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Alternating parity tree automaton (APT) ≡ modal mu-calculu

Theorem (Equivalence, Emerson+Jutla 91)

Let A, ϕ,T range over APT, modal mu-formulas, ranked trees resp.

1 For each A, there exists ϕ such that A accepts T iff T satisfies ϕ.

2 For each ϕ, there exists A such that A accepts T iff T satisfies ϕ.

Positive Boolean formulas over X : B+(X ) ∋ θ ::= t | f | x | θ ∧ θ | θ ∨ θ
Y ⊆ X satisfies θ just if assigning true to elements in Y and false to
others makes θ true.

An APT over Σ-labelled trees is a tuple A = (Σ,Q, δ, qI ,Ω) where

Σ is a ranked alphabet; m is the largest arity of terminals

qI ∈ Q is the initial state

δ : Q × Σ −→ B+({ 1, . . . ,m } × Q) is the transition function

Ω : Q −→ { 0, · · · ,M − 1 } is the priority function.
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Run-tree of an APT

A run-tree of an APT is just a set of maximal state-annotated paths in the
tree that respect the transition relation.

A tree is accepted by an APT just if there is a run-tree such that every
infinite path π in it satisfies the parity condition.

Let π = π1 π2 · · · be an infinite path in r ; for each i ≥ 0, let the state
label of the node π1 · · · πi be qni

where qn0 , the state label of ǫ, is qI . We
say that

π satisfies the parity condition

The largest priority that occurs infinitely often in Ω(qn0)Ω(qn1)Ω(qn2) · · ·
is even.
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Example

Let Σ = { a : 2, b : 1, c : 0 }.

Let A be the APT (Σ, { q0, q1 }, δ, q0,Ω), where (let q ∈ { q0, q1 })

δ :





(q, a) 7→ (1, q1) ∧ (2, q)
(q, b) 7→ (1, q)
(q, c) 7→ true

Ω :

{
q0 7→ 2
q1 7→ 1

A accepts a Σ-tree t just if for every path of t, if the path ever takes the
left branch of a node labeled by a, then the path contains c .

For a tree rejected by A, consider the full binary tree with nodes labelled
by a.
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Parity game

A parity game is a tuple (VR ,VV , v0,E ,Ω) such that

E ⊆ V × V is the edge relation of a directed graph whose node-set
V := VR + VV ; v0 ∈ V is the start node

Ω : V −→ { 0, · · · ,M − 1 } assigns a priority to each node.

Playing a parity game

A play consists in the players, R (Refuter) and V (Verifier), taking turns
to move a token along the edges of the graph. At a given stage of the
play, suppose the token is on an R-node v (respectively V -node), then R
(respectively V ) chooses an edge (v , v ′) and moves the token onto v ′. At
the start of a play, the token is placed on v0.

Thus a play is a finite or infinite path π = v0 vn1 vn2 · · · in the graph that
starts from v0.
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Winning condition and strategy

Who wins a maximal play?

Let π be a maximal play.

If π is finite, and ends in a V -node (respectively R-node), then R
(respectively V ) wins.

If π is infinite, V wins iff π satisfies the parity condition.

Definitions

A V -strategy W is a map from plays ending in a V -node to a node
extending the play.
W is winning if V wins every (maximal) play π that conforms with the
strategy.
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An Example: Who has a winning strategy?

R, 3

V , 3

V , 2

V , 2

R, 0

R, 1

V , 3 R, 2

V , 1 R, 3 R, 1

R, 2 V , 1 R, 0

V , 0

V , 0

R always chooses the right child - winning strategy.
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“Parity Game ≡ Modal Mu-Calculus”

A Game Reading of the Fundamental Semantic Theorem

Theorem (Emerson+Street 89)

Given a labelled transition system L, a start state s0, and a modal
mu-formula ϕ, there is a parity game G (L, s0, ϕ) such that L, s0 � ϕ iff
Verifier has a winning strategy for G (L, s0, ϕ).

Example G (L, 0, µY .νZ .[a]((〈b〉t ∨ Y ) ∧ Z )) where

L = 0
a

1
b

a

2

(For the game graph, see next slide.)
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Game graph of G(T , µY .νZ .[a]((〈b〉t ∨ Y ) ∧ Z )

(0, µY .νZ .[a]((〈b〉t ∨ Y ) ∧ Z))

(0, Y )

(0, νZ .[a]((〈b〉t ∨ Y ) ∧ Z))

(0, Z)

(0, [a]((〈b〉t ∨ Y ) ∧ Z)) R

(1, (〈b〉t ∨ Y ) ∧ Z) R

V (1, 〈b〉t ∨ Y ) (1, Z)

V (1, 〈b〉t) (1, Y ) (1, [a]((〈b〉t ∨ Y ) ∧ Z)) R

(2, t) (1, νZ .[a]((〈b〉t ∨ Y ) ∧ Z)) (0, (〈b〉t ∨ Y ) ∧ Z) R

V (0, 〈b〉t ∨ Y

V (0, 〈b〉t)
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A typing system characterising MSO / modal mu-calculus theories

Theorem (Characterisation. Kobayashi + O. LiCS 2009)

Given a property ϕ (APT / mu-calculus) there is a typing system Kϕ such
that for every recursion scheme G, the tree [[G ]] satisfies ϕ iff G is
Kϕ-typable.

Theorem (Parameterised Complexity. Kobayashi + O. LiCS 2009)

There is a type-inference algorithm polytime in size of recursion scheme,
assuming the other parameters are fixed.
The runtime is

O(p1+⌊m/2⌋ expn((a |Q|M)1+ǫ))

where p is the number of rewrite rules of the scheme, a is largest arity of
the types, M the number of priorities and |Q| the number of states.
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Intersection types embedded with states and priorities of an APT

Intersection types: Long history. First used to construct filter models for
untyped λ-calculus (Dezani, Barendregt, et al. early 80s).

Fix an APT A = (Σ,Q, δ, qI ,Ω).
Idea: Refine intersection types with APT states q and priorities mi of
APT.

Types θ ::= q | τ → θ

τ ::=
∧

{ (θ1,m1), · · · , (θk ,mk) }

Intuition. A tree function described by (q1,m1) ∧ (q2,m2) → q.

q

q1

q2

The largest priority

in this path (including

the root and q1) is m1

The largest priority in this

path (including the root and 

q2) is m2.
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A type-checking approach

Typing judgement
Γ ⊢ t : θ

where the environment Γ is a finite set of bindings x : (θ,m)b with
b ∈ { t, f }.

x : (θ,m)t ∈ Γ means x can be used only before visiting a state with
priority larger than m.

x : (θ,m)f ∈ Γ means it is additionally required that x can be used
after visiting a state with priority m.

E.g. Suppose Ω(q) = 0. Then { x : (q, 1)t } ⊢ x : q is valid.
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Type-checking infinite trees with parity condition

Typing rules are simple: only four rules - one per term-constructor.

Definition of typability. We say that G is typable just if Verifier has a
winning strategy in a parity game determined by the APT (Q, δ, qI ,Ω).

Intuition of the parity game: A way to construct an infinite tree of type
derivations, suitable for parity condition reasoning.
Underlying graph is bipartite; two kinds of vertices “F : (θ,m)” and “Γ”.
Verifier tries to prove that scheme is typable; Refuter tries to disprove it.

Start vertex: S : (qI ,Ω(qI )).

Verifier: Given F : (θ,m), choose Γ such that Γ ⊢ rhs(F ) : θ is valid.

Refuter: Given Γ, choose F : (θ,m) ∈ Γ (and ask Verifier to prove why F
has type θ).

Proof “Standard” methods (e.g. type soundness via type preservation)
apply, except reasoning about priorities, which is novel and of independent
interest.
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(θ,m)b ↑ Ω(θ) = (θ,m)t

x : (θ,m)b ⊢ x : θ
(T-Var)

{ (i , qij ) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki } satisfies δA(q, a)

∅ ⊢

a :
∧k1

j=1(q1j ,m1j ) → · · · →
∧kn

j=1(qnj ,mnj ) → q

where mij = max(Ω(qij),Ω(q))

(T-Const)

Γ0 ⊢ t0 : (θ1,m1) ∧ · · · ∧ (θk ,mk) → θ

Γi ↑ mi ⊢ t1 : θi for each i ∈ { 1, . . . , k }

Γ0 ∪ Γ1 ∪ · · · ∪ Γk ⊢ t0 t1 : θ
(T-App)

Γ, x :
∧

i∈I (θi ,mi )
f ⊢ t : θ I ⊆ J

Γ ⊢ λx .t :
∧

i∈J(θi ,mi ) → θ
(T-Abs)
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Safety Fragment of Mu-Calculus / Trivial APT

Trivial APT are APT with a single priority of 0. [Aehlig, LMCS 2007]
Trivial acceptance condition: A tree is accepted just if there is a run-tree
(i.e. state-annotation of nodes respecting the transition relation).
Equi-expressive with the “safety fragment” of mu-calculus:

ϕ,ψ ::= Pf | Z | ϕ ∨ ψ | ϕ ∧ ψ | 〈i〉ϕ | νZ .ϕ.

But surprisingly

Theorem (Kobayashi + O., ICALP 2009)

The Trivial APT Acceptance Problem for order-n recursion schemes is still
n-EXPTIME complete.

[n-EXPTIME hardness by reduction from word acceptance problem of order-n

alternating PDA which is n-EXPTIME complete [Engelfriet 91].]
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Disjunctive Fragment of Mu-Calculus / Disjunctive APT

Disjunctive APT are APT whose transition function maps each
state-symbol pair to a purely disjunctive positive boolean formula.

Disjunctive APT capture path / linear-time properties; equi-expressive
with“disjunctive fragment” of mu-calculus:

ϕ,ψ ::= Pf ∧ ϕ | Z | ϕ ∨ ψ | 〈i〉ϕ | νZ .ϕ | µZ .ϕ

Theorem (Kobayashi + O., ICALP 2009)

The Disjunctive APT Acceptance Problem for order-n recursion schemes is
(n − 1)-EXPTIME complete.

(n − 1)-EXPTIME decidable: For order-1 APT-types
∧

S1 → · · · →
∧

Sk → q,
we may assume at most one Si ’s is nonempty (and is singleton). Hence only
k × |Q|2 × m many such types (N.B. exponential for general APT).

(n − 1)-EXPTIME hardness: by reduction from emptiness problem of order-n

deterministic PDA [Engelfriet 91].
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Why study trivial and disjunctive APT?

Corollary

The following problems are (n − 1)-EXPTIME complete: assume G is an
order-n recursion scheme

1 Reachability: “Does [[ G ]] have a node labelled by a given symbol?”

2 LTL Model-Checking: “Does every path in [[ G ]] satisfy a given ϕ?”

3 Resource Usage Problem
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Verification by reduction to model checking recursion schemes

Higher-order

Program +

specification

HORS +

Automaton

for infinite 

trees

Program

transformation

Model

Checking

Verification Problem: “Does P satisfy ϕ?”

The functional program P is transformed to a recursion scheme P̃
that generates a tree representing all possible event sequences in P .

[[ P̃ ]] is then model checked against (transformed) property ϕ̃, so that
P � ϕ iff [[ P̃ ]] � ϕ̃.

This method is fully automatic, sound and complete.

Program Classes Models of Computation

imperative programs + iteration finite-state automata

imperative programs + recursion PDA / boolean programs

order-n functional programs order-n recursion schemes
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Resource Usage Problem (Igarashi-Kobayashi, POPL 2002)

Scenario. Higher-order (recursive) functional programs generated from
booleans with dynamic resource creation and access primitives.

Question. Does program P access each resource ρ according to the given
resource specification ρL, where L is a regular language over the alphabet
of resource access primitives.

Example. A simple resource specification: “An opened file is eventually
closed, and after which it is not read”. So L = r∗ c.

l e t r e c g x = i f b then c l o s e ( x )
e l s e read ( x ) ; g ( x ) i n

l e t r = open i n ” foo ” i n g ( r )

Does the program access the resource foo in accord with L?
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An approach to verifying Resource Usage (Kobayashi, POPL 2009)

ρr
⋆
c

br

c r

⊥ br

c r

⊥ br

c r

⊥ ...

1. Transform source program to rec. scheme{
S → ρr

∗
c (G d ⊥)

G x k → br (c k) (r (G x k))

that generates an infinite tree,
each of whose path (from root) corresponds
to a possible access sequence to resource ρ.

2. Reduce resource usage problem to model
checking the scheme against a transformed
property given by a trivial automaton.

3. Further reduce model
checking problem to a type inference problem.
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Resource Usage Verification Problem

Resource Usage Verification Problem

Instance: A functional program P using resources (λ→ + recursion +
booleans + resource creation / access primitives), and specification ϕ
(regular expression).
Question: Does P use resources in accord with ϕ?

Theorem (Kobayashi + O., ICALP 2009)

For an order-n source program, the Resource Usage Problem is
(n − 1)-EXPTIME complete.
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Many verification problems reducible to Resource Usage Problem

Program Reachability: “Given a program (closed term of ground
type), does its computation reach a special construct fail?”

Assertion-based verification problems; safety properties

Flow Analysis: “Given a program and its subterms s and t, does the
value of s flow to the value of t?”

An interesting exception!

What is reachability in higher-order functional programs?

Contextual Reachability

“Given a term P and its (coloured) subterm Nα, is there a program
context C [ ] such that evaluating C [P ] cause control to flow to Nα?”

Many versions of the problem. Connexions with Stirling’s dependency tree
automata.

(See O. + Tzevelekos, “Functional Reachability”, In Proc. LiCS, 2009).
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Classes of comparatively tractable model checking problems

Two useful fragments of the modal mu-calculus / APT:

(1) Trivial APT (“Safety Fragment”): APT with a singleton priority of 0.

(2) Disjunctive APT: APT whose transition function maps each state to
a positive boolean formula that is purely disjunctive.

Theorem (Kobayashi + O., ICALP 2009)

1 The Trivial APT Acceptance Problem for order-n recursion schemes is
still n-EXPTIME complete.

2 The Disjunctive APT Acceptance Problem for order-n recursion
schemes is (n − 1)-EXPTIME complete.

Useful Corollary: The following problems (for order-n schemes) are
(n − 1)-EXPTIME complete:

1 Resource Usage Problem

2 Reachability: “Does [[ G ]] have a node labelled by a given symbol?”
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Preliminary experiments with TRecS (Kobayashi, PPDP 09)

Order Types # Intersection Types (assume 2 states)

1 o → o 22 × 2 = 8
2 (o → o) → o 28 × 2 = 512
3 ((o → o) → o) → o 2512 × 2 = 2513 ≈ 10154

Example. amscomp/compileenv.ml (40 loc) in OCaml compiler 3.11.0

l e t r e a d s e c t ( ) =
l e t fp = open ” foo ” i n
{ r eadc = fun x −> r ead fp ;

c l o s e c = fun x −> c l o s e fp }
l e t main ( ) =

l e t s = r e a d s e c t ( ) i n s . r eadc ( ) ;
s . c l o s e c ( )

Result: An order-4 recursion scheme is obtained after “slicing” the source
program and CPS transform; # rules = 23, # APT states = 4. Thanks to
ingenious optimisation techniques, time to infer types = ? msec.
Demo. http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/
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An abstract model checking framework (Kobayashi, POPL 2009)

Input: (i) Functional program with ground-type values (e.g. int), and dynamic

resource creation and access. (ii) Access specification Spec .
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Conclusions

Verification of higher-order programs is challenging and worthwhile.

Recursion schemes are a robust and highly expressive language for
infinite structures. Their algorithmic model theory is very rich.

Recent progress in the theory has been made possible by semantic
methods; and new (and highly complex) algorithms extracted.

Verification of functional programs can be reduced to model checking
recursion schemes. The approach is automatic, sound and complete.

Further directions:

1 Is safety a genuine constraint on expressiveness? Equivalently, are
order-n CPDA more expressive than order-n PDA?

2 Extend verification techniques to call-by-value, polymorphism, pattern
matching and recursive data types.

3 Major case study: Develop a fully-fledged model checker for Haskell /
OCaml.
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