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The specification of object-oriented and other pointer-based programs must be able to describe the
structure of the program’s dynamically allocated data as well as some abstract view of what the
code implements. The verification of such programs can be done by generating logical verification
conditions from the program and its specifications and then analyzing the verification conditions
by a mechanical theorem prover.

In these lectures, I present an object-based language, Dafny, whose specifica- tions use the style
of dynamic frames. I show how to write and specify programs in Dafny, and show how to build a
first-order automatic program verifier for Dafny programs, generating the verification conditions
as input to an automatic satisfiability-modulo-theories solver.

Related Reading Dynamic frames refer to a specification technique where one defines a portion
of memory – a set of memory locations, a frame – and then specifies the effect of methods on this
frame. Frames can change over time, making them dynamic. Dynamic frames were introduced
by Kassios [8] and were first implemented in an automatic program verifier by Smans et al.
[18]. A prevalent architecture of such verifiers first translates the source language to a primitive
intermediate verification language, and then generates theorem-prover input from the intermediate
language. ESC/Modula-3 [5] and ESC/Java [7] used early forms of this architecture, which is now
further developed in Boogie [1] and Why [6]. A pedagogical development of the architecture for
a core object-oriented language is given in previous Marktoberdorf lecture notes [14]. The style
of dynamic-frames specifications bears some resemblance to the valid/state specification idiom
in ESC/Modula-3 [5, 12], to data groups [10, 13], and to separation logic with predicates [17].
Alternatives are explored in JML [9], which uses universe types [16], and Spec# [3], which uses
the Boogie methodology [2, 11, 4, 15].
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