Newtonian Program Analysis

Javier Esparza
Technische Universitdt Miinchen, Germany

Static program analysis is the process of obtaining information about the behaviour of a program
without actually executing its code.

From a mathematical point of view, static program analysis proceeds in three steps. First, the
code is transformed into a formal system of fixed-point equations

1 = filzr,...,zp)

Tp = fn(xlw'wxn)

Then, the equations are interpreted by fixing a domain and the meaning of the functions f;;
these are chosen so that the smallest solution of the equations (i.e., the least fixed-point of the
vector (f1,..., fn) of functions) contains the information on the program one wants to obtain.
Finally, the smallest solution is computed or approximated.

In the course I present generic methods for solving such equations, i.e., methods that are well-
defined for any interpretation. After reviewing the classical worklist algorithm derived from the
Knaster-Tarski and Kleene theorems, I show that Newton’s method — a well-known technique for
numerically solving equations with the real numbers as domain — can be extended to arbitrary
interpretations. I present consequences and applications for other domains like languages or
semilinear sets.

References

The course is based on:

1. J. Esparza, S. Kiefer, M. Luttenberger. Newtonian Program Analysis. Technical report,
Technische Universitdt Miinchen, 2009.
Available at http://www7.in.tum.de/um/bibdb/kiefer/newtProgAn.pdf

Other papers useful for the course are:

2. P. Cousot, R. Cousot. Abstract Interpretation Frameworks. Journal of Logic and Compu-
tation 2(4), 1992.

3. J.B Kam, J.D. Ullman. Monotone Data Flow Analysis Frameworks. Acta Informatica 7(3),
1977.

4. A. Tarski. A Lattice-theoretical Fixpoint Theorem and its Applications. Pacific Journal of
Mathematics 5:2, 1955.
A link to the paper can be found in Wikipedia’s page on the Knaster-Tarski theorem.

12



