AN INTRODUCTION TO

SEPARATION LOGIC

1. An Overview

John C. Reynolds
Carnegie Mellon University
Marktoberdorf August 15, 2008

©2008 John C. Reynolds

A Program for In-place List Reversal

LREV € = nil;

while i Z nildo (k:=[i+ 1];[i+ 1] :=j;j:=1i;i:=k).
To prove {listai} LREV {list aT j}, the invariant
Ja, B. listai Alist Bj A al = af-3,
: . def . . : .def _. . - :
(wherelistei = i = nil and list(a-a) i = Jj. i< a,jAlist aj)
IS inadequate.

An adequate invariant (in Hoare logic):

Ba, 8. listai Alist B A al = al-g)
A (Vk. reachable(i, k) A reachable(j, k) = k = nil).

An adequate invariant (in separation logic):

(3o, B. list i * list Bj) A on(r) = ol-3.

where x is the separating conjunction.

To prove {list i * list v x} LREV {list a j * list v x} in
Hoare logic, we need the stronger invariant:
(3o, B. listai Alist 8] A of) = af-B)
A (Vk. reachable(i, k) A reachable(j, k) = k = nil)
A list v x
A (Vk. reachable(x, k)
A (reachable(i, k) V reachable(j, k)) = k = nil).

But in separation logic, we can use:

(Ja, B. listaci * list B * listyx) A ach) = of-f).

Framing

Actually, in separation logic, from
{list i} LREV {list ' j},
we can use the frame rule to infer directly that

{listai * listyx} LREV {listal] * list v x}.

Overview of Separation Logic

e Low-level programming language
— EXxtension of simple imperative language

— Commands for allocating, accessing, mutating,
and deallocating data structures
— Dangling pointer faults (if pointer is dereferenced)

e Program specification and proof
— EXxtension of Hoare logic
— Separating (independent, spatial) conjunction (*)
and implication (—)
e Inductive definitions over abstract structures

Early History

e Distinct Nonrepeating Tree Systems
(Burstall 1972)
e Adding Separating Conjunction to Hoare Logic
(Reynolds 1999, with flaws)
e Bunched Implication (BI) Logics
(O'Hearn and Pym 1999)
e Intuitionistic Separation Logic
(Ishtiag and O'Hearn 2001, Reynolds 2000)
e Classical Separation Logic (Ishtiag and O'Hearn 2001)
e Adding Address Arithmetic (Reynolds 2001)

States

Without address arithmetic (old version):

Values = Integers U Atoms U Addresses
where Integers, Atoms, and Addresses are disjoint

nil € Atoms
Storesy = V — Values

Heaps = U &, (A — Values™)
A C Addresses

Statesy = Storesy, x Heaps
where V is a finite set of variables.

With address arithmetic (new version):

Values = Integers
Atoms U Addresses C Integers
where Atoms and Addresses are disjoint
nil € Atoms
Storesy = V — Values

Heaps = U ¢, (A — Values)
A C Addresses

Statesy, = Storesy, x Heaps
where V is a finite set of variables.

(We assume that all but a finite number of nonnegative
integers are addresses.)

The Programming Language: An Informal View

The simple imperative language:

= skip ; if — then — else — while — do —
plus:

Store: x:3,y:4

Heap : empty
Allocation x :=cons(1,2); [}

Store: x:37,y: 4

Heap: 37:1, 38:2
Lookup y = [x]; [}

Store: x:37,y:1

Heap: 37:1, 38:2
Mutation x4+ 1] :=3; ()

Store: x:37,y:1

Heap: 37:1,38:3
Deallocation dispose(x+ 1) [}

Store: x:37,y:1

Heap: 37:1

Note that:

e EXxpressions depend only upon the store.
— no side effects or nontermination.
— cons and [—] are parts of commands.

e Allocation is nondeterminate.

Memory Faults

Store: x:3,y:4

Heap : empty
Allocation x:=cons(1,2); (2

Store: x:37,y:4

Heap: 37:1, 38:2
Lookup y = [x]; J

Store: x:37,y:1

Heap: 37:1, 38:2
Mutation [x4+2]:=3; J

abort

Faults can also be caused by out-of-range lookup or
deallocation.

Assertions

Standard predicate calculus:

A Vv - = v -
plus:

e emp (empty heap)
The heap is empty.

o ci— ¢ (singleton heap)
The heap contains one cell, at address e with con-
tents ¢’.

® p1 * Do (separating conjunction)

The heap can be split into two disjoint parts such
that p1 holds for one part and p, holds for the other,

® p| —* Po (separating implication)
If the heap is extended with a disjoint part in which
p1 holds, then p> holds for the extended heap.

Some Abbreviations

def

e— — = Jx/.e— '’ where 2/ not free in e
, def /
e —e = er e x true
def
er—e€ef,...,ep — er—e1 x---kxke+n—1—ep
def
e—e1,...,ep, — €e—e1 x ---xe+n—1—ey

iff e—eq1,...,en *x true

Examples of Separating Conjunction

1. x +— 3,y asserts that x points to an
adjacent pair of cells containing 3 and y.

2. y +— 3,x asserts that y points to an
adjacent pair of cells containing 3 and x.

3. x+— 3,y x y— 3,x asserts that situa-
tions (1) and (2) hold for separate parts
of the heap.

4. x+— 3,y ANy — 3,x asserts that situa-
tions (1) and (2) hold for the same heap,
which can only happen if the values of x
and y are the same.

5. x—= 3,y ANy — 3,x asserts that either
(3) or (4) may hold, and that the heap
may contain additional cells.

< W

W

\/

W

An Example of Separating Implication

Suppose p holds for
Store: x a, ...
Heap: a:3,a0+1:4, ...

Then (x+— 3,4) — p holds for
Store: xia, ...
Heap :

and x+— 1,2 x ((x+— 3,4) — p) holds for

Store . x a, ...
Heap: a:l,a+1:2,...

In particular,

X

3
4

[—

s 5Ny 5 5N 75 5

Rest
of
Heap

Rest
of
Heap

Rest
of
Heap

{x—1,2 % ((x—3,4) = p)} [x] :=3; [x+ 1] :=4 {p},

and more generally,

{x—= —— % ((x—3,4) =p)} [x] :=3; [x+ 1] := 4 {p}.

Rules and Axiom Schemata for x and —«
pP1 * p2 < P2 * p1
(p1 * p2) * p3 & p1 * (p2 * p3)
p *x emp < p
(p1Vp2) * g (p1 * @)V (P2 * q)
(p1Ap2) * ¢ = (p1 * @) A (p2 * q)
(Jx. p1) * po < Jx. (p1 * pp) when z not free in po
(Vz. p1) * po = Vz. (p1 * po) when x not free in po

P1 = P2 q1 = g2
P1 * q1 = P2 * Q2

(monotonicity)

* = : = —k
PL* P2 = P3 _((rrying) P (p2 —* p3)

(decurrying)
p1 = (P2 —* p3) p1 * p2 = Pp3.

Two Unsound Axiom Schemata
p = p * p (Contraction — unsound)
eg. p.x—1
p*q=0p (Weakening — unsound)
e.g. p:x—1
q:y+— 2

Some Axiom Schemata for —
€1I—>€/1/\62I—>€/2<:>€1I—>€/1/\61:62/\€/126/2
e1 — €] * ep > e, = e1 F e
emp < Vr. ~(r — —)
(e—=e)Ap=(e—e) x ((e—e) —p).

(Regrettably, these are far from complete.)

Specifications
o {p}c{q} (partial correctness)

Starting in any state in which p holds:
— NoO execution of ¢ aborts.

— When some execution of ¢ terminates in a final
state, then ¢ holds in the final state.

e [plc[q] (total correctness)

Starting in any state in which p holds:
— NoO execution of ¢ aborts.
— Every execution of ¢ terminates.

— When some execution of ¢ terminates in a final
state, then ¢ holds in the final state.

The Differences with Hoare Logic

e Specifications are universally quantified implicitly over
both stores and heaps,

e Specifications are universally quantified implicitly over
all possible executions.

e Any execution (starting in a state satisfying p) that
gives a memory fault falsifies both partial and total
specifications. Thus:

e o o \\Vell-specified programs don’'t go wrong. e e e

— and memory-fault checking is unnecessary.

Enforcing Record Boundaries

T he fact that specifications preclude memory faults acts
in concert with the indeterminacy of allocation to pro-
hibit violations of record boundaries. For example, in

co;x:=cons(1,2);¢c1;[x+2]:=7,

no allocation performed by the subcommand cg or ¢y
can be guaranteed to allocate the location x4+ 2.

As long as cg and c; terminate and ¢y does not modify
x, the above command may abort.

It follows that there is no postcondition that makes the
specification

{true} cg;x:=cons(1,2);c1;[x+2]:=7 {7}

valid.

On the Other Hand

X — x y—= —}
if y = x4 1 then skip else
if x=y -+ 1 then x:=y else
(dispose x ; dispose y ; x :=cons(1,2))

{X = _}'

Hoare's Inference Rules

The command-specific inference rules of Hoare logic
remain sound, as do structural rules such as
e Strengthening Precedent
p=q {q} c{r}
{p}c{r}.

e \Weakening Consequent

{p} c{q} q=r

{pteir}.

e Existential Quantification (Auxiliary Variable Elimi-
nation)

{p} c{a}
{Fv. p} ¢ {Fv. q},
where v is not free in c.

e Conjunction

{p} c{a1} {p} c{q2}

{p} c{q1 A q2},

e Substitution

{p} c{d}
({p} & {Q})/Ul — 617 sty Un — en)
where v1,...,vn are the variables occurring free in

p, ¢, or g, and, if v; is modified by ¢, then e; is a
variable that does not occur free in any other e;.

The Failure of the Rule of Constancy

On the other hand,
e Rule of Constancy

{p} c{q}
{pAr}c{gnr},
where no variable occurring free in r is modified by c.

IS unsound, since, for example
{x— =} [x] : =4 {x— 4}
{x— —Ay—3}[x] =4 {x—4Ay+— 3}
fails when x =vy.

The Frame Rule

Instead, we have the
e Frame Rule (O’'Hearn)

{p} c{q}
{p *xryclg*r}
where no variable occurring free in r is modified by c.

By using the frame rule, one can extend a local spec-
ification, involving only the variables and parts of the
heap that are actually used by c¢ (called the footprint
of ¢), by adding arbitrary predicates about variables and
parts of the heap that are not touched by c.

lLLocal Specifications

The frame rule is the key to “local reasoning”’ about
the heap:

To understand how a program works, it should
be possible for reasoning and specification to be
confined to the cells that the program actually
accesses. The value of any other cell will auto-
matically remain unchanged. (O’'Hearn)

Each valid specification {p} ¢ {q} is “tight” in the sense
that it implies every cell in the footprint of ¢ must be
asserted to be active by p (or freshly allocated by c);
“locality” is the converse implication that everything
asserted to be active belongs to the footprint. The role
of the frame rule is to infer from a local specification of
a command the more global specification appropriate to
the possibly larger footprint of an enclosing command.

Inference Rules for Mutation

e Local

{er— —} [e] :i=¢€ {e— €}

e Global

{(e> =) * r}[e] =€ {(ere) * r}.

e Backward Reasoning

{(e— =) = ((e—¢€) —p)} [e] :=€ {p}.

Inference Rules for Deallocation

e Local

{e — —} dispose e {emp}.

e Global, Backwards Reasoning

{(e — —) % r} dispose e {r}.

Inference Rules for Nonoverwriting Allocation

e Local
{emp} v := cons(e) {v — €},
: : f
where v is not free in édé €1,...,6En.
e Global

{r} v:=cons(e) {(v—¢€) x r},
where v is not free in € or r.
(We postpone more complex rules with quantifiers.)

An Example of an Annotated Specification:
Gluing Records

X—=—*y——}
if y=x+ 1 then
{x— -, -}
skip
else if x =y + 1 then
y———}
X =y
else
({x——*y— -}
dispose x ;
{y— -}
dispose y ;
{emp}
x:=cons(1,2))
{x——,—}

Another Example: Relative Pointers

{emp}

x .= cons(a,a) ;

{x — a,a}

y := cons(b,b) ;
{(x+—a,a) * (yr—b,b)}
{(x—a,=) x (y—b,—)}

x+ 1] ==y —x;
{(x—a,y—x) * (y—b,—)}
ly+1] :=x—vy,

{(x—a,y—x) * (y—bx—y)}
{Jo. (x — a,0) * (x4+o0+—b, —0)}.

Singly-linked Lists

/

nil

: . def : .
listei = emp Ai = nil

list (a-) | def dj. i+ a,j * list],

list i
| — Q1 079
O// O—
is defined by
where

e c iS the empty sequence.

o o3 is the composition of o followed by £.

e ol is the reflection of a.

One can also derive an emptyness test:

istai= (i=nil & a =¢).

S-expressions (a la LISP)

T € S-exps iff
T € Atoms
or 7 = (71 - 1) where 71,7 € S-exps.

Representing S-expressions by Trees (no shar-
ing)

For m € S-exps, we define the assertion
tree 7 (1)
by structural induction:

treea (i) iffemp A1 =a

tree (71 -) (3) iff
Fi1,90. 1+ i1,1> x tree T (i1) * tree 7o (io).

Representing S-expressions by Dags (with shar-
ing)

For m € S-exps, we define
dag 7 (%)
by:
daga (i) iff i = a

dag (7’1 . 7'2) (Z) iﬂ:
Ji1,90. 1+ i71,1o x (dag 71 (i1) Adagm (in)).

Proving the Schorr-Waite Marking Algorithm
(Yang)

e \We abandon address arithmetic, and require all records
to contain two address fields and two boolean fields.

e Only reachable cells are in heap.

Let

def
allocated(x) = x— —, —, —, —

def
markedR = Vx. allocated(x) = x — —, —, —, true

noDangling(x) det (x = nil) V allocated(x)

noDanglingR der vx,Lr. (x = Lr— —)=

noDangling(l) A noDangling(r).
Then the invariant of the program is
noDanglingR A noDangling(t) A noDangling(p) A
(Iistl\/larkedNodesR(stack, p) *
(restoredlistR(stack, t) —« spansR(STree, root))) A
(markedR * (unmarkedR A (‘v’x. allocated(x) =
(reach(t, x) V reachRightChildInList(stack, x)))))

Proving Schorr-Waite (continued)

noDanglingR A noDangling(t) A noDangling(p) A
(Iistl\/larkedNodesR(stack, p) *
(restoredListR(stack,t) — spansR(STree, root))) A
(markedR * (unmarkedR A (Vx. allocated(x) =
(reach(t, x) V reachRightChildInList(stack, x)))))

restoredListR(stack, t): listMarkedNodesR (stack, p):
root root
P

Shared-Variable Concurrency
(O'Hearn and Brookes)

Without Critical Regions
Hoare (1972):

{p1} c1 {91} {p2} c2 {92}
{p1 Ap2}cr|lea {a1 A az},
when the free variables of p1, ¢1, and g7 are not modified
by co, and vice-versa.

O'Hearn (2002):
{p1}c1 {a1} {p2} co {q2}

{p1 * p2} 1l 2 {q1 * g2}
(with the same side condition as above).

With Critical Regions: A Simple Buffer

{emp}
{emp * emp}
{emp} {emp}
x:=cons(...,...); get(y) ;
{x———} | {y—— -}
put(x) ; “Use y" ;
{emp} {y—— -}
disposey ;
{emp}
{emp * emp}
{emp}

Behind the scenes:

put(x) = with buf when —full do (c:=x; full := true)
get(y) = with buf when full do (y := ¢ ; full := false)

T he Resource Invariant
def

R= (ful A\c— —,—) V (= full A emp).
put(x) = get(y) =
{x—— -} {emp}

with buf when —fulldo (with buf when full do (
{(R *x x+— —,—) A —full} {(R * emp) A full}

{emp * x+— —, —} {c— —,— x emp}
{X'_>_7_} {C'_>_7_}

c:=x; full ;== true y :=c; full := false

{ful Ac— —, -} {—full ANy — — —}

{R} {(=full ANemp) * y+— —, —}
{R * emp}) {R x y+— —,—})

{emp} {y—— -}

The Overall Program

{R x emp}
resource buf in
{emp}
{emp * emp}
s | s
{emp * emp}
{emp}
{R *x emp}

Fractional Permissions (Bornat, following Boy-
land)

We write e —, e/, where z is a real number such that
0 < z< 1, to assert e points to ¢ with permission z.

e ¢c+—1 € is the same as e — €/, so that a permission
of one allows all operations.

e Only lookup is allowed when z < 1.
Then

/ /s /
er—z€e *x ers e Ifl’el—>z_|_z/e

and
{emp}v :=cons(eq,...,ep){e—1€1,...,en}
{e —1 —}dispose(e){emp}
{e —~1 —}e] :=€{erq €'}
e, e'tvi=le]l{e—., e ANv=ce},

with appropriate restrictions on variable occurrences.

AN INTRODUCTION TO

SEPARATION LOGIC

2. Assertions

John C. Reynolds
Carnegie Mellon University
Marktoberdorf August 15, 2008

©2008 John C. Reynolds

Some Notation for Functions
We write
[z1:y1 | ... | zniyn]

for the function with domain {z1,...,zn} that maps
each z; into y;, and

[flziiyr | .. | Zniyn]

for the function whose domain is the union of the do-
main of f with {z1,...,zn}, that maps each x; into y;
and all other members xz of the domain of f into fx.

For heaps, we write
ho L hq

when hg and hq have disjoint domains, and
ho - h1

to denote the union of heaps with disjoint domains.

Free Variables

For any phrase p,

FV(p) denotes the set of variables occurring free in p.

There are no binding constructions in expressions or
boolean expressions, so that for these phrases FV(e) is
the set of all variables occurring in e. In assertions,
quantifiers are binding constructions. In commands,
declarations will be binding constructions.

The scope of a binding construction is the phrase im-
mediately following the binding occurrence of a variable,
except in

newvar v = e in c,

where the underline phrases are excluded from the scope.

Total Substitution

For any phrase p such that FV(p) C {vq,...,vn}, we
write

p/vi — €1,...,0n — €

to denote the phrase obtained from p by simultaneously
substituting each expression ¢; for the variable v;, (When
there are bound variables in p, they will be renamed to
avoid capture.)

The Total Substitution Law for Expressions

Proposition 1 Let § abbreviate the substitution

V1 7 €1y...,Un — €En,
let s be a store such that FV(e1)U---UFV(ep) C domss,
and let
s = [vs: [[61]]exp5 [| ont ﬂen]]exps]-
If e is an expression (or boolean expression) such that

FV(e) C {v1,...,vn}, then

[e/d]exps = lellexps:

Partial Substitution

When FV(p) is not a subset of {vq,...,vn},
p/vi — e1,...,0p — €n
abbreviates
/ / / /
p/v1 — €1,...,Un — €n, V] — V],...,V — U,

where {v],... ,vllg} = FV(p) — {vi,...,vn}.

The Meaning of Assertions

When s is a store, h is a heap, and p is an assertion
whose free variables belong to the domain of s, we write

s,hEp
to indicate that the state s, h satisfies p, or p is true in
s,h, or p holds in s,h. Then:
s,h B b iff [b]poolexps = true,
s,hF—-p iff s,h F p is false,
s,h EpgApq iff s,hFEpg and s, h F pq
(and similarly for Vv, =, <),
s,hEYv.p iff VeeZ. [s|v:x],hF p,
s,hEJu.p iff xeZ. [s|vix],hFEp,
s,h Femp iff domh = {},
s,hE e e iff domh = {[e]exps} and
h([[e]]exps) — [[e/ﬂexpsa
s,h E pg * p1 iff dhg,h1. hg L hq and hg-h1 = h and
s,hg F pg and s, hy F pq,
s,h Epg —py iff VA'. (' L h and s, h' E pg) implies
s,h-h'Epq.

When s,h F p holds for all states s, h (such that the
domain of s contains the free variables of p), we say
that p is valid.

When s, h F p holds for some state s, h, we say that p is
caticfiable

For Instance

s,hEx— 0 xy—1

iff Jho,h1. hg L hy and hg-hy = h
and s,hg Fx— 0
and s,h1 Fy—1

iff dhg,h1. hg L hqy and hg-h1 = h
and domhg = {sx} and hg(sx) =0
and domhi = {sy} and hi(sy) =1

iff sx # sy
and domh = {sx,sy}
and h(sx) =0 and h(sy) =1

iff sx#= sy and h=1[sx:0]sy:1].

Examples
s,h Ex—y iff domh = {sx} and h(sx) = sy
s,h Fx+— — iff domh = {sx}
s,hEx—y iff sxedomh and h(sx) = sy
s,hEx— — iff sxedomh
s,hEx—y,z iff h=[sxisy|sx+ 1:sz]
s,hEx+— — — iff domh = {sx,sx+ 1}
s,hEx—y z iff hD[sxisy|sx+ 1l:sz]
s,hEx— — — iff domh D {sx,sx+ 1}.

More Examples of x*

Suppose sx and sy are distinct addresses, so that
ho = [sx:0] and hi =[sy:1]

are heaps with disjoint domains. Then

If p is: then s, h F p iff:
x— 0 h = hg

y— 1 h = h1y

X— 0 xyr—1 h = hg-hy

x— 0 x x— 0 false
x—0Vym—1 h = hg Oor h = hy
x— 0 * (x—O0Vyr—1) h = hg-hq
(x—0Vy—1) * (x—0Vy—1) h=hg-hq
x—0xy—1x (x—0Vy+r—1) false

x — 0 x true ho C h

X— 0 *x = x—0 ho C h.

Inference Rules

P1 Pn (zero or more premisses)
C (one conclusion)
Inference
Inference Rules Instances
PO Po = P1 x+0=x X+0=x=x=x+4+0
P1 x=x-+0
ep —e€e] = e} = eo X+0=x=x=x-+0
X+ 0 =x X+ 0=x
A Proof
X+ 0 =x

X+0=x=x=x+4+0
x = x -+ O.

Notice:

e Metavariables are in italics (or Greek), object vari-
ables are in sans serif.

e An inference rule is sound iff, for every instance, if
the premisses are all valid, then the conclusion is
valid.

e An axiom schema is an inference rule with zero pre-
misses.

e An axiom is an axiom schema with no metavariables.

A Subtlety

p is sound iff, whenever p is valid,
g g is valid.

p=q is sound iff p= g is valid.

For example,

P x=0
e.g.
Yu. p Vx.x =10

IS sound, but
p=VYu.p e€d. x=0=WVx.x=0

is not valid.

Inference Rules for Predicate Logic

b P=4 (modus ponens)
q
pP=q
when v ¢ FV(p)
p = (Yv. q)
p=q

(Fo. p) = g when v ¢ FV(q).

Axiom Schema

p = (¢g=p)
(p=(@=r))=(p=>9)=>m=>r))
(pAq) = p
(pANq) = q
p= (g=(PAq))
p= (pVaq)
q= (pVaq)
(p=r)= ((¢g=r)=UpVqg =r))
(r=q) = ((p=—q) = —p)
=(mp) = p
(r=q) = ((p=q9) AN(g=Dp))
(=g N(@=p) = ®&q)
(Vv. p) = (p/v —e)
(p/v —e) = (Fv. p).

Inference Rules for x and —«

Po * P1 < P1 * PO
(po * P1) * P2 & po * (p1 * pP2)
p *x emp < p
(poVp1) *x g (po * ¢)V (p1 * q)
(poAp1) * g = (po * @) N (p1 * q)
(3x. pg) * p1 < Jx. (pg * p1) When z not free in py
(Vz. pg) * p1 = Vz. (pg * p1) When z not free in pq

Po = P1 q0 = q1
PO * g0 = P1 * Q1

(monotonicity)

% P = . — —x
PO * PL= P2 ((irrying) PO (p1 —*+ p2)

(decurrying)
po = (p1 —* p2) pPo * p1 = p2.

Some Axiom Schemata for — and —

GOI—>€6/\61I—>€/1<:>€OI—>€/O/\GO:61/\€/O:€/1
eg — ey * e] — €] = eg F eg
emp < Vr. ~(x — —)
(e—e)Ap=(e—€) * ((e—¢€) —p).

Pure Assertions

An assertion p is pure iff, for all stores s and all heaps
h and A/,

s,h Epiff s,h Ep.

A sufficient syntactic criteria is that an assertion is pure
if it does not contain emp, —, Or —.

Axiom Schemata for Purity

pPo NP1 = Po * P1

Po * p1 = po A\ Pp1
(pAq) 7 (px1)Ag
(po =+ p1) = (po = p1)
(ro = p1) = (Po —* p1)

when pg or py is pure
when pg and pj are pure
when q is pure

when pg is pure

when pg and py are pure.

Precise Assertions

An assertion q is precise iff

For all s and h, there is at most one A/ C h such
that

s,h Eq.

Examples of Precise Assertions

® cH— —.

e p x g, when p and g are precise.
e p Aq, when p or q is precise.

e p, when p=-q is valid and q is precise.
o listaxe and da. list « e.

o tree 7 (e) and dr. tree 7 (e).

Examples of Imprecise Assertions

e true

e emp Vx— 10

e x— 10Vy— 10
e Ix. x+— 10

e dag 7 (i)

e dr.dag 7 (i)

Preciseness and Distributivity

T he semi-distributive laws

(poAp1) * ¢ = (po * @) N(p1 * q)
(Vx.p) * ¢q = Vz. (p *x q) when z not free in g

are valid for all assertions. But their converses

(po * @) AN(p1 * @) = (PoADP1) * g
V. (p *x q) = (Vx.p) * ¢ when x not free in ¢

are not. For example, when
s(x)=1 s(y)=2 h=1[1:10]2:20],
the assertion

(x+— 10*x(x+— 10Vy+— 20))A(y— 20*(x+— 10Vy — 20))

IS true, but

((x— 10Ay—20) * (x+— 10Vyr— 20))

is false.
However, the converses are valid when ¢ is precise.

Preciseness and Distributivity (continued)

Proposition 2 When q is precise,

(po * @) AN(p1 * q) = (Po AP1) * ¢q

is valid. When q is precise and x is not free in q,

V. (p * q) = (V. p) * g

Is valid.

Proof (first law) Suppose s,h E (pg * g) A (p1 * q).
Then there are:

e An hg C h such that s,h — hg F pg and s, hg F ¢, and
e An hqy C h such that s,h— h1 Fp1 and s, h1 F gq.
Thus, since q is precise,
hog = hi1
h—hg=h—hy
s,h — hg F pg A p1
s,h E (po Ap1) * q.
end of proof

Intuitionistic Assertions

An assertion ¢ is intuitionistic iff, for all stores s and
heaps h and h':

(h C K and s, h E14) implies s, k' E 1.

Assume 7 and ¢/ are intuitionistic assertions, and p is any
assertion. Then:

e [he following assertions are intuitionistic:

Any pure assertion [N
P —% 1 1T —% P
i A iV
Yv. 1 Jv. ¢
dag 7 (e) 37. dag 7 (e),

and as special cases:

p *x true true — p e — €.

e [he following inference rules are sound:
(i«)= (N
(1 x p)=1 i = (p —x1)
D=1 1= D
(p x true) =17 = (true — p).
T he last two of these rules, in conjunction with the rules

p= (p * true) (true — p) = p,
which hold for all assertions, imply that

e pxtrue is the strongest intuitionistic assertion weaker
than p.

e true — p iIs the weakest intuitionistic assertion that
is stronger than p.

e 1 < (1 x true).

o (true —x 1) < 3.

The Intuitionistic Version of Separation Logic

If we define the operations

4 P déf true — (—p)

' def
p='>q = true —x (p = q)

i def
pdq = true — (p < q),

then the assertions built from pure assertions and e —
e/, using these operations and A, V, V, 3, %, and — form
the intuitionistic version of separation logic.

Some Derived Inference Rules

q*x (g —*p)=p

1. g*(qg—=*p)=(—=p)*xq (po* Pp1=p1 * po)
2. (¢ —=*p)=(qg —p) (p = p)
3. (g—=p) *xqg=0p (decurrying, 2)
4. qg* (gq—*p)=p (trans impl, 1, 3)

where transitive implication is the inference rule

pP=4q q=r
p=T.

r=(q— (g x 1))

1. (rxgq)=(=*r) (po * p1=Pp1 * PO)
2. r=(qg—=*(qg*r1)) (currying, 1)

(pxr)=(px* (¢g—(qg*r)))

1. p=p (p=p)
2. r=>(qg—=*(gx*r)) (derived above)

3. (p*7r)=(x (g —(q x r))) (monotonicity, 1, 2)

® N o 0o K~ W M=

po=(q —1) p1 = (r —s)
p1 * po= (g —* s)

p1 = p1 (p=p)
po= (g —1) (assumption)
po *x q=7r (decurrying, 2)
Pl *k Po *x q=>Pp1 * T (monotonicity, 1, 3)
p1 = (r —x s) (assumption)
Pl * T =8 (decurrying, 5)
p1 * po * =S (trans impl, 4, 6)

p1 * po = (g —* s) (currying, 7)

® N o 0o & W M=

P=p q=¢
(p—q)= (' —=q).

(p—xq) = (p —*q) (p=p)
p=0p (assumption)

(p—xq) * p=(p—=xq) * p (Mmonotonicity, 1, 2)

(p—*q) * p=gq (decurrying, 1)
(p—q) * p=g¢ (trans impl, 3, 4)
q=q (assumption)
(p—xq) * p=¢ (trans impl, 5, 6)

(p—q)=(p —=q) (currying, 7)

Exercise 1

Give a formal proof of the valid assertion

((X'—>y * X' —y') % true) —
(((x =y * true) A (X' — y' * true)) Ax# x')

from the rules in (2.3) and (2.4), and (some of) the
following (derived) inference rules for predicate calculus:

p = true p=DP p A\ true = p
= =7 .
P=4 1 (trans impl)
p=TrT
= =T . :
P=4 P (A-introduction)
p=qgAT

Your proof will be easier to read if you write it as a
sequence of steps rather than a tree. In the inference
rules, you should regard x as left associative, e.qg.,

eon—>e’0 * eln—>e/1 x true = eq # €1
stands for
(eg — e’o x e1 > €]) * true = eg % eq.

For brevity, you may weaken < to = when it is the main
operator of an axiom. You may also omit instances of
the axiom schema p=p when it is used as a premiss of
the monotonicity rule.

Exercise 2

None of the following axiom schemata are sound. For
each, given an instance which is not valid, along with a
description of a state in which the instance is false.

po * P1 = pPo A\ Dp1
pPo NP1 = PO * P1
(po * P1) Vg = (poVq) * (p1Vq)
(PoVaq) * (p1Vaq) = (po *x P1) Va
(o * @) AN(p1 * @) = (PoAP1) * ¢
(o * P1) Aq = (PoNq) * (p1Aq)
(poANq) * (P1Ag) = (po * P1) N g
(‘v’az. (po *pl)) = (Vx. pg) *p1 when z not free in p;
(po = p1) = ((po * @) = (p1 * 0))

(ro = pr1) = (po —* p1)
(ro —* p1) = (Po = P1)

SO SNO NN SN NN

AN INTRODUCTION TO

SEPARATION LOGIC

3. Specifications

John C. Reynolds
Carnegie Mellon University
Marktoberdorf August 15, 2008

©2008 John C. Reynolds

Hoare Triples

e A partial correctness specification

{p} c{q}

is valid iff, starting in any state in which p holds:

— No execution of ¢ aborts.

— When some execution of ¢ terminates in a final
state, then ¢ holds in the final state.

(We will not consider total correctness in these lec-
tures.)

Examples of Valid Specifications

{x—y>3}x:=x—y{x>3}
{x+y>17}x:=x+ 10 {x+y > 27}
{emp} x:=cons(1,2) {x— 1,2}
{x— 1,2}y =[x {x— 1,2Ay =1}
{x— 1,2Ay=1} [x+ 1] =3 {x— 1,3Ay=1}
{x—1,3ANy=1}disposex {x+1+— 3 Ay=1}

{x <10} whilex # 10 do x:=x+ 1 {x = 10}
{true} while x =2 10 dox:=x+ 1 {x = 10} (%)
{x > 10} while x # 10 do x :=x + 1 {false} (*)

X—=—*y— —}
if y = x4 1 then skip
elseif x=y+ 1 thenx:=y
else (dispose x ; dispose y ; x ;= cons(1,2))
{x——,)
(All except the examples marked (x) are also valid total
specifications.)

Inference Rules and Proofs

e An inference rule for Hoare logic consists of zero or
more premisses (either specifications or assertions)
and a single conclusion (a specification), separated
by a horizontal line:

P1 P,
C
e [he premisses and conclusion are schemata, i.e.,
they may contain metavariables, each of which ranges
over some set of phrases, such as expressions, com-
mands, or assertions.

e An instance of an inference rule is obtained by re-
placing each metavariable by a phrase in its range.
These replacements must satisfy the side-conditions
(if any) of the rule. (Since this is replacement of
metavariables rather than substitution for variables,
there is never any renaming.)

e A formal proofin Hoare logic is a sequence of asser-
tions and/or specifications, each of which is either a
valid assertion or the conclusion of some instance of
a sound inference rule whose premisses occur earlier
in the sequence,

Hoare's Inference Rules for Specifications:
Assignment (AS)

{p/v —e}vi=e{p}
Instances

{2xy=2kTlAk+1<n}tki=k4+1{2xy=2KkAk<n}

{2><y=2k/\k§n}y:=2><y{y=2k/\k§n}

Sequential Composition (SQ)

{p} c1 {q} {q} co {r}
{p} c1;co{r}

An Instance
{2xy=2ktlAk4+1<n}ki=k4+1{2xy=2kAk<n}
{2xy=2kak<n}y:=2xy{y=2kAk<n}

{2xy=2kt1Ak4+1<nlk:i=k+1:y:=2xy
{y=2kAk<n}

Strengthening Precedent (SP)

p=q {qjcir}

1} cr}

An Instance
y=2kAk<nAk#En=2xy=2kt1Ak4+1<n
{2><y=2k‘|‘1/\k—|—1gn}k:=k+l;y:=2><y
{y=2kAk<n}

{[y=2kAk<nAk#nlk:=k+1;y:=2xy
{y=2%Ak<n}

Since they are applicable to arbitrary commands, the
rules (SP) and (WC) (to be introduced later) are called
structural rules. One premiss of each of these rules is an
assertion, which is called a verification condition (VC).
T he verification conditions are used to introduce math-
ematical facts about data types into proofs of specifi-
cations.

We will usually omit formal proofs of verification con-
ditions.

Partial Correctness of while (WH)

{i Ab} c {i}
{i} while bdo ¢ {i A b}
Here ¢ is the invariant.

An Instance
{y=2kAk<nAk#ntk:=k+1;y:=2xy
{y=2KkAk <n}

{y=2KkAk<n}
whilek #ndo (k:=k+1;y: =2 Xxy)
{y=2k/\k§n/\—lk#n}

Weakening Consequent (WC)

{p} c{q} q=r

ipt cir}

An Instance
{y=2kAak <n}
while k Zndo (k:=k+1;y: =2 xy)
{y=2k/\k§n/\—lk7+—n}

y=2kAk<nA-kz#n=y=2"

{y=2KkAk<n}
whilek #ndo (k:=k+1;y: =2 xy)
{y =2"}

A Proof

1. y=2kAk<nAk#En=2xy=2kt1Ak+1<n (VO)
2. {2xy=2ktlAk4+1<nlk:=k+1
{2xy=2KAk<n} (AS)
{2xy=2kak<n}y:=2xy{y=2kak<n} (AS)
4. {2xy=2kFlAk4+1<nlk:=k+1;y:=2xy
{y=2kAk<n} (SQ 2,3)
5. {y=2kAk<nAk#ntk:=k+1;y:=2xy
{y=2kAk<n} (SP 1,4)
6. {y=2KAk<n} (WH 5)
whilek #ndo (k:=k+1;y: =2 xy)
{y=2kAk<nA-k##n}
7. y=2kAk<nA-k#En=y=2" (VO)
8. {y=2KkAk<n} (WC 6,7)
whilek #ndo (k:=k+1;y:=2xy)
{y =2"}

skip (SK)

{p} skip {p}
An Instance

{y = 2 A ~odd(k)} skip {y = 2% A —odd(k)}

Conditional (CD)

{p A b} c1 {q} {p A= b} co{q}
{p} if b then cq else cp {q}

An Instance
{y=2%Ao0dd(k)} k:=k+1;y:=2xy{y=2%A-o0dd(k)}
{y = 2K A =odd(k)} skip {y = 2% A ~odd(k)}

{y=24
if odd(k) thenk:=k+4 1;y:=2 x y else skip
{y = 2K A =odd(k)}

Variable Declaration (DC)

{p} c{q}

{p} newvar v in c {q}

when v does not occur free in p or q.

An Instance
{1=29A0<n}

k:=0,;y:=1,;
while k Zndo (k:=k+1;y: =2 xy)
{y =2}

{1=29A0<n}
newvar k in

(k::O;y:zl;
whilek;éndo(k::k—l—l;y1=2><)’))
{y=2"}

Here the requirement on the declared variable v formal-
izes the concept of locality, i.e., that the value of v
when ¢ begins execution has no effect on this execu-
tion, and that the value of v when ¢ finishes execution
has no effect on the rest of the program.

Notice that locality is context-dependent: In

{true} t:=x+vy;y:=tx2{y=(x+y) x 2},

t is local, and can be declared at the beginning of the
command being specified, but in

{true} t:=x+y;y:=tx2{y=(x+y) x2At=(x+y)},

t is not local, and cannot be declared.

Why Annotations Are Needed

Without annotations, it is not straightforward to con-
struct a proof of a specification from the specification
itself. For example, if we try to use the rule for sequen-
tial composition,

{p} c1{qa} {q} co {r}
{p} c1;ea{r},

to obtain the main step of a proof of the specification

{n >0}
(k:=0;y:=1);
whilek Zndo (k:=k+1;y: =2 xy)
{y=2",
there is no indication of what assertion should replace
the metavariable q.

Why Annotations Are Needed (continued)

But if we change the rule to

{p} c1 {q} {q} co {r}
{p} c1;{q} 2 {r},
then the new rule requires the annotation ¢ to occur in
the conclusion:

{n >0}
(k:=0;y:=1);
{y=2%Ak<n}
while k Zndo (k:=k+1;y:=2 xy)
{y=2"}.
Then, once ¢q is determined, the premisses must be
{y=2kAk<n}
while k #= n do
(k:i=k+1;y:=2xy)
{y=2"}.
The basic trick is to add annotations to the conclusions

of the inference rules so that the conclusion of each rule
completely determines its premisses.

{n>0}
(k:=0;y:=1); and
{y=2k/\k§n}

Why Do We Ever Need Intermediate Asser-
tions?

1. while commands and calls of recursive procedures
do not always have weakest preconditions that can
be expressed in our assertion language.

2. Certain inference rules, such as the frame rule, do
not fit well into the framework of weakest assertions.

3. Intermediate assertions are often needed to simplify
verification conditions.

More Structural Inference Rules

Disjunction (DISJ)
{p1} c{q} {p2} c{q}

{p1 Vp2} c{q}

For example, from

{a—12>b}
s:=0;k:=a—-1;
{s=0Aa—1>bAk>b}
while k < b do

{a—1<b}
s:=0:k:=a—1;
{s=2k ink<b}
Wh(llieiiiidlo-s::s—l—k) sk lismeth
ok {s=0Aa—1>b}
{S_Zizal} {S:Zib:ai}°

we can obtain the main step in

{true}
{a—1<bVva—-12>b}
s:=0:k:=a—1;
while k < b do
(k:=k4+1;s:=s+ k)
{szzib:ai}.

Conjunction (CONJ)

{p} c{q1} {p} c{q2}

{p} c{q1 N a2}

Existential Quantification (EQ)

{p} c{q}
{Fv. p} ¢ {Fv. q},
where v is not free in c.

Substitution (SUB)

{p} c{q}
({p} & {Q})/Ul — 617 sty Un — €na
where vq,...,vn are the variables occurring free in p, c,

or q, and, if v; is modified by ¢, then ¢e; is a variable that
does not occur free in any other e

T he restrictions on this rule are needed to avoid aliasing.
For example, in

{x=ylx:=x+y{x=2xy},
one can substitute x -z, y — 2 xw —1 to infer
{z=2xw—-1}z:=z4+2xw—1{z=2x2xw—1)}L

But one cannot substitute x — z,y - 2 xz— 1 to infer
the invalid

{z=2xz—-1}z:=z42xz—-1{z=2x(2xz—-1)}.

The Frame Rule (O'Hearn) (FR)

{p} c{q}
{p xryclg*r}
where no variable occurring free in r is modified by c.

An Instance
{list a i} “Reverse List” {list of j}
{list i * list vx} “Reverse List” {list alj = list x},
(assuming “Reverse List” does not modify x or ~).

The Delicacy of the Frame Rule
Suppose

{emp} dispose x {emp}.
Then the frame rule would give

{emp * x+— 10} dispose x {emp * x+— 10},

and therefore

{x — 10} dispose x {x — 10},

which is patently false.

Why the Frame Rule is Sound

We define:

If, starting in the state s, h, no execution of a
command c aborts, then c is safe at s, h.

If, starting in the state s, h, every execution
of ¢ terminates without aborting, then ¢ must
terminate normally at s, h.

Then our programming language satisfies:

Safety Monotonicity If h C h and c is safe at
s,h, then ¢ is safe at s,h. If h C h and ¢ must
terminate normally at s, h, then ¢ must terminate
normally at s, h.

The Frame Property If h C h, c is safe at s, h,
and some execution of ¢ starting at s, h termi-
nates normally in the state s, h’, then h—h C K’
and some execution of ¢ starting at s, h, termi-
nates normally in the state s,/ — (h — h).

Then:
Proposition 5 If the programming language satisfies
safety monotonicity and the frame property, then the

frame rule is sound for both partial and total correct-
ness.

Annotating (FR) and (EQ)

{3j. x— —,] x listaj}
{x— -}
[X] :=a } s« x+1—j* lista]

fxoa}
{3j. x+—a,j * listaj}

\

/

Inference Rules for Mutation

The local form (MUL):

{er —} [e] :i=¢€ {e— €}
The global form (MUG):

(e =) 1} [e] =€ {(e€) * r}.
The backward-reasoning form (MUBR):

{(e—= =) x ((e—€) —p)} [e] :=¢ {p}.

The local form (MUL):

{er— —} [e] :i=¢€ {e— €}
The global form (MUG):

{(ers =) = 1} [eli=¢ {(e — ¢) = }.

One can derive (MUG) from (MUL) by using the frame
rule:

{(e— =) x r}
fers—}
[e] :=¢' } *xr

{e—e}

{(e—€) = r},

The local form (MUL):

{er— —} [e] :i=¢€ {e— €}

The global form (MUG):

{(ers =) = 1} [eli=¢ {(e — ¢) = }.

while to go in the opposite direction it is only necessary
to take r to be emp:

{e— —}
{(e— =) * emp}
[e] :=¢
{(e =€) * emp}
{e— €'}

The global form (MUG):

{(ers =) = r}le] =€ {(e—€) * r}
The backward-reasoning form (MUBR):
{(er= =) * ((e—¢€) —=p)} [e] : =€ {p}.

One can derive (MUBR) from (MUG) by taking r to be
(e — €') — p and using the law ¢ * (g — p) = p:

{(e= =) * ((e—€) —p)}

/

e] i =€
{(e—¢€) x ((e—¢€) —xp)}
{p}-

The global form (MUG):

{le— =) xr}[e]:i=€ {(e—¢€) *x 7}
The backward-reasoning form (MUBR):

{(e—~ =) = ((e—€) —p)} [e] :=¢ {p}.

One can go in the opposite direction by taking p to be
(e—¢€') xrandusing (p xr)=(p *x (¢ — (g * 1))):

{(e— =) = r}
{(em>=) * ((e—e€) = ((eme) * 7))}

[e] ;= ¢

{(emse’) * r}.

Inference Rules for Deallocation

The local form (DISL):

{e — —} dispose e {emp}.
The global (and backward-reasoning) form (DISG):

{(e — —) % r} dispose e {r}.

One can derive (DISG) from (DISL) by using (FR); one
can go in the opposite direction by taking r to be emp.

Inference Rules for Allocation and Lookup

These are generalized assignment commands, but they
don’'t obey the assignment rule, e.qg.

{cons(1,2) = cons(1,2)} x :=cons(1,2) {x = x}
T

syntactically illegal

!
{lyl = yl} x:=[yl {x=x}

Inference Rules for Nonoverwriting Allocation

We abbreviate the sequence eq,...,en Of expressions by

€.

e The local form (CONSNOL)

{emp} v := cons(e) {v — €},
where v ¢ FV (e).
e The global form (CONSNOG)

{r} v:=cons(e) {(v—¢€) * r},
where v ¢ FV(e,r).

Again, one can derive the global form from the local by
using the frame rule, and the local from the global by
taking r to be emp.

Inference Rules for General Allocation
e The local form (CONSL)

{v =17"Aemp} v:= cons(e) {v— €},
where v’ is distinct from v, and & denotes e/v — v/
(i.e., each e, denotes ¢;/v — v').
e The global form (CONSQG)

{r} v:=cons(e) {IV'. (v —7e) * 7'},
where v’ is distinct from v, v’ ¢ FV(e,r), € denotes
e/v — v, and r’ denotes r/v — v'.
e The backward-reasoning form (CONSBR)

{vo". (v" +— &) — p""} v := cons(e) {p},

where v” is distinct from v, v ¢ FV(e,p), and p”
denotes p/v — v”.

An Instance of (CONSG)

{r} v:=cons(e) {I'. (v—7e) * 7'},

where v’ is distinct from v, v/ ¢ FV(e,r), € denotes

e/v — v, and r’ denotes r/v — v'.
An Instance:

{listi} i:=cons(3,i) {3j.i— 3,] = listaj}.

Inference Rules for Nonoverwriting Lookup

e The local nonoverwriting form (LKNOL)

{e—v"}vi=[e] {v=2"A(e—v)},
where v ¢ FV (e).
e The global nonoverwriting form (LKNOG)

{F. (e~ V") x p"}v:=]e] {(e —v) * p},

where v ¢ FV(e), v" ¢ FV(e) U (FV(p) — {v}), and p”
denotes p/v — v”.

In (LKNOG):

{F". (e = ") x p"}vi=e] {(e = v) * p},
where v ¢ FV(e), v" ¢ FV(e) U(FV(p) — {v}), and p"”
denotes p/v — v”.

there is no restriction preventing v” from being the same
variable as v. Thus, as a special case,

{Fv. (e—=v) * p} v:=le] {(e—v) * p},
where v ¢ FV(e). For example, if we take

v to be |
e tobe i1+1

(and remember i — 3, abbreviates (i— 3)*x(i+1+—j)),
then we obtain the instance

p to be i+— 3 x list aj,

{3j.i—3,) x listaj}j:=[i+ 1] {i— 3,j = list o j}.

Inference Rules for General Lookup
e The local form (LKL)

fv=vA(e—VN}vi=[e] {v=v"A(—v)},
where v, v/, and v" are distinct, and ¢’ denotes e/v — v’.
e The global form (LKGQG)

{F". (e — ") * (r/v) = v)}vi=[e]

{Elv/. (e — v) * (r/v” — v)},

where v, v/, and v” are distinct, o/, v ¢ FV(e), v ¢

FV(r), and ¢ denotes e/v — v’

e The first backward-reasoning form (LKBR1)

3. (er— ") = ((er— o) — p")} v:=[e] {p},
where v ¢ FV(e) U (FV(p) — {v}), and p” denotes

p/v — v,

e The second backward-reasoning form (LKBR2)

{F". (e = V") AP} vi=[e] {p},

where v ¢ FV(e) U (FV(p) — {v}), and p” denotes
p/v — v”.

The Soundness of the Local Rule (LKL)

fv=vA(e—VN}vi=[e] {v=v"A(—v)},

where v, v/, and v" are distinct, and ¢’ denotes e/v — v’.

Suppose that the precondition holds in the state sq,h,
i.e., that

so,hEv="1v A (e—").
Then sgv = sgv’ and h = [[elexpso: sov”].

Starting in the state sg, h, the execution of v := [e] will
not abort (since [e]expso € domhb), and will terminate
with the store
s1=[sg |visgv"]
and the unchanged heap h. To see that this state satis-
fies the postcondition, we note that s; v = sgv” = s1 0"
and, since ¢’ does not contain v, [€'lexpsi = [€'lexpso-
Then applying the substitution law for assertions, with
§=[sg|visgv'] =[so|visgv] = sq,

we obtain [/l expso = [ellexpso- Thus

h = [|[e’]]exp31: siv] and sy, hEv=v"A(—).

An Instance of (LKG)

{F". (e~ v") x (r/v) = v)} vi= €]
{F. (e —v) x (r/v" — v)},
where v, v/, and v” are distinct, o/, v ¢ FV(e), v ¢
FV(r), and ¢ denotes e/v — v'.

As an example of an instance, if we take
v to be |

v/ to be m
v to be k

then we obtain (using the commutivity of x*)
{Fk.i+1—j*xj+1—k *x k4 1+ nil}
j=0+1]

{dm.i+1—m * m4+1+—j *x j+ 1+ nil}.

e tobe j+4+1
r tobe i+1+—m *x k+ 1 — nil,

A Final Example

{emp}

x .= cons(a,a) ; (CONSNOL)
{x+—a,a} i.e., {x—ax*xx+1—a}

y .= cons(b,b) ; (CONSNOG)

{(xra,a) x (y—b,b)}
e, {x—a*xx+1l—axy—bxy4+1—b}
(p/v — e = Fv. p)

{(x—a,=) = (y—b,b)}
i.e., {x—ax*x (da.x+1—a)xy—bxy+1—b}

x+1]:=y—x; (MUG)

{(x—a,y—x) = (y—b,b)}

e, {x—a*xx+1l—y—xxy—bxy+4+1—b}
(p/v — e = Fv. p)

{(x—a,y—x) * (y—b,—)}

e, {x—axx+1l—y—x*xy—bx (db.y+1—b)}

[y+ 1] :=x—y; (MUG)

{(x—a,y—x) * (y—=bx—y)}

e, {x—axx+1l—y—x*xy—bxy+1l—x—y}
(r—y=—-(y—=x))

{(x—a,y—x) * (y—=b,=(y—x))}

e, {x—a*xx+1l—y—-x*xy—bxy+1——(y—x)}
(p/v — e = Fv. p)

{Jo. (x — a,0) * (x+o0+—b, —0)}

i.e., {x—a*x+1l—o*xx4+o0o—bx*xx4+0+4+1+— —o}

Exercise 3

Fill in the postconditions in
{(e1 — =) * (e —)} [e1] i=€7 ; [ea] i=e5 {7}

{(ex— =) A (e2— =)} [er] i=¢] ; [ea] :=e5 {7}.

to give two sound inference rules describing a sequence

of two mutations. Your postconditions should be as
strong as possible.

Give a derivation of each of these inference rules, ex-
hibited as an annotated specification.

AN INTRODUCTION TO

SEPARATION LOGIC

4. Lists and List Segments

John C. Reynolds
Carnegie Mellon University
Marktoberdorf August 15, 2008

©2008 John C. Reynolds

Notation for Sequences

When o and 8 are sequences, we write
e ¢ for the empty sequence.

e [a] for the single-element sequence containing a.
(We will omit the brackets when a is not a se-
quence.)

e «-(3 for the composition of o followed by £.
e ol for the reflection of a.

e ##« for the length of «.

e o, for the ith component of «a.

Some Laws for Sequences

e = a ea = a (aB)y = a:(87)
el = ¢ [a]T = [a] (a:B)T = plaf
#e =0 #[a] = 1 #(oB) = (F#a) + (#8)

a=c¢Vda,d. a=a]-o a=c¢V3Id,a. a=da[|a].

Singly-linked Lists

list i

i—’al/QQ/ /Oén
O— O— 1

nil

is defined by induction on the length of the sequence «
(i.e., by structural induction on «):

: . def : .
listei = emp Ai = nil

list (a-0) i &= Jj. i a,j * lista.

Singly-linked List Segments

Iseg « (i, j):
| — &1 a O
o// O//J j
is defined by
Iseg € (i,) det empAi=]j
def

Isega-a (i, k) = Jj. i+ a,j * Iseg a (j, k).

Properties

Isega(i,j) & i a,]j
Iseg -8 (i, k) < Tj. Iseg a (i,j) * Iseg B (j, k)
Iseg a-b (i, k) < 3Jj. Iseg a (i,j) * j+— b,k
list i < Iseg o (i, nil).

Emptyness Conditions

For lists, one can derive a law that shows clearly when
a list represents the empty sequence:

istai= (i =nil & a =¢).

For list segments, however, the situation is more com-
plex. One can derive
Iseg a (i,j) = (i=mnil = (o« = e Aj = nil))
lseg a (i,j) = (i#j= a # ¢).
But these formulas do not say whether a is empty when
| = j % nil.

Nontouching List Segments

When
Iseg a1 - - - an (ig, in),
we have
Jiq,...0p—1.

(ip = a1,i1) * (i1 = an,iz) * -+ x (ip—1 > an,in).
Thusig, ..., I,—1 are distinct, but i, is not constrained,
and may equal any of theig, ..., i,—1. In this case, we
say that the list segment is touching.

We can define nontouching list segments inductively by:

ntlseg € (i, j) det emp Ai =]

ntlseg a-a (i, k) def i = k Ai4+1 £ k A (F]. i—a, j*ntlseg a (j, k)),

or equivalently, we can define them in terms of lIseg:

ntlseg o (i) = Iseg o (i,) A =] — —.

T he obvious advantage of knowing that a list segment
IS nontouching is that it is easy to test whether it is
empty:

ntlseg a (i,j) = (a = e < i =).

Fortunately, there are common situations where list seg-
ments must be nontouching:

list « i = ntlseg « (i, nil)

Iseg e (i,j) * list 3] = ntlseg a (i,j) * list 3]
Iseg ¢ (i,j) * j<— — = ntlseg a (i,j) * j — —.

Preciseness of List Assertions

The assertions
list o i Iseg a (i, j) ntlseq o (i, j)
are all precise.. On the other hand, although
Ja. list o | Ja. ntlseq « (i,)
are precise,
Ja. Iseg a (i,)

IS not precise.

Insertion at the Beginning of a List Segment

{Iseg e (i,])}

k := cons(a,i) ; (CONSNOG)
{k—a,i * Isega(i,j)}

{Fi. k— a,i * Isega (i,j)}

{Iseg a-ax (k,j)}

=k (AS)
{lsega-a (Ia.])}a

or, more concisely:
{Iseg o (i, k) }
i .= cons(a,i) ; (CONSQG)

{3j.i—a,j x Isega (j,k)}
{Iseg a-a (i, k) }.

Insertion at the End of a List Segment

{Iseg (i,j) * j+— a, k}

| .= cons(b, k) ; (CONSNOG)
{lseg a (i,j) * j— a,k = | +— b, k}

{lseg o (i,j) * j—a x j+ 1—k * | +— b, k}

{lsega (i,j) * j—a *x j+1+— — * | — b,k}

[i+ 1] =1 (MUG)
{lsega (i,j) * j—a x j+ 1+ 1| % | — b, k}

{lseg a (i,j) * j—a,l x | — b, k}

{Iseg a-a (i,1) * | — b, k}

{Iseg ac-a-b (i, k) }.

Deletion at the Beginning of a List Segment

{Iseg a-a (i, k) }

{3j.i—a,j = Isega (j,k)}

{Fj.i+1—j* (i—ax*lsega(j,k))}

ji=li4+1]; (LKNOG)
{i+1—j* (i—axlsega(j,k))}

{fir—sax (i+1—jxlsega(jk))}

dispose i ; (DISG)
fi+1m] = lega (k)

dispose i+ 1 ; (DISG)
{Iseg (j, k) }

=] (AS)

{Iseg c (i, k) }.

Deletion at the End of a List Segment

{lseg (i,j) * j—a,k * k— b, I}

[+ 1]:=1; (MUG)
{lseg a (i,j) * j—a,l x k+— b, I}

dispose k ; (DISG)
dispose k + 1 (DISG)

{lseg e (i,j) * j+— a,l}
{Iseg a:a (i, 1) }.

A Cyclic Buffer

3B8. (Iseg a (i, j) * Iseg B(j,1)) Am = FaAn=Fa+ #3

When i = j, the buffer is either empty (#a = 0Am = 0)
or full (#8 =0 A m =n).

Simple Procedures

By “simple” procedures, we mean that the following
restrictions are imposed:

e Parameters are variables and expressions, not com-
mands or procedure names.

e There are no “global” variables: All free variables
of the procedure body must be formal parameters
of the procedure.

e Procedures are proper, i.e., their calls are commands.
e Calls are restricted to prevent aliasing.

An additional peculiarity, which substantially simplifies
reasoning about simple procedures, is that we syntacti-
cally distinguish parameters that may be modified from
those that may not be.

Procedure Definitions

A simple nonrecursive (or recursive) procedure definition
is @ command of the form
let h(vy,...,om;v],...,v,) =cind
letrec h(vy,...,vm; v’l, ...,vp) =cinc,
where

e h iS a binding occurrence of a procedure name,
whose scope is ¢’ (or ¢ and ¢’ in the recursive case).

e c and ¢ are commands.

® Ul,...,Um;VY,..., vy, is a list of distinct variables, called
formal parameters, that includes all of the free vari-
ables of ¢. The formal parameters are binding oc-
currences whose scope is c.

® v1,...,um includes all of the variables modified by c.

Procedure Calls

A procedure call is a command of the form

o/
h(wy,...,wm;€71,...,€p,),
where

e h iS a procedure name.

e wi,...,wn and ey,...,e), are called actual parame-
ters.

® wi,...,wm are distinct variables.

° e’l, ...,€e. are expressions that do not contain occur-
rences of the variables wq,...,wmn.

e [he free variables of the procedure call are
FV(h(wy,...,wm; e}, ..., ep)) =
{wy,...,wm}UFV(e))U---UFV(e},)
and the variables modified by the call are wq, ..., wm.

Hypothetical Specifications

The truth of a specification {p} ¢ {q} will depend upon
an environment, which maps the procedure names oc-
curring free in ¢ into their meanings.

We define a hypothetical specification to have the form

M= 1{p} c{q},

where the context I is a sequence of specifications of
the form

{po} co{a0}s- - {Pn—1} cn—1 {an—1}-

We say that such a hypothetical specification is true iff
{p} ¢ {q} holds for every environment in which all of the
specifications in ' hold.

Generalizing OIld Inference Rules

For example,
e Strengthening Precedent (SP)

p=q M+ {q} c{r}

= {p}c{r}.
e Substitution (SUB)
M+ {p} c{q}
I_ |_ (({p} C{Q})/Ul — 617 ce. 5 Un _>€7I)7
where v1,...,vn are the variables occurring free in

p, ¢, or g, and, if v; is modified by ¢, then ¢; is a
variable that does not occur free in any other e;.

Note that substitutions do not affect procedure names.

Rules for Procedures
e Hypothesis (HYPO)

m{p} c{q}, "+ {p} c {a}.
e Simple Procedures (SPROCQC)

= {p} c{q}
r,{p} h(v1,...,om; v, ... vp) {a} F {p'} ¢ {d'}

r={p'} let h(vy,...,vm;v],...,v;,) =cin {¢'},
where h does not occur free in any triple of .

e Simple Recursive Procedures (SRPROC)
(partial correctness only)

T {p} h(v1, ..., om; vy, .. vp) {4} F {p} c {q}
,{p} h(vi,...,vm; v’l, o) g H P’} I {4}

= {p'} letrec h(vy,...,vm;vy,...,v,) =cind {¢'},
where h does not occur free in any triple of .

Some Limitations

To keep our exposition straightforward, we have ig-
nored:
e Simultaneous recursion,

e Multiple hypotheses for the same procedure.

Two Derived Rules
From (HYPO):
e Call (CALL)
CoAp} Aoy, vmi vy, o) {at T

{p} h(v1,...,vm;v],...,v;) {q}.
and from (CALL) and (SUB):

e General Call (GCALL)

, {p} h(vy,...,vm; ’0/1, e ,’07/1) {q}, -

{p/0} h(wy,...,wm;eq,...,ep) {q/d},
where 4 is a substitution

d = v — wi,...,Um — Wm,
/ / / /
V] — €7,...,Uy — €p,
/" " /" 7
,U]._>€17,Uk_>6k7

which acts on all the free variables in

{p} h(v1, ..., om0y, ..., vp) {a},

and none of the variables wq,...,wy occur free in
the expressions ef ..., e].

Annotated Specifications: Ghosts
In (GCALL):

O {p} h(v1,. .., om; vy, ... up) {g}, T

{p/6} h(wi,...,wm;eq,...,ep) {q/d},
where 4 is a substitution

d = v — wi,...,VUm — Wm,
/ / / /
V] — €7,...,Up — €,
7 " " /"
’Ul_>€1,'Uk_>6k,

which acts on

there may be ghost variables v/, ...,v; that appear in ¢
but are not formal parameters.

We will treat +7,..., v/ as formal ghost parameters, and
ei,...,e} as actual ghost parameters.

For example,

y

(h>0Ar=rg} | {n—1>0AnXr=nxXrqg}
multfact(r; n) > = < multfact(r;n — 1)
{r=n!lXrg} J | {r=0-1)!'xnXxrp}

is an instance of (GCALL) using the substitution

r—rn—n—1rg—nXrg.
The corresponding annotated specification will be

{hn>0Ar=rg} ({n—1>0Anxr=nxrg}
multfact(r; n){rg} 7 F ¢ multfact(r;n — 1){n x rg}
{r=n! xrg}) | {r=(—-1)!xnXxrg}.

aVa

Generalizing Annotation Definitions

An annotated context is a sequence of annotated hy-
potheses, which have the form

{p} h(v1,...,vm,; v’l, .. ,v%){v’ll, .. ,vg} {q},

where o7, ... v/ is a list of formal ghost parameters (and
all of the formal parameters, including the ghosts, are
distinct).

We write [to denote an annotated context, and I
to denote the corresponding ordinary context that is
obtained by erasing the lists of ghost formal parameters.
Then an annotation definition has the form:

r=A> {p}c{q},

meaning that [- A is an annotated hypothetical specifi-
cation proving the hypothetical specification I - {p} ¢ {q}.

Rules for Procedural Annotated Specifications
e General Call (GCALLan)

PP} h(ur, - omi o) o) (), P
- h(wla...,wm;e’l,...,e;l){e’l’,.“’e%}
> {p/8} h(wy, ..., wm;el, ... ep) {q/d},

where ¢ is a substitution

d = v — wi,...,Um — Wmn,
/ / / /
U1—>61,...,”Un—>€n,
!/ ! !/ !
U1—>€1...,’Uk—>€k,

which acts on all the free variables in

{p} h(v1,...,vm,; fU’l, .. ,v%) {q},

and none of the variables wi,...,wmn occur free in
the expressions ef ..., e%.

e Simple Procedures (SPROCan)

= {p} A{q} > {p} c {¢}
O, {p} h(v1,...,om; v, ..., op){v],. .. ,v,’g’} {q}
{p'y A {d'} > {p'} ¢ {d'}

[let h(vl,...,vm;v/l,...,v;%){v’l/,...,fug} =
{r} A{q}in {p'} A" {d'}
> {p'} let h(vy,...,vm;v],...,v,) =cind {¢'},

where h does not occur free in any triple of I.

e Simple Recursive Procedures (SRPROCan)

[, {p} h(v1,...,vm; v’l, . ,v;,b){’ulll, . ,vg} {q} F
{r} A{a} > {p}c{q}

[, {p} h(v1,...,vm; v’l, . ,v%){v’l’, . ,vg} {q} F
{p'} A" {d'} > {p'} ¢ {d'}

[letrec h(vy,...,vm; U/1, e ,U%){U’f: e fU/Z} —

{p} A{q}in {p'} A" {¢'}
> {p'} letrec h(vy,...,vm; fv’l, ...,vp) =cind {q¢'},

where h does not occur free in any triple of I.

An Example

{z =10}
letrec multfact(r; n){rg} =
{n>0Ar=rqp}

if n = 0 then
{n=0Ar=rg} skip {r=n! xrg}
else

{n—1>0AnXr=nXrg}
f(h—1>0Anxr=nxrg}
multfact(r;n — 1){n X rg} > xn—1>0
{r=(n—-1)I xnxrg}

{n—1>O/\r—(n—1)'><n><ro}

{r=n!Xxrg}
in
{(5>0Az=10}
multfact(z; 5){10}
{z = 5! x 10}.

How the Annotations Determine a Formal Proof

The application of (SRPROCan) to the letrec definition
gives rise to the hypothesis

{n > 0 Ar=rg} multfact(r; n){rg} {r = n! x rg}.
By (GCALLan), the hypothesis entails

{n—1>0AnXr=nXrg}
multfact(r;n — 1){n X rg}
{r=(n—1)I xnxrg}.
Next, since n is not modified by the call multfact(r;n—1),
the frame rule gives
{n—1>0AnXr=nxrg*n—12>0}
multfact(r;n — 1){n x rg}
{fr=(n—-1)Ixnxrg*n—12>0}.
But the assertions here are all pure, so that the separat-

ing conjunctions can be replaced by ordinary conjunc-
tions. Then, we can strengthen the precondition and

weaken the postcondition, to obtain

{n—1>0AnXr=nxXrg}
multfact(r;n — 1){n x rg}
{n—=1>0Ar=(n—1)! xn Xxrg}.

Also, by (GCALLan), the hypothesis entails

{5 >0 Az= 10} multfact(z; 5){10} {z = 5! x 10}.

Some Concepts about Sequences: Images
The image {a} of a sequence « is the set
{og| 1 <i< #a)

of values occurring as components of «. It satisfies the
laws:

tet = {} (1)
{lz]} = {=} (2)
{aef} = {ajU{f} (3)

#{a} < #a. (4)

Pointwise Extension of Binary Relations

If p is a relation between values, then p* is the relation
between sets of values such that

Sp*T iff Vee SVyeT.xpy.

Pointwise extension satisfies the laws:

SSCSASp"T = S p*T (5)
T"CTANSp"T = Sp*T’ (6)
{ »» T (7)

S " {} (8)

{z} p*{y} & zpy (9)
(SUSH p*T < Sp*TAS p*T (10)
Sp*(TUuT) & Sp*TASpT. (11)

T he following abbreviations are also useful:

v TE (@} p* T Sp*yE S p* {y}

Ordering

We write ord « if the sequence « is ordered in nonstrict
increasing order. Then ord satisfies

#a<1l =
ord -8 <
ord [z]-a =

=

ord o-[x]

ord «

ord a A ord B A {a} <* {3}
z <* {[z]-a}

{o[z]} <" 2.

(12)
(13)
(14)
(15)

Rearrangement

We say that a sequence (3 is a rearrangement of a se-
quence «, written 8 ~ «, iff there is a permutation ¢,
from the domain (1 to #3) of 8 to the domain (1 to
#a) of «, such that

Vk. 1 < k < #3 implies B = ag)-

Then NN (16)
a~f = B~a (17)

a~BAB~y = o~y (18)

a~vd ANB~G = af~adf (19)

o~ B (20)

a~pB = {a}={8). (21)

a~pB = Ha=F#p. (22)

Sorting by Merging: Lists with Explicit Lengths

T he basic idea behind sorting by merging is to divide the
input list segment into two roughly equal halves, sort
each half recursively, and then merge the results. Un-
fortunately, however, one cannot divide a list segment
into two halves efficiently.

A way around this difficulty is to give the lengths of
the input segments to the commands for sorting and
merging as explicit numbers.

We define

Iseg o (e, —) der 5, Iseg o (e, x).

Then we will define a procedure mergesort satisfying the
hypothesis

def ..
Hergesort = {lseg o (bjo) AN#a=nAn>1}

mergesort(i, j; n){a, jo}
{38.Iseg B(i,—)AB~aANord BAj=]g}.
T he subsidiary procedure merge will satisfy

Hmerge det {(lseg 81 (i1l,—) Nord B1 A #6171 = nl Anl>1)

x (Iseg B2 (12, —) Nord Bo A #0> = n2 An2>1)}
merge(i; n1,n2,il,i2){B1, B2}
{38. Iseg B8 (i, —) A B ~ B1-B2 A ord B}.

A Proof for mergesort

Hmergesort, Hmerge {Iseg a (i, jo) N #a=nAn> 1}

if n =1 then
{lseg o (i,—) Nord a Ai — —,jo}

{lseg a (i,—) Norda A j = jp}
else

else newvar nl in newvar n2 in newvar il in newvar i2 in
(n1:=n+2;n2::n—n1;i1:=i;
{Jag, an,is. (Iseg aq (i1,i2) * Iseg a2 (i, o))

N#FHar =nlAnl > 1A#Har=mAn2>1Na=aja}
{Iseg a1 (i1,i2) A #ag =nl Anl > 1} IR
mergesort(il,i2; n1){aq,in} ;

{36. Iseg B (i1, —) A B~a1 Nord B A2 =i}
{3061 1seg 81 (il,—) A Bi~a1 ANord B1 ANi2 = ir}
x (Iseg an(in, jo) N #aq = nl
Anl>1A#Hapr=n2An2> 1/\oz=041-oz2)}
{Jay, az, B1.

((Iseg 81 (i1, —) = (Iseg a2 (i2,jp)) A B1~a1 Aord By

ANFHa1=nlAnl>1A#Ha> =n2An2> 1/\a—a1 ao}t
{Iseg an (i2,jg) N #ao =n2 An2 > 1})
mergesort(i2, j; n2){ao,jo} ;

{36. Iseg B (12, —) A B~as ANord BAj=jo}
{38>. Iseg B (12, =) A Bo~ap Aord Bo Aj = jo}
* (Iseg 61 (i1, —) A B1~aq1 Nord 81 A #a1 = nl

Anl>1A#Ha>=n2An2> 1/\oz=041-042)/
{Jaz, an, B, B2.
((Iseg 61 (il, —) A B1~aq A ord B1 N#aq1 =nlAnl > 1)
* (Iseg B> (i2, =) A Bo~as Aord Bo A #as> =n2An2 > 1))
ANa=arar Nj=jo}

> dag, e, 1o

> Jag, a, B

{Jay, az, B1, B2
((Iseg 81 (i1, =) A B1~a1 Aord B1 A #a1 =nl Anl > 1)
x (Iseg B> (i2, =) A Bo~as Aord Bo A #an> =n2An2 > 1))
Na=aj-arANj=jo}
{3681, 62. ((Iseg 81 (i1, =) Aord 81 A #B1 =nlAnl > 1)
* (Iseg B> (i2,—) ANord Bo A #B> =n2An2 > 1))
ANa~B1-B2 Nj=lo}

{(lseg 81 (i1, =) ANord B4 A#B1 =nlAnl>1))
* (lseg B2 (12, —) Nord Bo A #0> =n2An2 > 1)}
merge(i; n1, n2, i1, 12) {1, B2} (L35, 6,
{38. Iseg B (i, —) A p~B1-82 A ord B} ,

* (emp A a~fB1-62 A j = jo)
{381, B2, B. Iseg B(i, —) A B~B1-B2 A ord 3
AanBr-Ba A= o))
{36. I1seg B (i,—) AN B~aANord BAj =]}

/

An Arithmetic Subtlety

In the else branch of mergesort, to determine the division
of the input list segment, the variables nl and n2 must
be set to two positive integers whose sum is n.

At this point, the length n of the input list segment is
at least two. Then 2 <n<2 xn—2, and since division
by two is monotone:

1=2+2<n+2<(2xn—-2)+-2=n-1.
Thus if nl =n-=-2 and n2 =n —nl, we have

1<nl<n-1 1<n2<n-1 nl 4+ n2 = n.

Reasoning about the First Call of mergesort

We now expand the annotated specification of the first
call of mergesort:

{lseg a1 (il,io) A#a1 =nl Anl > 1})
mergesort(il,i2; n1){aq,io} ;
{38. Iseg B (i1, —) A B~a1 ANord B A2 =iy}
{331 Iseg (1 (il, =) A Bi~ai1 Aord 31 AN i2 = io})
* (Iseg OzQ(iQ,jo) AN #F#aq1 = nl
Anl>1AN#Har =n2An2> 1/\oz=ozl-042)/

> da1, o, io

From the hypothesis

def ..
Hmergesort — {Iseg (8% (|,JO) A\ #Of = nANn 2 1}

mergesort(i, j; n){a, jo}
{38. Iseg B (i,—) A B ~aAord BA]=jo},
(GCALL) is used to infer
{lseg a1 (il,io) A#a1 =nl Anl > 1}

mergesort(il,i2; n1){aq,in}
{38.Iseg B (i1, =) AB~aj Aord B A2 =ir}}.

{lseg a1 (il,io) A#a1 =nl Anl > 1})
mergesort(il,i2; n1){aq,io} ;
{38. Iseg B (i1, —) A B~a1 ANord B A2 =iy}
{331 Iseg (1 (il, =) A Bi~ai1 Aord 31 AN i2 = io})
x (Iseg an(in, jo) N #aq1 = nl
Anl>1AN#Har =n2An2> 1/\oz=ozl-042)/

> da1, o, io

Then @ is renamed 371 in the postcondition:

{Iseg a1 (il,in) AN #a1 =nlAnl > 1}
mergesort(il,i2; n1){aq,in>}
{381.1seg B1 (il, =) AN B1 ~ a1 ANord 81 Ni2 = ir}.

{lseg a1 (il,io) A#a1 =nl Anl > 1})
mergesort(il,i2; n1){aq,io} ;
{38. Iseg B (i1, —) A B~a1 ANord B A2 =iy}
{331 Iseg (1 (il, =) A Bi~ai1 Aord 31 AN i2 = io})
* (Iseg OzQ(iQ,jo) AN #F#aq1 = nl
Anl>1AN#Har =n2An2> 1/\oz=ozl-042)/

> da1, o, io

Next, the frame rule is used to infer

{(lseg a1 (il,ip) A #a1 =nlAnl > 1)
* (Iseg a(io, jo)
N#F#Far=nlAnl>1AH#Har=mAnn2>1Na=aja)}
mergesort(il,i2; n1){aq,in}
{(3B1. Iseg 81 (i1, =) A B1 ~ a1 Aord 31 ANi2 = i)
* (Iseg ax(i2;jo)
AN#Fag=nlAnl>1A#Har=nmnAn2>1ANa=aj-a)}.

{lseg a1 (il,io) A#a1 =nl Anl > 1} Y)
mergesort(il,i2; n1){aq,io} ;
{38. Iseg B (i1, —) A B~a1 ANord B A2 =iy}
{331 Iseg (1 (il, =) A Bi~ai1 Aord 31 AN i2 = io})
x (Iseg an(in, jo) N #aq1 = nl
Anl>1AN#Har =n2An2> 1/\oz=ozl-042)/

> da1, o, io

Then the rule (EQ) for existential quantification gives

{Jaq, asp,is. (Iseg aq (il,ip) A #a1 =nlAnl > 1)
* (Iseg ax(i2,jo)
N#Fag=nlAnl>1A#H#ar=nAn2>1ANa=aja)}

mergesort(il,i2; n1){aq,inx}

{Jaq, az,iz. (B Iseg B1 (i1, =) A B1~ai Aord B1 ANi2 =i2)
* (Iseg ax (i, jo)
AN#Fag=nlAnl>1A#H#ar=nAn2>1ANa=aja)}.

Finally, i2 = i» is used to eliminate i» in the postcon-
dition, and pure terms are rearranged in both the pre-
and postconditions:

{Faq, an,in. (Iseg aq (il,in) * Iseg ao (in,jo))

AN#F#Fa1 =nlAnl > 1A#Har=mAn2>1Na=ajar}

{30&1, an,in. (Iseg a1 (il,in) A #a1 =nl Anl > 1)

* (Iseg a(io, jo)
AN#Fa1g=nlAnl>1A#Har=nAn2>1ANa=ajaz)}
mergesort(il,i2; n1){aq,in}

{Fa1, an,iz. (3B1- Iseg 81 (i1, =) A Br~a1 Aord B Ai2 = i)
* (Iseg ao(io, jo)
AN#Fa1g=nlAnl>1A#Har=nAn2>1ANa=aj-a)}

{3041,@2,61.

((Iseg B1 (i1, =) * (lseg a2 (i2,jo)) A B1 ~ a1 Aord 31
AN#FHal =nlAnl > 1A#Hapr=n2An2>1ANa=ajaz}.

merge With goto’s

merge(i;nl,n2,il,i2){B1, 02} =
newvar al in newvar a2 in newvar j in

(al = [i1] ; a2 :=[i2] ;

if al < a2theni:=il; goto /1 elsei:=i2; goto 2 ;
¢1:if n1 = 1 then [il 4+ 1] :=i2 ; goto out else

nl:=nl—1;j:=il;il:=[j4+ 1];al:=[il];

if al < a2 then goto /1 else [j + 1] :=i2; goto £2 ;
¢2:if n2 = 1 then [i2 4+ 1] := i1 ; goto out else

n2:=n2—1;j:=i2;i2:=[+1];a2:=1[i2];

if a2 < al then goto /2 else [j + 1] := i1 ; goto /1 ;

out:)

A Proof for merge with goto’s

merge(i; nl,n2,il,i2){B1, 0>} =
{(Iseg 31 (i1,—) ANord 31 A #B1 = nl Anl>1)
* (Iseg B (12, —) Aord B> A #8> = n2 An2>1)}
newvar al in newvar a2 in newvar j in
(al = [i1] ; a2 :=[i2] ;
if al < a2theni:=il; goto /1 elsei:=i2; goto ¢2;

/1. {35, al,jl, v1,j2,vo.
(Iseg B (i,i1) * il — al,jl = Isegv1 (j1, —)
* 12 +— a2,j2 * Iseg v5 (j2, —))
N#FYy1=nl—1AFy=n2—-1Aal <a?
A B-al-yy-a2-yp~B1-B2 A ord (al-y1) A ord (a2-y2)
Aord B A {8} < {alm} U {a272})
if n1 = 1 then [il 4+ 1] :=i2; goto out else
nl:=nl—1;j:=il;il:=[j+ 1];al:=[il];
{38,al,j1,71,i2,72.
(Iseg B (i,j) * jral’,il * i1+ al,jl * Iseg v} (j1,—)
* 12 — a2,j2 * Iseg v5 (j2,—))
AN#F#FYy=nl—1A#Hyp=n2-1
A B-al’-al-v]-a2-yp~B1-B2 A ord (al’-al-y]) A ord (a2:v7)
Aord B A {8} <* {al’al-y}} U {a272}}
if al < a2 then goto /1 else [[+ 1] :=i2; goto 42 ;

02: {38, 2,2, vo, i1, 71.
(Iseg B (i,i2) * i2 — a2,j2 * lIseg v> (j2, —)
* il — al,jl * Iseg v1 (j1,—))
N#FY2=n2—1AN#Fv =nl—-1Aa2<al
A B-a2-yp-al-y1~B2-B1 A ord (a2-y2) A ord (al-y1)
Aord B A {B} <* {a2o} U {aly1}}
if n2 =1 then [i2 4 1] := i1 ; goto out else
n2:=n2—1;j:=i2;i2:=[j+ 1] ; a2 := [i2];
{38,a2',j2,~5,j1,71.
(Iseg B (i,j) * jr— a2,i2 i2 — a2,j2 * Iseg v5 (j2, —)
* il — al,jl * Isegv1 (j1,—))
AN#HY=n2—1AN#vy =nl—-1
A B-a2'-a2-v5-al-y1~B2-61 A ord (a2’-a2-+5) A ord (al-yq)
Aord B A{B} <* {a2"-a2:5} U {al-y1}}
if a2 < al then goto £2 else [j + 1] := i1 ; goto /1 ;

out:)

{38. Iseg B (i,—) A B ~ B1-82 A ord G}.

12—
O//

N > _
{(lseg 51 (i1, —) ANord 81 A #0631 = nl Anl>1)
x (Iseg B> (12, —) Nord B A #B> = n2 An2>1)}

71
11
l
al
O
12— a2
(. % ~

6o
newvar al in newvar a2 in newvar j in
(al = [i1] ; a2 :=[i2] ;
{Elj17717j2772°

(il — al,jl * Isegv1 (J1, —)
* 12— a2,j2 * lseg v (j2,—))

AN#vL =nl—1A#v =n2-1
A al-yy-a2-yp = B1-B2 Aord (al-y1) Aord (a2-v2)}

i1

|
/al
| O—
IA

12— a2
o

newvar al in newvar a2 in newvar j in
(al = [i1] ; a2 :=[i2] ;
if al < a2 theni:=il;
{3al,j1,71,]2,72.
(=il Aemp) x il — al,jl * Isegv1 (j1,—)
* 12— a2,j2 x lseg vo (j2, —))
N#FYL=nl—-1AN#Fy=n2—-1Aal <a?

Aal-yy-a2yp = B1-f2 Aord (al-y1) Aord (a2-y2)}
goto /1

D
2
[

| 11
| |
1
oﬂ/.../@//i}/
A

12— a2

~

72
01: {38, al,j1,v1,j2,72.

(Iseg B8 (i,il) = il — al,jl % Iseg~vy1 (j1,—)

* 12 — a2,j2 x Iseg v (j2,—))
N#FY1=nl—-1ANFy=n2—-1Aal <a?
A B-al-y1-a2-y2~B1-62 A ord (al-y1) A ord (a2-y3)
Aord BA{B} <* {al-y1} U{a22}}

~

72

newvar al in newvar a2 in newvar j in
(al = [i1] ; a2 :=[i2] ;
if al < a2 theni:=il; goto /1 else i .= i2;

{3a2,j1,71,)2,72.
((i=il Aemp) * il — al,jl * lsegv1 (j1, —)
% 12+ a2,j2 * Iseg v2 (j2,—))
N#FY1L =nl —1ANFyp=n2—-1ANa2 <al
A al-y1-a2-yp = (182 Aord (al-y1) A ord (a2-y2)}
goto /2 ;

D
2
[

~

72
02: {38, 32,2, 72,1, 71.
(Iseg B8 (i,i2) * i2 — a2,j2 % lsegvo> (j2, —)
* il — al,jl x Iseg v1 (j1,—))
N#FY2=n2—1A#Fv =nl—-1Aa2<al
A B-a2-yz-al-y1~B2-61 A ord (a2-y2) A ord (al-yq)
Aord B A{B} <* {a2-y2} U {aly1}}

D
2
[

| 11
| |
1
oﬂ/.../@//i}/
A

12— a2

~

72
01: {38, al,j1,v1,j2,72.

(Iseg B8 (i,il) = il — al,jl % Iseg~vy1 (j1,—)

* 12 — a2,j2 x Iseg v (j2,—))
N#FY1=nl—-1ANFy=n2—-1Aal <a?
A B-al-y1-a2-y2~B1-62 A ord (al-y1) A ord (a2-y3)
Aord BA{B} <* {al-y1} U{a22}}

D
2
[

A=V Ve Vet

~ _
if n1 = 1 then [il 4+ 1] :=i2; goto out else
nl:=nl-—1;

D
2
[

A=V Ve Vet

~ _
if n1 = 1 then [il 4+ 1] :=i2; goto out else
nl:=nl—1;):=il,

D
2
[

A=V Ve Vet

~ _
if n1 = 1 then [il 4+ 1] :=i2; goto out else
nl:=nl—-1;j:=il;il:=[+ 1];

i
4 1
| X J il)
| | |
al’l ~al
/- ST
A
12— a2
O//
N ~ .

if n1 = 1 then [il 4+ 1] :=i2; goto out else
nl:=nl—1;j:=il;il:=[j4+1];al:=[il];
{3B8,al’,j1,71,i2,7v2.
(Iseg B (i,j) * jral’,il * i1+ al,jl * Iseg v} (j1,—)
* 12— a2,j2 * Iseg v5 (j2, —))
AN#Y;=nl—1AN#y=n2-1
A B-al’-al-vyy-a2-yo~ (3132
A ord (al’-al-v}) A ord (a2-v7) } (4)
Aord B A{B} <* {alal-vj} U {a2-y2}}

g i
8) 7
|) i1)
| |
al
A
12— a2
o—
2

if al < a2 then goto /1
01: {38, a1, 11,7}, 2, 7o.
(Iseg B’ (i,i1) * il +— al,jl * lIseg v} (j1, —)
* 12 — a2,j2 x lseg v (j2,—))
AN#Y;=nl—1A#v =n2—-1Aal <a2
A B'-al-y]-a2-yo~B1-02
A ord (al-y]) A ord (a2-y2) } (B)
Aord ' A {B'} <* {al-yg} U {a22}})

71
g 1
~ J 7 ~
l |
al
/O//O//O//
v
12— a2
O//
N———
72

if al < a2 then goto /1 else

——
72

if al < a2 then goto /1 else [j + 1] :=i2; goto £2 ;
02:{38',22,i2,7%,i1,71.
(Iseg B’ (i,i2) * 2 +— a2,j2 * lIseg 5 (j2, —)
* i1 — al,jl x Iseg v1 (j1,—))
AN#Y, =12 —1A#v =nl—-1Aa2<al
A B'-a2-v5-al-y1~02-01 A ord (a2-v5) A ord (al-y1)
Aord B' A {B'} <* {a25} U {aly1}}

The Ordering Argument

ord (al’-al-v}) A ord (a2-vy2)

ANal <a2=
ord (31’}4) A ord (3272)

*2.

oKW

* (.

10.
11.
x12.
13.
14.
15.
x10.

ord(al’-al-~})

ord(al-~})

al’ <* {al-~}}

al’ < al

al < a2

al’ < a2

ord(a2-yp)

a1’ <* {a27,)

al’ <* {alnp} U {22}

{8} <*{al"alyp} U {a22}
18} <F {31"}’/1} U {a2-vo}
{B-al"} <* {aly3} U {a2:y2}
ord (3

ord al’

{8} <*al

ord(B3-al’)

Nord B A {3} <* {31’.31.7/1} U {a2-v5}} } (A)

Aord B-al’ A {B:al'} <* {aly}} U {a22}) })

(assumption)
(13),1

(13),1

(6),3
(assumption)

(transitivity),4,5

(assumption)
(14),6,7
(11),3,8

(assumption)

(3),(6),10
(10),(3),9,11
(assumption)

(12)
(3),(6),10
(13),13,14,15

Doubly-Linked List Segments

diseg o (i, ', J, j'):

| — 1N Q2 an —jf
i/ ~~O ~O
is defined by
diseg e (i,,},/') & emp Ai=jAi =]

dlseg a-a (i, ', k, k') qef Jj. i — a,j,i" * dlseg a (j, i, k, k'),

Properties

disega (i,7,j,]) & i—a,j,i Ni=]
diseg -3 (i, ', k, k") < 3Jj,j. dlseg a (i, 7',],) * dlseg 5 (j, ', k, k')
diseg a-b (i, i, k, k') < Fj'. dlseg o (i, ", K, ') K +— b, k, |’

dlist o (i, i) & diseg o (i, nil, nil, /).

One can also define a doubly-linked list by

dlist o (i, j') = dlseg o (i, nil, nil, j').

Emptyness Conditions

diseg o (i,7,},j') = (i=nil = (a =eAnj=nil A =)
diseg o (i,7,},j') = ((=nil = (a = e AV =nilAi=]))
diseg o (i,1,],]) = (i#£ = a # ¢)
diseg a (i,1,],j') = (' Z] = a # €).

(One can also define nontouching segments.)

Deleting an Element from a Doubly-Linked List

i @ kO m

| | | l .
U o AB R ABLE o B
w><)< o/>< o/>< OJ)Q)<ni]
—1 e > > > e j

{3}, 1. dlseg « (i, nil, k,j) * k+— b,l,j * dlseg 3 (I, k,nil,m)}
i=[k+1];j:=[k+2];
{dlseg a (i, nil, k,j) * k +— b,l,j * dlseg 3 (I, k,nil,m)}
dispose k ; dispose k + 1 ; dispose k + 2 ;
{dlseg « (i, nil, k,j) * dlseg 8 (I, k,nil,m)}
if j = nil then
{i=kAnil =jAa=cAdlseg 8(l,k,nil,m)}
=
{i=IAnil =jAa=c¢eAdlseg 5(l,k,nil, m)}
else
{3a/,a,n. (dlseg @’ (i,nil,j,n) * j— a,k,n
« diseg 8 (I, k,nil,m)) A o = o’-a}
[+ 1] :=1;
{3c/,a,n. (dlseg &’ (i,nil,j,n) * j+— a,l,n
« diseg 3 (I, k,nil,m)) A a = o' a}
{dlseg « (i, nil, |, j) * dlseg 3 (I, k,nil, m)}

{dlseg « (i, nil, |, j) * dlseg 3 (I, k,nil, m)}
if | = nil then
{dlseg o (i, nil, [, j)) Al=nil Ak =m A 3 = €}
m .=
{dlseg o (i, nil, ,j)) Al=nilAj=mA [=€}
else
{3a, 3, n. (dlseg o (i, nil, I,j) * | — a,n,k
x dlseg 3 (n,l,nil,m)) A 8 = a-p'}
[+ 2] =]
{3a, 3, n. (diseg a (i, nil, I,j) * |+ a,n,]
x dlseg ' (n,I,nil,m)) A B = a-3'}
{dlseg o (i, nil, I, j) * dlseg 8 (I,j,nil,m)}
{dlseg -G (i, nil, nil, m) }

Exercise 5
When

Jo, B. (Iseg o (i,) * Iseg 3 (j, k)) Ay = o,

we say that j is an interior pointer of the list segment
described by lIseg v (i, k).

1. Give an assertion describing a list segment with two
interior pointers j; and j», such that j; comes before
than, or at the same point as, jo in the ordering of
the elements of the list segment.

2. Give an assertion describing a list segment with two
interior pointers j; and j», where there is no con-
straint on the relative positions of j; and j».

3. Prove that the first assertion implies the second.

Exercise 6

A braced list segment is a list segment with an interior
pointer j to its last element; in the special case where

the list segment is empty, j is nil. Formally,

briseg € (i, j, k) det emp Ai=kAj=nil

brlseg av-a (i, j, k) det Iseg a (i,j) * j+— a,k.

Prove the assertion

briseg o (i, j, k) = Iseg « (i, k).

Exercise 7

Write nonrecursive procedures for manipulating braced
list segments, that satisfy the following hypotheses. In
each case, give an annotated specification of the body
that proves it is a correct implementation of the proce-
dure. In a few cases, you may wish to use the procedures
defined in previous cases.

1. A procedure for looking up the final pointer:

{brlseg a (i, j, ko) } lookuppt(k; i, j){c, ko}
{brlseg a (i, j, kg) ANk = kg}.

(This procedure should not alter the heap.)
2. A procedure for setting the final pointer:

{brlseg a (i, j, ko) } setpt(i; j, k) {a, kg} {brlseg o (i, j, k) }.

(This procedure should not allocate or deallocate
heap storage.)

3. A procedure for appending an element on the left:

{briseg o (i, j, ko) } appleft(i, j; a) {ex, ko} {brlseg a-x (i, , ko) }

4. A procedure for deleting an element on the left:

{brlseg a-« (i, j, ko) } delleft(i, j;) {a, ko} {brlseg o (i, j, ko) }.

5. A procedure for appending an element on the right:

{briseg a (i, j, ko) } appright(i, j; a){c, ko} {brlseg a-a (i,], ko)}

6. A procedure for concatenating two segments:

{brlseg o (i, j, kg) * brlseg 3 (V',], k/o)}

conc(i,j; i/,j,){Oé, ﬁ) kO? k,O}

{brlseg O{'ﬁ (i7j7 k/O)}
(This procedure should not allocate or deallocate
heap storage.)

AN INTRODUCTION TO

SEPARATION LOGIC

5. Trees and Dags

John C. Reynolds
Carnegie Mellon University
Marktoberdorf August 15, 2008

©2008 John C. Reynolds

S-expressions (a la LISP)

T € S-exps iff 7 € Atoms
or r = (19 -711) wWhere 19,71 € S-exps.

Representing S-expressions by Trees

For 7 € S-exps, we define the assertion tree 7 (7) by struc-
tural induction:

treea (i) iffemp Ai = a when ¢ is an atom
tree (7o - 71) (2) iff
Jig, 1. 1+ 19,11 * tree g (ig) * tree 71 (i1).

One can show that the assertions tree 7 (4) and 3. tree 7 (7)
are precise.

Copying Trees

We will show that
copytree(j;i) =
if isatom(i) then j: = else
newvar ip, i1,jo,j1 in
(ip:=1;iy:=1[i+1];
copytree(jo; io) ; copytree(j1;i1) | j = cons(jo,j1))-
satisfies

{tree (i) } copytree(j;i){7} {tree 7(i) * tree 7(j)}.

{tree 7(i)} copytree(j; i){7} {tree 7(i) * treeT(j)} I
{tree 7(i)}
if isatom(i) then
{isatom(7) ANemp A i = T}
{isatom(7) A ((emp Ai=7) *x (empAi=r17))}
ji=i
{isatom(7) A ((emp Ai=7) * (empAj=17))}

else
{39, 71. 7= (70 -711) Ntree (79 - 71)(i)}
newvar ip, i1,jo,j1 in
(io:=[1i1:=[i+1];
{370, 71 7= (70" 71)
A (i —ig,i1 * tree g (ig) * treeT (1))}

{treeTo(io)}) [= (7‘0-7‘1)/\)
copytree(jo; io) {70} v x| (=g, iq * > 3710, T1
{tree Tq(ig) * tree T5(jo)}) tree 71 (i1)) J

(370,71 ™= (10 -71) A (i > ig, i1 *
tree 7o (i) * tree 71 (i1) * tree 79 (jo))}

\

TZ(T()'T])/\

{tree 71 (i1)} \ R

o (i—ip,i1 *
copytree(j1;i1){71} k| e (i) * » 310, T1
{tree 7(i1) * tree 1 (j1)} 010

| tree T (o))
{3m0, 1. 7= (10 -71) A (i—p,i1 *
tree 7q (ig) * tree 71 (i1) * tree g (jo) * tree 1 (j1))}
j == cons(jo,]j1)
{3ro,71. T=(70-71) A (i —ig,i1 * j+— jo,j1 *
tree 79 (ig) * tree 1 (i1) * tree 79 (jo) * tree 71 (j1))}
{3rg,m1. 7= (10 71) A (tree (19-71) (i) * tree (rg-71) ())})
{tree 7(i) * tree 7(j)}.

Representing S-expressions by Dags

For 7 € S-exps, we define

dag 7 (2)
by:

daga (i) iff i = a when a is an atom

dag (7‘0-7‘1) (Z) iii
di9,21. T+ 10,17 * (dagTO (io)/\dang (i1)).

Proposition 6 (1) dag7 (%) and (2) 3r. dag 7 (¢) are in-
tuitionistic assertions.

A Problem

Suppose we wish to prove that

{dag 7(i)} copytree(i;j) {dag (i) * tree 7(j)}

Then, we must use this specification as a hypothesis
in proving that the first recursive call in the procedure
body satisfies:

{i —ig,i1 * (dag 1o(ip) AdagT1(i1))}

copytree(ig; jo)

{i — io, 11 * (dag To(ig) VAN dag Tl(il)) *x tree To(jo)}.
But the hypothesis is not strong enough to imply this.
For example, suppose 79 = ((3-4)-(5-6)) and 71 = (5-6).
Then copytree(ip; jo) might change the state from

3 5
/4 lo— o~/ 6| Jo— /4
s

OV

7

into

P

e

R
7

where dag 71 (i1) is false.

Possible Solutions

1. Introduce ghost variables denoting heaps, e.q.
{this(hg) A dag 7(i)} copytree(i;j) {this(hg) * tree 7(j)}
2. Introduce ghost variables denoting assertions, e.g.

{p Adag 7(i)} copytree(i;j) {p * tree 7(j)}

3. Introduce fractional permissions. Then one could
define an assertion passdag 7(i) describing a read-only
heap containing a dag, and use it to specify:

{passdag 7(i)} copytree(i; j) {passdag 7(i) * tree 7(j)}.

We will explore the second approach.

Assertion Variables

We extend the concept of state to include an asser-
tion store mapping assertion variables into properties of
heaps:

AStoresy, = A — (Heaps — B)
States 41y = AStoresy x Storesy, x Heaps,
where A denotes a finite set of assertion variables.

Assertion stores have no effect on the execution of com-
mands, but they affect the meaning of assertions. Thus
we write

as,s,h E p

(instead of s,h F p) to indicate that the state as,s,h
satisfies p.

Then, when an assertion variable is used as an assertion:

as,s,h E a iff as(a)(h).

T he Substitution Rule Revisited
e Substitution (SUB)

{p} c{q}
{p} c{q})/a1 — p1,...,am — Pm,v1 — €1,...,0n — en
where ai1,...,ay are the assertion variables occur-
ring free in p or q, vq,...,vn are the variables occur-
ring free in p, ¢, or q, and, if v; is modified by c, then
e; IS a variable that does not occur free in any other
e; Or in any p;.

In {a} x:=y {a}, we can substitutea -y =z,x = x,y —y
to obtain

ly =z} x:=y{y =z},
but we cannot substitute a — x = z,x — x,y — y to
obtain

{x =2z} x: =y {x=2z}.

Copying Dags to Trees
We will prove that the procedure
copytree(i;j) =
if isatom(i) then j: =i else
newvar io, ila.jOajl in
(o= ;i1 :=[i+1];
copytree(io; jo);copytree(iy; j1):j:=cons(jo, 1))

satisfies

{p A dag 7(i)} copytree(i;j) {p * tree 7(j)}.
We can take p to be dag 7(i), to obtain the specification

{dag 7(i) } copytree(i; j) {dag 7(i) = tree 7(j)},

but this is too weak to serve as a recursion hypothesis.

{p A dag ()} copytree(i;) {r, p} {p * tree 7(j)} F
{pAdag 7(i)}
if isatom(i) then
{p Nisatom(T) AT =i}
{p * (isatom(7) AT =iAemp)}
ji=i
{p * (isatom(7) AT =jAemp)}

else
{30, 71 7= (70 -71) ApAdag (mg-711)(i)}
newvar ip,i1,jo,j1 in

Go=1[1;i1:=[+11;

{39, 71- T=(10-T1) A

pA(i—ig,i1 * (dag g (ig) Adag T (i1)))}
{37‘0,7‘1. T = (7‘0 . 7‘1) VAN

pA (true x (dag g (ip) Adag 71 (i1)))}

{3r9,71- T=(70-7T1) A

p A ((true x dag g (ig)) A (true x dag 71 (i1)))}
{3m0,71. 7= (70" 71) ApAdagTy (i1) Adag o (ip)}
{r = (70-711) ANpAdagm (i1) ANdag mo(ip)} \
copytree(jo; ig) {70, 7 = (70 71) ApAdagTi (i1)} ?3Irg, 71
{(r=(70-71) ApAdagTy (i1)) = treemo(jo)} |
{30, 71. (7t = (70-71) ApAdagTy(i1)) * tree Ty (Jo)}
{r=(m0-m)ApAdagTi(i1)} \
copytree(j1;i1){71, 7 = (70 - 71) AP} p * tree 7g (jo) ; 370, T1
{(r=C(m0-7m1)Ap) * treeT1(j1)}
{Fro,71. (7= (70-T1) Ap) * tree 7o (jo) * tree 71 (j1)}
j = cons(jo,j1)

{30, m71. (1 =C(10-T1) APp) *

j+Jo,j1 * tree g (jo) * treeT1 (j1)}

{3r0,71. (r = (10-71) Ap) * tree (19 -71) ()})

{p * tree7(j)}

Skewed Sharing

Our definition of dag permits skewed sharing. For ex-
ample,

dag ((1-2)-(2-3)) (i)

holds when
i O 1
o 2
3

Skewed sharing is not a problem for the algorithms we
have seen so far, which only examine dags while ignoring
their sharing structure. But it causes difficulties with
algorithms that modify dags or depend upon the sharing
structure.

A Possible Solution
e We add to the state a mapping ¢ from the domain of
the heap to natural numbers, called the field count.

e When z := cons(eq,...,en) sets x to the address a.
the field count is extended so that

o(a) =n da+1)=0 -+ dla+n-1)=0.

e We introduce the assertion e n[—e]> e/, with the meaning

s,h,qSIZel[—a>e’iff
domh = {[e]exps} and h([elexps) = [e'lexps
and ¢([elexps) = [elexps-
e \We also introduce the following abbreviations:

le] def le]

e— — = da’.er— 2’ where z/ not free in e
eﬂe’défen[—éle’ * true
en—!>el,...,en défel[ﬁlel*e—l—ll[glez Kook e—l—n—ll[glen
6‘!—>€1,...,€n défec[ﬂel*e—I—lc[ﬂeQ X oo ox e—l—n—1<[3]>en

: !
Iff e—eq,...,en x true.

Axiom Schema
[n]

€|—>€/:>€l—>€/

[m] [n]

e —> —ANe— — = m=n

n 0]
2§k§n/\eu—/\e+k—1%—:>e—|-k—1<—>—
| |
e—e1,...,emANe —el,....e, NeF e =
! !
e e1,...,em * € €, ... e, x true.

(The last of these axiom schemas makes it clear that
skewed sharing has been prohibited.)

Additional Inference Rules

e Allocation: local nonoverwriting form (FCCONSNOL)

{emp} v := cons(e) {v LN e},

where v ¢ FV (e).
e Mutation: local form (FCMUL)

er[—é]> —1 [e] :i=¢ {el[i e'}.

e Lookup: local nonoverwriting form (FCLKNOL)

P

{e fel V"V vi=[e] {d}v =v" A (e el v),
where v ¢ FV (e, e).

A Problem with Deallocation

If one can deallocate single fields, the use of field counts
can be disrupted by deallocating a part of record. For
example,

ji=cons(1,2);dispose j+ 1;k:=cons(3,4) ;i:=cons(j, k)

could produce skewed sharing if the new record allo-
cated by the second cons were placed at locations j+ 1
and j+ 2.

A solution is to replace dispose e with an command
dispose (e,n) that disposes of an entire n-field record
— and then to require that this record must have been
created by an execution of cons:

e The local form (FCDISL)

{e R —"1 dispose (e, n) {emp}.
e The global (and backward-reasoning) form (FCDISG)

{(e N —™) % r} dispose (e,n) {r}.

(Here —™ denotes a list of n occurrences of —.)

Exercise 9

If 7 is an S-expression, then |r|, called the flattening of
T, IS the sequence defined by:

la| = [a] when a is an atom

[(to - t1)| = |70l - [T1]-
Here [a] denotes the sequence whose only element is a,
and the *.” on the right of the last equation denotes

the concatenation of sequences.

Define and prove correct (by an annotated specification
of its body) a recursive procedure flatten that mutates a
tree denoting an S-expression 7 into a singly-linked list
segment denoting the flattening of . This procedure
should not do any allocation or disposal of heap storage.
However, since a list segment representing |r| contains
one more two-cell than a tree representing =, the pro-
cedure should be given as input, in addition to the tree
representing 7, a single two-cell, which will become the
initial cell of the list segment that is constructed.

More precisely, the procedure should satisfy
{tree7 (i) * jr—> —,—}
flatten(i, j, k)
{Iseg |7] (J, k) }-

(Note that flatten must not assign to the variables i, j,

	notes1
	notes2
	notes3
	notes4
	notes5

