composition in CSP
– process interact via synchronised channels

– monotonic: subsystems can be refined independently!

Composition Plug-in for Rodin

composed machine M2

refines M1

includes N1, N2

events

A = N1.A

B = N1.B || N2.C

C = N3.C

end

Tool generates POs to

verify that M2 is refined

by the composition of

N1 and N2

Asynchronous distributed system

A

v

B C

m

D

w

Agent 1 Middleware Agent 2

For distributed systems, agents do not interact directly.

Instead they interact via some middleware, e.g., the Internet

Decomposition of mail service

Send Read

Forward Deliver

sendbuf s_inbox

middleware

Send Read

Forward Deliver

sendbuf s_inbox

Mail Server 1

Internet

Mail Server N

References on synchronised

composition of action systems

Michael Butler

Stepwise Refinement of Communicating Systems

Science of Computer Programming, 27 (2), 1996

Michael Butler

A CSP Approach to Action Systems

PhD Thesis 1992

Observation on Decomposition

• Typical approach: refine M by N1 || N2

• The decomposition itself is easy

– Essentially a syntactic decomposition

• The more challenging part is refining the

abstract “global” model to a sufficiently

detailed model to allow the syntactic

decomposition to take place

Simple file transfer

invariants

inv1 : fileA∈ PAGE⇸DATA

inv2 : fileB∈ PAGE⇸DATA

events

CopyFile ≙ fileB := fileA

end

Diagrammatic representation of event

refinement

CopyFile

Start CopyPage* Finish

Sequencing is from left to right

* signifies iteration

Jackson Structure Diagrams

• Part of Michael Jackson’s Structured

Development Method JSD

• Graphical representation of behaviour

• We can exploit the hierarchical nature of JSD

diagrams to illustrate event refinement

• Adapt JSD notation for our needs

21 July 2008

Adapting the diagrams

CopyFile

Start CopyPage Finish

Events are represented by leaves of the tree only

Attach the operator to an arc rather than a node to clarify atomicity

Heavy line indicates Finish refines CopyFile

NB: This is not a class diagram. It describes behaviour.

*

First refinement

invariants

inv1 : buf∈ PAGE⇸DATA

inv2 : oStart=TRUE ⇒ buf⊆ fileA

events

Start ≙ … oStart := TRUE || buf := ∅∅∅∅…

CopyPage ≙
any p, dwhere

oStart = TRUE

(p↦d)∈ fileA \ buf

then

buf := buf∪ { p↦d }

end

Finish ≙
refines CopyFile

when

oStart = TRUE

card(buf) = card(fileA)

oFinish = FALSE

then

fileB := buf

oFinish := TRUE

end

Further event refinement: introduce

more asynchrony

CopyFile

Start CopyPage Finish

*

StartBStartA CpPgBCpPgA FinishB

First refinement

variables

bufA , bufB, oStartA, oStartB, oEnd

events

StartA≙ … oStartA := TRUE …

StartA≙ … oStartB := TRUE …

CpPgA ≙ … bufA := bufA∪ { p↦d } …

CpPgB ≙ … bufB := bufB∪ { p↦d } …

End ≙ … fileB := bufB…

Strong dependency between A and B

StartA ≙

when

oStartA = FALSE

then

oStartA := TRUE

bufA := ∅∅∅∅

sizeA := card(fileA)

end

StartB ≙

when

oStartA= TRUE

oStartB = FALSE

then

oStartB := TRUE

sizeB := sizeA

bufB := ∅∅∅∅

end

StartB event can read variables belonging to A side

Weaken the dependency: introduce

shared buffer through refinement

StartA ≙

when

oStartA = FALSE

then

oStartA := TRUE

oStartM := TRUE

bufA := ∅∅∅∅

sizeA := card(fileA)

sizeM := card(fileA)

end

StartB ≙

when

oStartM= TRUE

oStartB = FALSE

then

oStartB := TRUE

sizeB := sizeM

bufB := ∅∅∅∅

end

invariant: oStartM=oStartA, sizeM=sizeA

Decomposition of file transfer

StartA CpPgA

oStartM, sizeM, bufM

StartB CpPgB

A side
B side

fileA

oStartA

bufA

sizeA

FinishB

fileB

oStartB

bufB

sizeB

Further refinement

All 3 components can now be refined independently:

• Data structures of SideA and SideB can be optimised

• Middleware can be fined by introducing a more explicit
representation of messages as variant records (or
classes and subclasses)

– Init message contains file size

– Step message contains a page of data

Aside: interleaving instead of

sequencing

CopyFile

Start

CopyPage(p)

Finish

|||

Illustrates multiple interleaved instances of CopyPage event

Each instance is identified by p∈ PAGE

We have seen this pattern already

Output

Init

Inc(p)

Output

|||

Here p∈ PROC

Alternative style of decomposition

A

v

B C

m

D

w

Events are independent

S1 and S2 interact through shared variables

S1 and S2 need to be refined in a consistent way

S2S1

Environment obligation in refinement

A

v

B C’

m

C’ must maintain any invariants used to refine S1

For composition, environment events that modify m

must refine C’

S1

Abrial and Hallerstede.

Refinement, decomposition and instantiation of discrete models.

FundamentaeInformatica, 2006.

Tomorrow

• Other Event-B tools

– UML-B

– ProB

• Future plans for Rodin toolset

Lecture 5

Michael Butler

University of Southampton

August 2008

Today

• (A little) more on decomposition

• Security: model of access control example

– Rodin demo

• ProB

• UML-B

• Future plan for Rodin

Synchronised composition of

machines

A

v

B C

m

D

w

S1 M S2

Variables are partitioned

B and C are synchronised events

Alternative style of decomposition

A

v

B C

m

D

w

Events are partitioned

Variable m is shared by S1 and S2

S1 and S2 need to be refined in a consistent way

S2S1

Environment obligation in refinement

A

v

B C’

m

C’ must maintain any invariants used to refine S1

For composition, environment events that modify m

must refine C’

S1

Abrial and Hallerstede.

Refinement, decomposition and instantiation of discrete models.

FundamentaeInformatica, 2006.

Demo: Access Control System

• Users are authorised to engage in activities

• Activities take place in rooms

• Users can only be in a room if they have

authorised to engage in each activity that

takes place in that room

29 Jan 08

Rodin Implementation

• Extension of Eclipse IDE (Java based)

• Repository of modelling elements (Java

objects, XML files)

• Rodin Eclipse Builder manages:

– Well-formedness + type checker

– Consistency/refinement PO generator

– Proof manager

– Propagation of changes

Rodin Implementation

• Extension of Eclipse IDE (Java based)

• Rodin core development team:
– Laurent Voisin (Systerel)

– Stefan Hallerstede (Southampton)

– Farhad Mehta (ETH)

– Thai Son Hoang (ETH)

– Francois Terrier (ETH)

www.event-b.org

Key Tool Decisions

• Support incremental development

– Reactive: analysis tools are automatically invoked in
the background whenever a change is made

– Differential: analytical impact of changes is minimised
as much as possible

– Support strong interplay between modelling and
proof – model can be changed during a proof

• Extensibility support:

– extend modelling elements

– extend functionality through plugins

Rodin Plug-ins

• Linking UML and Event-B

– Colin Snook + Butler (Southampton)

• ProB: consistency and refinement checking

– Michael Leuschel + team (Düsseldorf)

• Graphical model animation

– Brama (Clearsy)

– AnimB (Christophe Metayer)

ProB

• Animator and model checker

– searches for invariant violations

• Originally developed for “Classical” B

• Now being ported to Event-B and Rodin

• Implementation uses symbolic representation

using constraint logic programming

– makes all types finite

– exploits symmetries inB types

UML-B

• UML-like language

• Package, Class, State diagrams
– Package used to structure a refinement chain

– Class represents a set

– Attributes and associations represent relations

– UML-B classes have events

• Event-B as constraint and action language
– Guards, invariants, actions

• UML-B plug-in for Rodin
– Generates Event-B from UML-B

Demos

• ProB

• UML-B

18 March 08

Future

• Rodin coordination

• Deploy project

18 March 08

Rodin Coordination Committee

• Role: Ensure the coordinated evolution of the Rodin
platform at a strategic level

• Current members
– Michael Butler (Chair)

– Jean-Raymond Abrial

– Cliff Jones

– Stefan Hallersede

– TherryLecomte

– Michael Leuschel

– Laurent Voisin

18 March 08

DEPLOY Project (EU2008-2012)

• Aim: industrial deployment of formal engineering methods

for high productivity and dependability

• 12 Partners:

– Bosch, Siemens, SAP, Space Systems Finland

– Systerel, CETIC, ClearSy

– Universites: Newcastle, ÅboAkademi, ETH Zurich, Düsseldorf,

Southampton

www.deploy-project.eu

Future

• Mathematical language extension support

• Links with other provers (FO, SAT, SMT, HO)

• User interface improvements (text editor)

• Requirements management and traceability

• Documentation management

• Model decomposition management

• Refinement pattern management

• UML-B: improve support for refinement

• Code generation from Event-B

• Proof cross checking

• …

Rodin

• RODIN platform supports incremental development of
proved model chains in Event-B

• Architecture makes it possible to extend the language
and the set of analysis tools

• Open source and will continue to be developed through
EU project: www.deploy-project.eu

www.event-b.org

	Lecture1x
	Lecture2x
	Lecture3x
	Lecture4x
	Lecture5x

