
Specification and Verification

of

Object-Oriented Software

K. Rustan M. Leino
Microsoft Research, Redmond, USA

The specification of object-oriented and other pointer-based programs must be able to describe the
structure of the program’s dynamically allocated data as well as some abstract view of what the
code implements. The verification of such programs can be done by generating logical verification
conditions from the program and its specifications and then analyzing the verification conditions
by a mechanical theorem prover.

In these lectures, I present an object-based language, Dafny, whose specifica- tions use the style
of dynamic frames. I show how to write and specify programs in Dafny, and show how to build a
first-order automatic program verifier for Dafny programs, generating the verification conditions
as input to an automatic satisfiability-modulo-theories solver.

Related Reading Dynamic frames refer to a specification technique where one defines a portion
of memory – a set of memory locations, a frame – and then specifies the effect of methods on this
frame. Frames can change over time, making them dynamic. Dynamic frames were introduced
by Kassios [8] and were first implemented in an automatic program verifier by Smans et al.
[18]. A prevalent architecture of such verifiers first translates the source language to a primitive
intermediate verification language, and then generates theorem-prover input from the intermediate
language. ESC/Modula-3 [5] and ESC/Java [7] used early forms of this architecture, which is now
further developed in Boogie [1] and Why [6]. A pedagogical development of the architecture for
a core object-oriented language is given in previous Marktoberdorf lecture notes [14]. The style
of dynamic-frames specifications bears some resemblance to the valid/state specification idiom
in ESC/Modula-3 [5, 12], to data groups [10, 13], and to separation logic with predicates [17].
Alternatives are explored in JML [9], which uses universe types [16], and Spec# [3], which uses
the Boogie methodology [2, 11, 4, 15].

References

1. M. Barnett, B.-Y. Evan Chang, R. DeLine, B. Jacobs, and K.R.M. Leino. Boogie: A Modular
Reusable Verifier for Object-Oriented Programs. In Formal Methods for Components and
Objects: 4th International Symposium, FMCO 2005, F.S. de Boer, M.M. Bonsangue, S.
Graf, and W.-P. de Roever (eds); LNCS 4111, pp 364–387; Springer; 2006.

2. M. Barnett, R. DeLine, M. Fähndrich, K.R.M. Leino, and W. Schulte. Verification of Object-
Oriented Programs with Invariants. Journal of Object Technology, 3(6); pp 27–56; 2004.

3. M. Barnett, K.R.M. Leino, and W. Schulte. The Spec# Programming System: An Overview.
In Construction and Analysis of Safe, Secure and Interoperable Smart devices (CASSIS
2004); G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean (eds); LNCS 3362;
pp 49–69; Springer; 2005.

22



4. M. Barnett and D. A. Naumann. Friends need a bit more: Maintaining Invariants over
Shared State. In Seventh International Conference on Mathematics of Program Construction
(MPC 2004); D. Kozen, C. Shankland (eds.); LNCS 3125, pp 54–84; Springer; 2004.

5. D.L. Detlefs, K.R.M. Leino, G. Nelson, and J.B. Saxe. Extended Static Checking. Research
Report 159, Compaq Systems Research Center, December 1998.

6. J.-C. Filliâtre. Why: a Multi-Language Multi-Prover Verification Tool. Research Report 1366,
LRI, Université Paris Sud, March 2003.

7. C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, and R. Stata. Extended
Static Checking for Java. In Proc of Programming Language Design and Implementation
(PLDI’02); Vol. 37(5) in SIGPLAN Notices; pp 234–245; ACM; 2002.

8. I.T. Kassios. Dynamic Frames: Support for Framing, Dependencies and Sharing without
Restrictions. In “Formal Methods” 14th International Symposium on Formal Methods (FM
2006); J. Misra, T. Nipkow, and E. Sekerinski (eds); LNCS 4085; pp 268–283; Springer; 2006.

9. G.T. Leavens, A.L. Baker, and C. Ruby. JML: A Notation for Detailed Design. In “Behavi-
oral Specifications of Businesses and Systems”; H. Kilov, B. Rumpe, and I. Simmonds (eds);
pp 175–188; Kluwer Academic Publishers; 1999.

10. K.R.M. Leino. Data Groups: Specifying the Modification of Extended State. In Proc of the
1998 ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’98), VOL 33 (10); SIGPLAN Notices, pp 144–153; ACM; 1998.

11. K.R.M. Leino and P. Müller. Object Invariants in Dynamic Contexts. In European Con-
ference on Object-Oriented Programming (ECOOP’04); M. Odersky (ed); LNCS 3086; pp
491–516; Springer; 2004.

12. K.R.M. Leino and G. Nelson. Data Abstraction and Information Hiding. ACM Transactions
on Programming Languages and Systems, 24(5); pp 491–553; 2002.

13. K.R.M. Leino, A. Poetzsch-Heffter, and Y. Zhou. Using Data Groups to Specify and Check
Side Effects. In Proc of the Programming Language Design and Implementation (PLDI’02),
Vol 37(5); SIGPLAN Notices; pp 246–257; ACM;2002.

14. K.R.M. Leino and W. Schulte. A Verifying Compiler for a Multi-Threaded Object-Oriented
Language. In “Programming Methodology”, Summer School Marktoberdorf 2006; NATO
ASI Series; Springer; 2007. http://research.microsoft.com/∼leino/papers.html

15. K.R.M. Leino and A. Wallenburg. Class-Local Object Invariants. In First India Software
Engineering Conference (ISEC 2008); ACM; 2008.

16. P. Müller, A. Poetzsch-Heffter, and G.T. Leavens. Modular Invariants for Layered Object
Structures. Science of Computer Programming, 62; pp 253–286; 2006.

17. M.J. Parkinson and G.M. Bierman. Separation Logic and Abstraction. In Proc of the Prin-
ciples of Programming Languages (POPL’05); J. Palsberg and M. Abadi (eds); pp 247–258;
ACM; 2005.

18. J. Smans, B. Jacobs, F. Piessens, and W. Schulte. An Automatic Verifier for Java-like
Programs based on Dynamic Frames. In Fundamental Approaches to Software Engineering
(FASE 2007); LNCS 4422; Springer; 2008.

23


