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Building on Jean-Raymond’s lectures

I will assume (some) knowledge of

• Event-B language

• Refinement

• Invariants

• Proof obligations

• Rodin tool



Key themes of my lectures

• Concurrency and atomicity in Event-B

• Atomicity refinement

– Refining course-grained atomicity with more 

fine-grained atomicity 

• Decomposing models into sub-models

• Distributed systems (in this context) :

– Special case of concurrency where the only shared 

variables are buffers used for message-passing



Example: abstract model of email service

Send Read Read Send

Email Service

inbox

inbox  ∈ User ↔ Message  



Refine to servers and middleware

Send Read

Forward Deliver

sendbuf s_inbox

middleware

Send Read

Forward Deliver

sendbuf s_inbox

Mail  Server 1

Internet

Mail  Server N

Data refinement: replace abstract  inbox by  sendbuf,  s_inbox,  middleware



Why incremental modelling?

• Abstraction gap between specification and implementation is 

often too big for feasible reasoning (formal and informal) 

• More effective to bridge the gap with a refinement chain of 

intermediate models

• Smaller abstraction gap means more automated proof

• More automated proof makes it easier to change models 



Refinement is not top down!

• A completed refinement chain (or tree) is usually 
presented in a top-down manner.

• Construction of a refinement chain is rarely top-down

– Requirements change

– When proving  M1 ⊑M2 , it may be more convenient to 
find M3 such that 

M1 ⊑M3   and   M3 ⊑M2

– When proving  M1 ⊑M2 , we discover problems with M1

– Our understanding of the system changes (improves) as 
we elaborate the design



Overview of lectures

• Introduction   ✔
• Modelling atomicity and concurrency

– behaviour traces

• Atomicity refinement

• Model composition and decomposition

• Incremental modeling of distributed systems
– File transfer

– Email service

– Replicated database

– Mondex



Atomicity and Concurrency



Simple concurrent program

processMain
varx : INT
begin
x := 0  ;
cobeginpin 1..Ndo//   fork then join of N
Inc(p) //   parallel processes
coend;
output(x)
end

processInc( p : 1..N )
begin
x := x+1 //  atomic assignment
end



Simple concurrent program

processMain
varx : INT
begin
x := 0  ;
cobeginpin 1..Ndo
Inc(p)
coend;
output(x)
end

processInc( p : 1..N )
begin
x := x+1
end

What does this program achieve?

Why does it work?

How would we verify this?



Identify the atomic steps

processMain
varx : INT
begin
x := 0  ;
cobeginpin 1..Ndo
Inc(p)
coend;
output(x)
end

processInc( p : 1..N )
begin
x := x+1
end

InitalisexInitalisex

Individual sub-process Inc(p) 

increments  x  exactly once

Individual sub-process Inc(p) 

increments  x  exactly once

Output  x  after all sub-

processes have completed  

Output  x  after all sub-

processes have completed  



Event-B model with 3 events

• Initialisex

• Increment x

– parameterised by process identifier p

• Output x



Event-B context for model of the 

concurrent program

context c1

sets PROC

constants N

axioms

axm2 : finite(PROC)

axm1 : N = card(PROC)



Variables of the model

machine M2

variablesx, oInc, oOut

invariants

inv1 : x ∈ ℕ

inv2 : oInc ⊆ PROC // set of processes for which

the increment event has occurred

inv3 : oOut ∈ BOOL //   true when output event has occurred

initialisation ≙

act1 : x := 0

act2 : oInc :=  ⌀

act3 : oOut := FALSE



Events of the model

Inc ≙

anypwhere

grd1 : p ∉ oInc // Inc has not occurred for process p

then

act1 : x := x+1

act2 : oInc := oInc∪ {p}

end

Out ≙

anyv! where

grd1 : oInc = PROC //  Inc has occurred for all processes

grd2 : oOut = FALSE //  Out event has not occurred

grd3 : v! = x //  v!   is an output parameter

then

act1 : oOut := TRUE

end



Event traces of the model

Assume  PROC  =  { p1, p2 } N = 2

Event traces of the model are

〈〈〈〈 Inc.p1,  Inc.p2,  Out.2 〉〉〉〉and 〈〈〈〈 Inc.p2,  Inc.p1,  Out.2 〉〉〉〉

Trace is a sequence of event labels.

Event label consists of event name + parameter values

Event traces provide a definition of the observable behaviour of an 
Event-B model  - interleaving semantics

Similar behavioural models are used in process algebra, e.g., 
CSP



Animation Demo



Abstract model of desired behaviour

machine M1

Out ≙ \\ Output the value N

anyv! where

grd1 : oOut = FALSE

grd2 : v! = N

then

act1 : oOut := TRUE

end

Traces of M1: 〈〈〈〈Out.N〉〉〉〉



Relationship between traces

Consider a trace of M2:〈〈〈〈 Inc.p1,  Inc.p2,  Out.2 〉〉〉〉

Use hiding to remove Inc events:

〈〈〈〈 Inc.p1,  Inc.p2,  Out.2 〉〉〉〉\ Inc   =   〈〈〈〈 Out.2 〉〉〉〉

By treating Inc as a hidden event, traces of M2 look like 
traces of M1

Event hiding operator in CSP is defined in this way



Refinement proof in Rodin

Proof obligation for M1  ⊑ M2

N = card(PROC) // from context

oInc  =  PROC // guard of Out in M2

⊢
x = N //  output values are equal

What invariant could we use? 

(Hint:  x  and  oInc  are variables)



Refinement proof in Rodin

Proof obligation for M1  ⊑ M2

N = card(PROC) // from context

oInc  =  PROC // guard of Out in M2

⊢
x = N //  output values are equal

Invariant: x  =  card( oInc )



Proof Demo



Some answers

• What does this program achieve?
– output(N)

• Why does it work?
– Invariant: x = card(oInc)

• How would we verify this?
– Discharging refinement proof obligations

Verification helped us uncover why it works



Compare with Owicki-Gries method

• Owicki-Gries:
– Rule for composing Hoare triples for each subprocess

– Noninterference side-condition: process P1 must preserve 
any pre and post conditions of P2 (and vice versa)

– Auxiliary variables required in example: oInc1 and oInc2 

• Refinement
– All preconditions and postconditions are encapsulated by 

a single invariant

– All proof obligations become invariant preservation 
obligations, including the non-interference obligations

– Set theory allows for a succint invariant:   x = card( oInc )



Deterministic or nondeterministic?

processMain
varx : INT
begin
x := 0  ;
cobeginpin 1..Ndo
Inc(p)   
coend;
output(x)
end

processInc( p : 1..N )
begin
x := x+1
end

traces( M2 )   = 

{  〈 Inc.p1,  Inc.p2,  Out.2 〉,
〈 Inc.p2,  Inc.p1,  Out.2 〉 }

so M2 is nondeterministic

traces(  M2 )  \ Inc   = 

{  〈 Out.2 〉 }

so we observe deterministic 
behaviour



Observations

• We refined a deterministic model by a 

non-deterministic model

– We usually think of refinement as reducing non-

determinism!

• Event-B modelling of simple concurrent was 

presented bottom-up! 



Next lecture

• More detail on atomicity refinement



Lecture 2:

More on event refinement

Michael Butler

University of Southampton

August 2008



Simple concurrent program

processMain
varx : INT
begin
x := 0  ;
cobeginpin 1..Ndo
Inc(p)
coend;
output(x)
end

processInc( p : 1..N )
begin
x := x+1
end

What does this program achieve?

Why does it work?

How would we verify this?



Some answers

• What does this program achieve?
– output(N)

• Why does it work?
– Invariant: x = card(oInc)

• How would we verify this?
– Discharging refinement proof obligations

Verification helped us uncover why it works



Compare with Owicki-Gries method

• Owicki-Gries:

– Rule for composing Hoare triples for each subprocess

– Noninterference side-condition: 

• process P1 must preserve assertions used for P2 (and vice versa)

– Auxiliary variables usually required: e.g., oInc1 and oInc2 

• Refinement

– All preconditions and postconditions are encapsulated by 
a single invariant

– Proof obligations become invariant preservation 
obligations, including the non-interference obligations



Single invariant

• Merging assertions from Owicki-Gries for N=2:

¬oInc1 ∧ ¬oInc2 ⇒ x=0

¬oInc1 ∧ oInc2   ⇒ x=1   

oInc1 ∧ ¬oInc2 ⇒ x=1   

oInc1 ∧ oInc2 ⇒ x=2

• Set theory allows for a succint invariant (for any 
N):

card( oInc )  =  x



Deterministic or nondeterministic?

processMain
varx : INT
begin
x := 0  ;
cobeginpin 1..Ndo
Inc(p)   
coend;
output(x)
end

processInc( p : 1..N )
begin
x := x+1
end

traces( M2 )   = 
{   〈 Inc.p1,  Inc.p2,  Out.2 〉,

〈 Inc.p2,  Inc.p1,  Out.2 〉 }

so M2 is nondeterministic

traces(  M2 )  \ Inc   = 
{   〈 Out.2 〉 }

so we observe deterministic 
behaviour by hiding Inc



Some important points

• Global invariants are easy to deal with when 
using set theory

• We refined a deterministic model by a 
non-deterministic model
– Rrefinement is usually thought of as reducing 

non-determinism

• Event-B modelling of the simple concurrent 
program was presented bottom-up! 



Event traces of a system M

Event labelsEv
States S
Initial statesI
Labelled transition relation A  ∈Ev→ (S ↔ S)

Lift A to sequences  AA  ∈seq(Ev)  → (S ↔ S)   :

AA(  〈〉〈〉〈〉〈〉) = ID
AA(  〈〈〈〈e〉〉〉〉t) = A(e)  ;  AA(t)

AA(t)[ I ]  is the set of states reachable by executing trace t

t∈traces(M)    iffAA(t)[ I ]  ≠ ∅∅∅∅

Note:  traces are prefix-closed.



Event traces with hidden events

Transition relations  
A∈Ev→ (S ↔ S)
H∈ S ↔ S

Lift AA:
AA( 〈〉〈〉〈〉〈〉) =   H*
AA( 〈〈〈〈e〉〉〉〉t) =   H* ;A(e)  ;  H* ; AA(t)

t∈traces(M)   iffAA(t)[ I ] ≠ ∅∅∅∅



Refinement

• M1 refined by M2

• Semantically:  traces(M2)⊆traces(M1)

• Proof rule using gluing invariant J:  

Each M1.Ai is (data) refined by M2.Ai under J

Each M2.Hi refines skip under J

• THEOREM: These are sufficient conditions for trace 
refinement



Simple file store example
sets FILE, PAGE, DATA

CONT = PAGE ↛ DATA

machine filestore
variables  file, dsk
invariant

file ⊆FILE  ∧
dsk∈ file → CONT

initialisation
file := { }    ||   dsk := { } 

events

CreateFile = …

WriteFile =  // set contents of f to be c
anyf, cwhere

f∈ file
c∈ CONT
then

dsk(f) := c
end 

ReadFile =  //  return data in page p of f
anyf, p, d!   where

f∈ file
p∈ dom(dsk(f))
d!  = dsk(f)(p) 
end 



Sample event traces of file store

All prefixes of:
〈〈〈〈 CreateFile.f1, 

WriteFile.f1.c1, 
ReadFile.f1.p3.c1(p3),  … 〉〉〉〉

All prefixes of:
〈〈〈〈 CreateFile.f1,
CreateFile.f2,
WriteFile.f2.c4,
WriteFile.f1.c6,  … 〉〉〉〉

An (infinitely) many more traces.



Refinement of file store

• Instead of writing entire contents of a file in one atomic step,
each page is written separately.

machinefilestore2

refinesfilestore

variables file,dsk, writing,writebuf,  sdsk

invariant

writing  ⊆ file

writebuf∈ writing →CONT

sdsk∈ writing → CONT // shadow disk



Refining the WriteFile event

• Abstract: WriteFile

• Refinement:

StartWriteFile

WritePage

EndWriteFile (refines WriteFile)

AbortWriteFile



Events of refinement
StartWriteFile=

anyf, cwhere

f∈ (file \ writing)
c∈ CONT
then

writing := writing∪{f}

wbuf(f) := c

end

WritePage =

anyf, p, dwhere

f∈ writing
p↦ d∈ wbuf(f)
then

sdsk(f) := sdsk(f)  ∪ { p↦d}
end



Events of refinement
EndWriteFile

refines  WriteFile

anyf, cwhere

f∈ writing
c = sdsk(f)
dom(sdsk(f)) =

dom(wbuf(f))

then

writing := writing \ { f }

wbuf :=  wbuf \ { f↦c}

dsk(f)  := sdsk(f)

sdsk :=  sdsk\ { f↦ c }

end

AbortWriteFile

anyf, cwhere

f∈ writing
c= sdsk(f)
then

writing := writing  \ { f }

wbuf :=  wbuf  \ { f↦c}

sdsk :=  sdsk  \ { f↦ c }

end



Comparing abstract and refined traces

〈〈〈〈 CreateFile.f1, 
CreateFile.f2, 
WriteFile.f2.c2, 
WriteFile.f1.c1 

… 〉〉〉〉

〈〈〈〈 CreateFile.f1, 
StartWriteFile.f1.c1,
CreateFile.f2, 
WritePage.f1.p1.c1(p1), 
StartWriteFile.f2.c2,
WritePage.f1.p2.c1(p2),
WritePage.f2.p1.c2(p1),
WritePage.f2.p2.c2(p2),
EndWriteFile.f2.c2, 
WritePage.f1.p3.c1(p2),
EndWriteFile.f1.c1 

… 〉〉〉〉



Gluing invariant for file refinement

Gluing invariant

∀f · f∈ writing   ⇒ sdsk(f) ⊆ writebuf(f)

The Rodin tool Rodin tool Rodin tool Rodin tool was used to
– generate refinement obligations
– discharge the obligations
– guide the discovery of the invariant



Preserving liveness in refinement

• Enabledness preservation POs  (not yet in Rodin tool):

J∧∧∧∧grd( A ) ⇒

grd( A’ ) ∨∨∨∨grd( H1 )  ∨∨∨∨ … ∨∨∨∨grd( Hn )

• Convergence POs using a variant V:

each Hidecreases V

• THEOREM: Data refinement and liveness POs are 
sufficient for failure-divergence refinement  (cf CSP)



Liveness POs for Owicki-Gries example  

Enabledness :

grd( M1.Output )  ⇒
grd(M2.Output) ∨ grd(M2.Inc)

i.e.,

(∃v! �oOut=FALSE ∧ v!=N ) ⇒
(∃v! �oOut=FALSE  ∧ oInc=PROC  ∧ v!=N )    

(∃p�p ∉ oInc )

Convergence:

M2.Inc decreases variant  PROC \ oInc



Lecture 3

Michael Butler

University of Southampton

August 2008



Progress obligations in refinement

Enablednesspreservation POs  (not yet in Rodin tool):

J∧∧∧∧grd( M1.A ) ⇒
grd( M2.A ) ∨∨∨∨grd( H1 )  ∨∨∨∨ … ∨∨∨∨grd( Hn )

• Convergence POs using a variant V:
each Hidecreases V

• THEOREM: Data refinement and liveness POs are 
sufficient for failures-divergence refinement  (cf CSP)



Liveness POs for Owicki-Gries example  

Enabledness :

grd( M1.Output )  ⇒
grd(M2.Output) ∨ grd(M2.Inc)

i.e.,

(∃v! �oOut=FALSE ∧ v!=N ) ⇒
(∃v! �oOut=FALSE  ∧ oInc=PROC  ∧ v!=N )    

(∃p�p ∉ oInc )

Convergence:

M2.Inc decreases variant  PROC \ oInc



References on failures-divergence 

treatment of action systems

Michael Butler 

Stepwise Refinement of Communicating Systems

Science of Computer Programming, 27 (2), 1996

Michael Butler

A CSP Approach to Action Systems

PhD Thesis 1992



Some Event-B Experiments

• Replicated database

• Mondex electronic purse system



Replicated data base

• Abstract model

db  ∈object →DATA

Update =       /*   update a set of objects os  */

anyos,upd

where

os⊆ object∧
update  ∈( os→ DATA ) → ( os→ DATA ) 

then

db := db<+update( os⊲db ) 

end



Refinement by replicated database

sdb∈ site → (object → DATA)

Update is by two phase commit:

Global commit if all sitespre-commit

Global abort if at least one site aborts



First refinement

• Introduce transaction identifiers
– Each transaction has an object set and an update 

function on that object set

• Still use db  (not yet sdb)

Events:

StartTrans(t) refines skip

AbortTrans(t) refines skip

CommitTrans(t) refines Update

Read(o,d!)refines Read



Second refinement

Replace db with sdb. Introduce 2 phases.

Events
StartTrans(t) refines StartTrans
PreCommit(t,s) refines skip,   locks objects used in t
CommitTrans(t) refines CommitTrans
LocalCommit(t,s) refines skip,  

updates sdb(s), releases objects
GlobalAbort(t) refinesAbortTrans
LocalAbort(t,s)refines skip,   releases objects
Read(o,d) refines Read    guard: object is not locked



Key gluing invariants

∀s,o · o ∉ dom(lock(s)) ⇒ (sdb(s))(o) = db(o)

If an object is not locked at a site

then the value of the object at that site is the 

same as its value in the abstract global 

database



Key gluing invariants

∀t,s,o ·

t∈ trans ∧ s ↦ t∈precommit ∧
t ∉ commit  ∧ t ↦ o∈tos  ⇒

(sdb(s))(o) = db(o)

If a transaction t

is in the precommit state at a site and 

t has not yet globally committed and 

o is an object of t

then the value of the object at that site is the same 
as its value in the abstract global database



Key gluing invariants

∀t,s,o · t∈ commit ∧
s ↦ t∈ precommit ∧ t ↦ o∈ tos ⇒

( (tupd(t)) (tos[{t}] ◁ sdb(s)) ) (o) = db(o)

If a transaction t

is in the precommit state at a site and 

t has globally committed and 

o is an object of t

then the value of the object at that site is found by 
applying the update associated with the transaction to 
the database at the local site.



Object contention

• Deadlock can occur when transactions require the same 
objects:
– t1 locks o at site s1

– t2 locks o at site s2

• Solutions
– Abort a transaction when a required object is already locked

– Use a global ordering on the transactions using Atomic 
Broadcasting primitives

• DivakarYadav. Rigorous Design of Distributed Transactions. 
PhD thesis, University of Southampton 2008.



Incremental development of Mondex in 

Event-B  (with DivakarYadav)

• Constructed a refinement proof between

– Abstract model of system of purses including balance 

transfer, loss, recovery and balance check

– Detailed model of distributed system of purses including 

abort, archiving, messaging

• Very high degree of automatic proof (B4Free tool)

• Refinement chain with 10 levels

– Small abstraction gap at each stage – simpler invariants

– Not top down



Abstract spec of Mondex purses

TransferOk = 

whenbal(p1) ≥ a  then

bal(p1) := bal(p1)-a   ||   bal(p2) := bal(p2)+a   end

LoseValue =

when bal(p1) ≥ a  then

bal(p1) := bal(p1)-a   ||   lost(p1) := lost(p1)+a   end

Recover = 

when lost(p1) ≥ a  then

bal(p1) := bal(p1)+a   ||   lost(p1) := lost(p1)-a   end



Protocol steps

decrease balance p1

increase balance p2

epr

epv

epa

end

end

req

val

ack

Source purse Target purse

Also: a transaction can be aborted at any point 

Abort caused by timeout or by card removal



Intermediate abstraction

• Abstraction gap is too big

• Introduce transactions:

– Uniquely identified

– Have attributes (source, target, amount)

– Have abstract end-to-end state:

pending, ended, recoverable

– pending: val is in transit

– recoverable: amount has been added to lost



Overview of refinement chain

• L1: Atomic transfer of value and recovery of lost 
value 

• L2:Transactions introduced with end-to-end state.  
– Balance transfer split into 2 events

– Freshness of new transactions based on history

• L3: Remove some redundancy

• L4: End-to-end state replaced by dual state      

(epr, epv, abortepv, …) 

• L5: Explicit messaging between terminal and purses 
and between purses



Overview of refinement chain

• L6: Introduce for each purse  
– 1 current trans + archive of aborted trans

• L7: Remove global history
– Freshness ensured by individual purses with fresh 

transaction numbers

• L8: Make fresh purse number sequential 

• L9: Change representation of messages to a 
record structure 

• L10: Change representation of transaction 
states from disjoint sets to state function 



Guideline

• Use separate disjoint sets instead of single function to 
represent the discrete control states

• Good:
pending⊆ Transaction
recoverable⊆ Transaction
ended⊆ Transaction
disjoint ( pending, recoverable, ended)

Get quantifier-free gluing invariant:
abortepas∩abortepvs⊆ recover

• Not so good:
status ∈ trans → Status

• Function form can be introduced later as a refinement (which is provable 
completely automatically)



Proof statistics with B4Free tool
Level POs Interactive

L1 24 0

L2 91 15    (av 10 steps)  (sum, finiteness)

L3 14 0

L4 143 0     (end-to-end)

L5 57 0     (messaging)

L6 183 0     (localise to purses)

L7 25 0

L8 23 2     (av 5 steps)

L9 73 0

L10 46 0

totals 679 17

97.5% of POs proved fully automatically



Refinement of Recovery

Abstract: 
when  lost(p1) ≥ a  then

bal(p1) := bal(p1)+a   || 
lost(p1) := lost(p1)-a  

end

Concrete:    
when

t∈ archive(p1)     ∧t∈ archive(p2)
p1 = from(t)∧p2 = to(t)   ∧ a  = am(t)   

then

cbal(p1) := cbal(p1)+a    
archive(p1) := archive(p1) \ {t}     
archive(p2) := archive(p2) \ {t}     

end



Observation: importance of global 

reasoning

• Two cases for p2 aborting in epv state:

– AbortEPV1: p1 has already aborted

– AbortEPV2: p1 has not aborted

The distinction cannot be made locally

• AbortEPV1 refines LoseValue

• AbortEPV2 refines skip

• Similarly 2 cases for AbortEPA



Multiway Refinement in Mondex

TransferOk skipLoseValue

ReceiveVal

AbortEPV1 AbortEPV2

AbortEPA1 AbortEPA2

AbortEPV

AbortEPA

Refines



Balance Check

• Abstract:

ExactBalanceCheck(p)   b!  =  bal(p)

InexactBalanceCheck(p)    b!  ≤ bal(p)

• Concrete:

ExactBalanceCheck(p)  is guarded by 
• p not involved in a transaction and 

• p has no outstanding aborted transactions

InexactBalanceCheck(p)  is guarded by negation of 
these conditions



Overview of effort

• Approx 2 weeks devoted to modelling and 
proof  (but longer elapse time)

• Interactive proof was mostly used for 
discovering invariants and fine tuning of 
models

• Most invariants were discovered by inspecting 
unproved POs

• Re-enforced key guidelines for minimising 
proof effort



Guideline

• Keep data As Abstract As Possible when 

introducing algorithmic / distributed / fined-

grained structure

• Example: intermediate end-to-end state for 

transactions made it easy to express the 

invariant required to break the atomicity of 

the abstract transfer events



Lecture 4

Decomposition of Models

Michael Butler

University of Southampton

August 2008



Decomposition

• When models become too big we need to decompose 
them

• Decomposition also reflects architectural structure

• Approach: we define a (parallel) composition operator 
on Event-B machines
– M1 || M2 

• Decomposition: refine model to a sufficient degree 
that the composition operator can be applied (in 
reverse)
– M   ⊑⊑⊑⊑ M1 || M2

• M1 and M2 can be further refined and decomposed 



Decomposition – by example

A

v

Events

Variables

B C

w

A  =  v := v+1

B  =  when v>0  ∧w<M    then v := v-1  ||  w := w+1    end

C  =  whenw>0    thenw := w-1    end



Decompose by partitioning variables

A

v

Events

Variables

B C

w

A  =  v := v+1

B  =  when v>0  ∧w<M    then v := v-1  ||  w := w+1    end

C  =  whenw>0    thenw := w-1    end

N1 N2



Parallel Event Split

A

v

Events

Variables

B C

w

B1 =  whenv>0    thenv := v-1   end  

B2 =  whenw<M  thenw := w+1  end

B is split into two parallel events operating on independent vars:

B  =  when v>0∧w<Mthenv := v-1 ||   w := w+1end

N1 N2



Synchronised events with parameter 

passing

B  =any   xwhere0 <x≤v

thenv := v-x    ||    w := w+xend

B1 = any   xwhere0 <x≤vthenv := v-xend

B2 = any   xwherex∈ℕthen   w := w+xend

B can be split into 2 events that have x in common:

B1 constrains the value for  xby    0 <x≤v ( output )

B2 just constrains the value of  x to a type ( input )



Synchronised Composition Operator

• Synchronised composition operator for Event-B 
machines is syntactic
– combine guards and combine actions of events to be 

synchronised

– no shared state variables

– common event parameters represent values to be agreed 
on synchronisation by both parties

• Corresponds to parallel composition in CSP
– process interact via synchronised channels

– monotonic: subsystems can be refined independently!



Composition Plug-in for Rodin

composed machine  M2

refines M1

includes N1, N2 

events

A = N1.A

B = N1.B   ||   N2.C

C = N3.C

end

Tool generates POs to 

verify that M2 is refined 

by the composition of 

N1 and N2



Asynchronous distributed system

A

v

B C

m

D

w

Agent 1 Middleware Agent 2

For distributed systems, agents do not interact directly.

Instead they interact via some middleware, e.g., the Internet



Decomposition of mail service

Send Read

Forward Deliver

sendbuf s_inbox

middleware

Send Read

Forward Deliver

sendbuf s_inbox

Mail  Server 1

Internet

Mail  Server N



References on synchronised 

composition of action systems

Michael Butler 

Stepwise Refinement of Communicating Systems

Science of Computer Programming, 27 (2), 1996

Michael Butler

A CSP Approach to Action Systems

PhD Thesis 1992



Observation on Decomposition

• Typical approach: refine  M   by   N1 || N2

• The decomposition itself is easy

– Essentially a syntactic decomposition

• The more challenging part is refining the 

abstract “global” model to a sufficiently 

detailed model to allow the syntactic 

decomposition to take place



Simple file transfer

invariants

inv1 : fileA∈ PAGE⇸DATA

inv2 : fileB∈ PAGE⇸DATA

events

CopyFile ≙ fileB := fileA

end



Diagrammatic representation of event 

refinement

CopyFile

Start CopyPage* Finish

Sequencing is from left to right

* signifies iteration



Jackson Structure Diagrams

• Part of Michael Jackson’s Structured 

Development Method  JSD

• Graphical representation of behaviour

• We can exploit the hierarchical nature of JSD 

diagrams to illustrate event refinement

• Adapt JSD notation for our needs

21 July 2008



Adapting the diagrams

CopyFile

Start CopyPage Finish

Events are represented by leaves of the tree only

Attach the operator to an arc rather than a node to clarify atomicity

Heavy line indicates  Finish  refines  CopyFile

NB:  This is not a class diagram.  It describes behaviour.

*



First refinement

invariants

inv1 : buf∈ PAGE⇸DATA

inv2 : oStart=TRUE ⇒ buf⊆ fileA

events

Start ≙ … oStart := TRUE  ||  buf := ∅∅∅∅…

CopyPage ≙
any   p, dwhere  

oStart = TRUE 

(p↦d)∈ fileA \ buf

then  

buf :=  buf∪ { p↦d }

end

Finish ≙
refines CopyFile

when   

oStart = TRUE

card(buf) = card(fileA)  

oFinish = FALSE  

then  

fileB := buf

oFinish := TRUE 

end



Further event refinement: introduce 

more asynchrony

CopyFile

Start CopyPage Finish

*

StartBStartA CpPgBCpPgA FinishB



First refinement

variables

bufA , bufB,  oStartA, oStartB, oEnd

events

StartA≙ … oStartA  :=  TRUE …

StartA≙ … oStartB  :=  TRUE …

CpPgA ≙ … bufA :=  bufA∪ { p↦d } …

CpPgB ≙ … bufB :=  bufB∪ { p↦d } …

End ≙ … fileB := bufB…



Strong dependency between A and B

StartA ≙

when  

oStartA = FALSE  

then  

oStartA := TRUE   

bufA := ∅∅∅∅

sizeA := card(fileA)

end

StartB ≙

when  

oStartA= TRUE

oStartB = FALSE

then

oStartB := TRUE

sizeB := sizeA

bufB := ∅∅∅∅

end

StartB event can read variables belonging to A side



Weaken the dependency: introduce 

shared buffer through refinement

StartA ≙

when  

oStartA = FALSE  

then  

oStartA := TRUE   

oStartM := TRUE   

bufA := ∅∅∅∅

sizeA := card(fileA)

sizeM := card(fileA)

end

StartB ≙

when  

oStartM= TRUE

oStartB = FALSE

then

oStartB := TRUE

sizeB := sizeM

bufB := ∅∅∅∅

end

invariant:  oStartM=oStartA,   sizeM=sizeA



Decomposition of file transfer

StartA CpPgA

oStartM,   sizeM,  bufM

StartB CpPgB

A side
B side

fileA

oStartA

bufA

sizeA

FinishB

fileB

oStartB

bufB

sizeB



Further refinement

All 3 components can now be refined independently:

• Data structures of SideA and SideB can be optimised

• Middleware can be fined by introducing a more explicit 
representation of messages as variant records  (or 
classes and subclasses)

– Init message contains file size

– Step message contains a page of data



Aside: interleaving instead of 

sequencing

CopyFile

Start

CopyPage(p)

Finish

|||

Illustrates multiple interleaved instances of CopyPage event

Each instance is identified by  p∈ PAGE



We have seen this pattern already

Output

Init

Inc(p)

Output

|||

Here  p∈ PROC



Alternative style of decomposition

A

v

B C

m

D

w

Events are independent

S1 and S2 interact through shared variables

S1 and S2 need to be refined in a consistent way

S2S1



Environment obligation in refinement

A

v

B C’

m

C’ must maintain any invariants used to refine S1

For composition, environment events that modify m 

must refine C’

S1

Abrial and Hallerstede. 

Refinement, decomposition and instantiation of discrete models.

FundamentaeInformatica, 2006. 



Tomorrow

• Other Event-B tools

– UML-B

– ProB

• Future plans for Rodin toolset



Lecture 5

Michael Butler

University of Southampton

August 2008



Today

• (A little) more on decomposition

• Security: model of access control example

– Rodin demo

• ProB

• UML-B

• Future plan for Rodin



Synchronised composition of 

machines

A

v

B C

m

D

w

S1 M S2

Variables are partitioned

B and C are synchronised events



Alternative style of decomposition

A

v

B C

m

D

w

Events are partitioned

Variable m is shared by S1 and S2

S1 and S2 need to be refined in a consistent way

S2S1



Environment obligation in refinement

A

v

B C’

m

C’ must maintain any invariants used to refine S1

For composition, environment events that modify m 

must refine C’

S1

Abrial and Hallerstede. 

Refinement, decomposition and instantiation of discrete models.

FundamentaeInformatica, 2006. 



Demo: Access Control System

• Users are authorised to engage in activities

• Activities take place in rooms

• Users can only be in a room if they have 

authorised to engage in each activity that 

takes place in that room 



29 Jan 08

Rodin Implementation

• Extension of Eclipse IDE (Java based)

• Repository of modelling elements (Java 

objects, XML files)

• Rodin Eclipse Builder manages:

– Well-formedness + type checker

– Consistency/refinement PO generator

– Proof manager

– Propagation of changes



Rodin Implementation

• Extension of Eclipse IDE (Java based)

• Rodin core development team:
– Laurent Voisin (Systerel)

– Stefan Hallerstede (Southampton)

– Farhad Mehta (ETH)

– Thai Son Hoang (ETH)

– Francois Terrier (ETH)

www.event-b.org



Key Tool Decisions

• Support incremental development

– Reactive: analysis tools are automatically invoked in 
the background whenever a change is made

– Differential: analytical impact of changes is minimised 
as much as possible

– Support strong interplay between modelling and 
proof – model can be changed during a proof

• Extensibility support:  

– extend modelling elements

– extend functionality through plugins



Rodin Plug-ins

• Linking UML and Event-B     

– Colin Snook + Butler (Southampton)

• ProB: consistency and refinement checking

– Michael Leuschel + team (Düsseldorf)

• Graphical model animation

– Brama (Clearsy)

– AnimB (Christophe Metayer)



ProB

• Animator and model checker

– searches for invariant violations

• Originally developed for “Classical” B

• Now being ported to Event-B and Rodin

• Implementation uses symbolic representation 

using constraint logic programming

– makes all types finite

– exploits symmetries inB types 



UML-B

• UML-like language

• Package, Class, State diagrams
– Package used to structure a refinement chain

– Class represents a set

– Attributes and associations represent relations

– UML-B classes have events

• Event-B as constraint and action language
– Guards, invariants, actions

• UML-B plug-in for Rodin
– Generates Event-B from UML-B



Demos

• ProB

• UML-B



18 March 08

Future

• Rodin coordination

• Deploy project



18 March 08

Rodin Coordination Committee

• Role: Ensure the coordinated evolution of the Rodin 
platform at a strategic level

• Current members
– Michael Butler (Chair)

– Jean-Raymond Abrial

– Cliff Jones

– Stefan Hallersede

– TherryLecomte

– Michael Leuschel

– Laurent Voisin



18 March 08

DEPLOY Project  (EU2008-2012)

• Aim: industrial deployment of formal engineering methods 

for high productivity and dependability

• 12 Partners:

– Bosch, Siemens, SAP, Space Systems Finland

– Systerel, CETIC, ClearSy

– Universites: Newcastle, ÅboAkademi, ETH Zurich, Düsseldorf, 

Southampton

www.deploy-project.eu



Future

• Mathematical language extension support

• Links with other provers (FO, SAT, SMT, HO)

• User interface improvements (text editor)

• Requirements management and traceability

• Documentation management

• Model decomposition management

• Refinement pattern management

• UML-B: improve support for refinement

• Code generation from Event-B

• Proof cross checking

• …



Rodin

• RODIN platform supports incremental development of 
proved model chains in Event-B

• Architecture makes it possible to extend the language 
and the set of analysis tools

• Open source and will continue to be developed through 
EU project: www.deploy-project.eu

www.event-b.org
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