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Static program analysis is the process of obtaining information about the behaviour of a program
without actually executing its code.

From a mathematical point of view, static program analysis proceeds in three steps. First, the
code is transformed into a formal system of fixed-point equations
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Then, the equations are interpreted by fixing a domain and the meaning of the functions f;;
these are chosen so that the smallest solution of the equations (i.e., the least fixed-point of the
vector (f1,..., fn) of functions) contains the information on the program one wants to obtain.
Finally, the smallest solution is computed or approximated.

In the course I present generic methods for solving such equations, i.e., methods that are well-
defined for any interpretation. After reviewing the classical worklist algorithm derived from the
Knaster-Tarski and Kleene theorems, I show that Newton’s method — a well-known technique for
numerically solving equations with the real numbers as domain — can be extended to arbitrary
interpretations. I present consequences and applications for other domains like languages or
semilinear sets.
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