
Model Checking Higher-Order Computation: II

Luke Ong

Computing Laboratory, University of Oxford

Marktoberdorf Summer School, 4-15 August 2009

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 1 / 30

Outline of Part 2

1 A Typing System Characterising MSO Theories of Recursion Schemes
Preliminaries: Mu-Calculus, APT and Parity Games
An Intersection Type System
Two Relatively Cheap Fragments

2 Application: A New Approach to Verifying Functional Programs
Verification by Reduction to Model Checking Recursion Schemes
Resource Usage Problem: A Case Study
Experimentation: Preliminary Results and Demo:

Lecture slides and references will be viewable on my homepage
users.comlab.ox.ac.uk/luke.ong

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 2 / 30

users.comlab.ox.ac.uk/luke.ong

Outline of Part 2

1 A Typing System Characterising MSO Theories of Recursion Schemes
Preliminaries: Mu-Calculus, APT and Parity Games
An Intersection Type System
Two Relatively Cheap Fragments

2 Application: A New Approach to Verifying Functional Programs
Verification by Reduction to Model Checking Recursion Schemes
Resource Usage Problem: A Case Study
Experimentation: Preliminary Results and Demo:

Lecture slides and references will be viewable on my homepage
users.comlab.ox.ac.uk/luke.ong

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 2 / 30

users.comlab.ox.ac.uk/luke.ong

Outline

1 A Typing System Characterising MSO Theories of Recursion Schemes
Preliminaries: Mu-Calculus, APT and Parity Games
An Intersection Type System
Two Relatively Cheap Fragments

2 Application: A New Approach to Verifying Functional Programs
Verification by Reduction to Model Checking Recursion Schemes
Resource Usage Problem: A Case Study
Experimentation: Preliminary Results and Demo:

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 3 / 30

Alternating parity tree automaton (APT) ≡ modal mu-calculu

Theorem (Equivalence, Emerson+Jutla 91)

Let A, ϕ,T range over APT, modal mu-formulas, ranked trees resp.

1 For each A, there exists ϕ such that A accepts T iff T satisfies ϕ.

2 For each ϕ, there exists A such that A accepts T iff T satisfies ϕ.

Positive Boolean formulas over X : B+(X) ∋ θ ::= t | f | x | θ ∧ θ | θ ∨ θ
Y ⊆ X satisfies θ just if assigning true to elements in Y and false to
others makes θ true.

An APT over Σ-labelled trees is a tuple A = (Σ,Q, δ, qI ,Ω) where

Σ is a ranked alphabet; m is the largest arity of terminals

qI ∈ Q is the initial state

δ : Q × Σ −→ B+({ 1, . . . ,m } × Q) is the transition function

Ω : Q −→ { 0, · · · ,M − 1 } is the priority function.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 4 / 30

Alternating parity tree automaton (APT) ≡ modal mu-calculu

Theorem (Equivalence, Emerson+Jutla 91)

Let A, ϕ,T range over APT, modal mu-formulas, ranked trees resp.

1 For each A, there exists ϕ such that A accepts T iff T satisfies ϕ.

2 For each ϕ, there exists A such that A accepts T iff T satisfies ϕ.

Positive Boolean formulas over X : B+(X) ∋ θ ::= t | f | x | θ ∧ θ | θ ∨ θ
Y ⊆ X satisfies θ just if assigning true to elements in Y and false to
others makes θ true.

An APT over Σ-labelled trees is a tuple A = (Σ,Q, δ, qI ,Ω) where

Σ is a ranked alphabet; m is the largest arity of terminals

qI ∈ Q is the initial state

δ : Q × Σ −→ B+({ 1, . . . ,m } × Q) is the transition function

Ω : Q −→ { 0, · · · ,M − 1 } is the priority function.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 4 / 30

Run-tree of an APT

A run-tree of an APT is just a set of maximal state-annotated paths in the
tree that respect the transition relation.

A tree is accepted by an APT just if there is a run-tree such that every
infinite path π in it satisfies the parity condition.

Let π = π1 π2 · · · be an infinite path in r ; for each i ≥ 0, let the state
label of the node π1 · · · πi be qni

where qn0 , the state label of ǫ, is qI . We
say that

π satisfies the parity condition

The largest priority that occurs infinitely often in Ω(qn0)Ω(qn1)Ω(qn2) · · ·
is even.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 5 / 30

Example

Let Σ = { a : 2, b : 1, c : 0 }.

Let A be the APT (Σ, { q0, q1 }, δ, q0,Ω), where (let q ∈ { q0, q1 })

δ :

(q, a) 7→ (1, q1) ∧ (2, q)
(q, b) 7→ (1, q)
(q, c) 7→ true

Ω :

{
q0 7→ 2
q1 7→ 1

A accepts a Σ-tree t just if for every path of t, if the path ever takes the
left branch of a node labeled by a, then the path contains c .

For a tree rejected by A, consider the full binary tree with nodes labelled
by a.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 6 / 30

Parity game

A parity game is a tuple (VR ,VV , v0,E ,Ω) such that

E ⊆ V × V is the edge relation of a directed graph whose node-set
V := VR + VV ; v0 ∈ V is the start node

Ω : V −→ { 0, · · · ,M − 1 } assigns a priority to each node.

Playing a parity game

A play consists in the players, R (Refuter) and V (Verifier), taking turns
to move a token along the edges of the graph. At a given stage of the
play, suppose the token is on an R-node v (respectively V -node), then R
(respectively V) chooses an edge (v , v ′) and moves the token onto v ′. At
the start of a play, the token is placed on v0.

Thus a play is a finite or infinite path π = v0 vn1 vn2 · · · in the graph that
starts from v0.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 7 / 30

Parity game

A parity game is a tuple (VR ,VV , v0,E ,Ω) such that

E ⊆ V × V is the edge relation of a directed graph whose node-set
V := VR + VV ; v0 ∈ V is the start node

Ω : V −→ { 0, · · · ,M − 1 } assigns a priority to each node.

Playing a parity game

A play consists in the players, R (Refuter) and V (Verifier), taking turns
to move a token along the edges of the graph. At a given stage of the
play, suppose the token is on an R-node v (respectively V -node), then R
(respectively V) chooses an edge (v , v ′) and moves the token onto v ′. At
the start of a play, the token is placed on v0.

Thus a play is a finite or infinite path π = v0 vn1 vn2 · · · in the graph that
starts from v0.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 7 / 30

Winning condition and strategy

Who wins a maximal play?

Let π be a maximal play.

If π is finite, and ends in a V -node (respectively R-node), then R
(respectively V) wins.

If π is infinite, V wins iff π satisfies the parity condition.

Definitions

A V -strategy W is a map from plays ending in a V -node to a node
extending the play.
W is winning if V wins every (maximal) play π that conforms with the
strategy.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 8 / 30

An Example: Who has a winning strategy?

R, 3

V , 3

V , 2

V , 2

R, 0

R, 1

V , 3 R, 2

V , 1 R, 3 R, 1

R, 2 V , 1 R, 0

V , 0

V , 0

R always chooses the right child - winning strategy.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 9 / 30

An Example: Who has a winning strategy?

R, 3

V , 3

V , 2

V , 2

R, 0

R, 1

V , 3 R, 2

V , 1 R, 3 R, 1

R, 2 V , 1 R, 0

V , 0

V , 0

R always chooses the right child - winning strategy.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 9 / 30

“Parity Game ≡ Modal Mu-Calculus”

A Game Reading of the Fundamental Semantic Theorem

Theorem (Emerson+Street 89)

Given a labelled transition system L, a start state s0, and a modal
mu-formula ϕ, there is a parity game G (L, s0, ϕ) such that L, s0 � ϕ iff
Verifier has a winning strategy for G (L, s0, ϕ).

Example G (L, 0, µY .νZ .[a]((〈b〉t ∨ Y) ∧ Z)) where

L = 0
a

1
b

a

2

(For the game graph, see next slide.)

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 10 / 30

Game graph of G(T , µY .νZ .[a]((〈b〉t ∨ Y) ∧ Z)

(0, µY .νZ .[a]((〈b〉t ∨ Y) ∧ Z))

(0, Y)

(0, νZ .[a]((〈b〉t ∨ Y) ∧ Z))

(0, Z)

(0, [a]((〈b〉t ∨ Y) ∧ Z)) R

(1, (〈b〉t ∨ Y) ∧ Z) R

V (1, 〈b〉t ∨ Y) (1, Z)

V (1, 〈b〉t) (1, Y) (1, [a]((〈b〉t ∨ Y) ∧ Z)) R

(2, t) (1, νZ .[a]((〈b〉t ∨ Y) ∧ Z)) (0, (〈b〉t ∨ Y) ∧ Z) R

V (0, 〈b〉t ∨ Y

V (0, 〈b〉t)

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 11 / 30

A typing system characterising MSO / modal mu-calculus theories

Theorem (Characterisation. Kobayashi + O. LiCS 2009)

Given a property ϕ (APT / mu-calculus) there is a typing system Kϕ such
that for every recursion scheme G, the tree [[G]] satisfies ϕ iff G is
Kϕ-typable.

Theorem (Parameterised Complexity. Kobayashi + O. LiCS 2009)

There is a type-inference algorithm polytime in size of recursion scheme,
assuming the other parameters are fixed.
The runtime is

O(p1+⌊m/2⌋ expn((a |Q|M)1+ǫ))

where p is the number of rewrite rules of the scheme, a is largest arity of
the types, M the number of priorities and |Q| the number of states.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 12 / 30

Intersection types embedded with states and priorities of an APT

Intersection types: Long history. First used to construct filter models for
untyped λ-calculus (Dezani, Barendregt, et al. early 80s).

Fix an APT A = (Σ,Q, δ, qI ,Ω).
Idea: Refine intersection types with APT states q and priorities mi of
APT.

Types θ ::= q | τ → θ

τ ::=
∧

{ (θ1,m1), · · · , (θk ,mk) }

Intuition. A tree function described by (q1,m1) ∧ (q2,m2) → q.

q

q1

q2

The largest priority

in this path (including

the root and q1) is m1

The largest priority in this

path (including the root and

q2) is m2.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 13 / 30

Intersection types embedded with states and priorities of an APT

Intersection types: Long history. First used to construct filter models for
untyped λ-calculus (Dezani, Barendregt, et al. early 80s).

Fix an APT A = (Σ,Q, δ, qI ,Ω).
Idea: Refine intersection types with APT states q and priorities mi of
APT.

Types θ ::= q | τ → θ

τ ::=
∧

{ (θ1,m1), · · · , (θk ,mk) }

Intuition. A tree function described by (q1,m1) ∧ (q2,m2) → q.

q

q1

q2

The largest priority

in this path (including

the root and q1) is m1

The largest priority in this

path (including the root and

q2) is m2.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 13 / 30

A type-checking approach

Typing judgement
Γ ⊢ t : θ

where the environment Γ is a finite set of bindings x : (θ,m)b with
b ∈ { t, f }.

x : (θ,m)t ∈ Γ means x can be used only before visiting a state with
priority larger than m.

x : (θ,m)f ∈ Γ means it is additionally required that x can be used
after visiting a state with priority m.

E.g. Suppose Ω(q) = 0. Then { x : (q, 1)t } ⊢ x : q is valid.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 14 / 30

Type-checking infinite trees with parity condition

Typing rules are simple: only four rules - one per term-constructor.

Definition of typability. We say that G is typable just if Verifier has a
winning strategy in a parity game determined by the APT (Q, δ, qI ,Ω).

Intuition of the parity game: A way to construct an infinite tree of type
derivations, suitable for parity condition reasoning.
Underlying graph is bipartite; two kinds of vertices “F : (θ,m)” and “Γ”.
Verifier tries to prove that scheme is typable; Refuter tries to disprove it.

Start vertex: S : (qI ,Ω(qI)).

Verifier: Given F : (θ,m), choose Γ such that Γ ⊢ rhs(F) : θ is valid.

Refuter: Given Γ, choose F : (θ,m) ∈ Γ (and ask Verifier to prove why F
has type θ).

Proof “Standard” methods (e.g. type soundness via type preservation)
apply, except reasoning about priorities, which is novel and of independent
interest.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 15 / 30

Type-checking infinite trees with parity condition

Typing rules are simple: only four rules - one per term-constructor.

Definition of typability. We say that G is typable just if Verifier has a
winning strategy in a parity game determined by the APT (Q, δ, qI ,Ω).

Intuition of the parity game: A way to construct an infinite tree of type
derivations, suitable for parity condition reasoning.
Underlying graph is bipartite; two kinds of vertices “F : (θ,m)” and “Γ”.
Verifier tries to prove that scheme is typable; Refuter tries to disprove it.

Start vertex: S : (qI ,Ω(qI)).

Verifier: Given F : (θ,m), choose Γ such that Γ ⊢ rhs(F) : θ is valid.

Refuter: Given Γ, choose F : (θ,m) ∈ Γ (and ask Verifier to prove why F
has type θ).

Proof “Standard” methods (e.g. type soundness via type preservation)
apply, except reasoning about priorities, which is novel and of independent
interest.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 15 / 30

Type-checking infinite trees with parity condition

Typing rules are simple: only four rules - one per term-constructor.

Definition of typability. We say that G is typable just if Verifier has a
winning strategy in a parity game determined by the APT (Q, δ, qI ,Ω).

Intuition of the parity game: A way to construct an infinite tree of type
derivations, suitable for parity condition reasoning.
Underlying graph is bipartite; two kinds of vertices “F : (θ,m)” and “Γ”.
Verifier tries to prove that scheme is typable; Refuter tries to disprove it.

Start vertex: S : (qI ,Ω(qI)).

Verifier: Given F : (θ,m), choose Γ such that Γ ⊢ rhs(F) : θ is valid.

Refuter: Given Γ, choose F : (θ,m) ∈ Γ (and ask Verifier to prove why F
has type θ).

Proof “Standard” methods (e.g. type soundness via type preservation)
apply, except reasoning about priorities, which is novel and of independent
interest.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 15 / 30

(θ,m)b ↑ Ω(θ) = (θ,m)t

x : (θ,m)b ⊢ x : θ
(T-Var)

{ (i , qij) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki } satisfies δA(q, a)

∅ ⊢

a :
∧k1

j=1(q1j ,m1j) → · · · →
∧kn

j=1(qnj ,mnj) → q

where mij = max(Ω(qij),Ω(q))

(T-Const)

Γ0 ⊢ t0 : (θ1,m1) ∧ · · · ∧ (θk ,mk) → θ

Γi ↑ mi ⊢ t1 : θi for each i ∈ { 1, . . . , k }

Γ0 ∪ Γ1 ∪ · · · ∪ Γk ⊢ t0 t1 : θ
(T-App)

Γ, x :
∧

i∈I (θi ,mi)
f ⊢ t : θ I ⊆ J

Γ ⊢ λx .t :
∧

i∈J(θi ,mi) → θ
(T-Abs)

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 16 / 30

Safety Fragment of Mu-Calculus / Trivial APT

Trivial APT are APT with a single priority of 0. [Aehlig, LMCS 2007]
Trivial acceptance condition: A tree is accepted just if there is a run-tree
(i.e. state-annotation of nodes respecting the transition relation).
Equi-expressive with the “safety fragment” of mu-calculus:

ϕ,ψ ::= Pf | Z | ϕ ∨ ψ | ϕ ∧ ψ | 〈i〉ϕ | νZ .ϕ.

But surprisingly

Theorem (Kobayashi + O., ICALP 2009)

The Trivial APT Acceptance Problem for order-n recursion schemes is still
n-EXPTIME complete.

[n-EXPTIME hardness by reduction from word acceptance problem of order-n

alternating PDA which is n-EXPTIME complete [Engelfriet 91].]

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 17 / 30

Safety Fragment of Mu-Calculus / Trivial APT

Trivial APT are APT with a single priority of 0. [Aehlig, LMCS 2007]
Trivial acceptance condition: A tree is accepted just if there is a run-tree
(i.e. state-annotation of nodes respecting the transition relation).
Equi-expressive with the “safety fragment” of mu-calculus:

ϕ,ψ ::= Pf | Z | ϕ ∨ ψ | ϕ ∧ ψ | 〈i〉ϕ | νZ .ϕ.

But surprisingly

Theorem (Kobayashi + O., ICALP 2009)

The Trivial APT Acceptance Problem for order-n recursion schemes is still
n-EXPTIME complete.

[n-EXPTIME hardness by reduction from word acceptance problem of order-n

alternating PDA which is n-EXPTIME complete [Engelfriet 91].]

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 17 / 30

Safety Fragment of Mu-Calculus / Trivial APT

Trivial APT are APT with a single priority of 0. [Aehlig, LMCS 2007]
Trivial acceptance condition: A tree is accepted just if there is a run-tree
(i.e. state-annotation of nodes respecting the transition relation).
Equi-expressive with the “safety fragment” of mu-calculus:

ϕ,ψ ::= Pf | Z | ϕ ∨ ψ | ϕ ∧ ψ | 〈i〉ϕ | νZ .ϕ.

But surprisingly

Theorem (Kobayashi + O., ICALP 2009)

The Trivial APT Acceptance Problem for order-n recursion schemes is still
n-EXPTIME complete.

[n-EXPTIME hardness by reduction from word acceptance problem of order-n

alternating PDA which is n-EXPTIME complete [Engelfriet 91].]

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 17 / 30

Disjunctive Fragment of Mu-Calculus / Disjunctive APT

Disjunctive APT are APT whose transition function maps each
state-symbol pair to a purely disjunctive positive boolean formula.

Disjunctive APT capture path / linear-time properties; equi-expressive
with“disjunctive fragment” of mu-calculus:

ϕ,ψ ::= Pf ∧ ϕ | Z | ϕ ∨ ψ | 〈i〉ϕ | νZ .ϕ | µZ .ϕ

Theorem (Kobayashi + O., ICALP 2009)

The Disjunctive APT Acceptance Problem for order-n recursion schemes is
(n − 1)-EXPTIME complete.

(n − 1)-EXPTIME decidable: For order-1 APT-types
∧

S1 → · · · →
∧

Sk → q,
we may assume at most one Si ’s is nonempty (and is singleton). Hence only
k × |Q|2 × m many such types (N.B. exponential for general APT).

(n − 1)-EXPTIME hardness: by reduction from emptiness problem of order-n

deterministic PDA [Engelfriet 91].

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 18 / 30

Disjunctive Fragment of Mu-Calculus / Disjunctive APT

Disjunctive APT are APT whose transition function maps each
state-symbol pair to a purely disjunctive positive boolean formula.

Disjunctive APT capture path / linear-time properties; equi-expressive
with“disjunctive fragment” of mu-calculus:

ϕ,ψ ::= Pf ∧ ϕ | Z | ϕ ∨ ψ | 〈i〉ϕ | νZ .ϕ | µZ .ϕ

Theorem (Kobayashi + O., ICALP 2009)

The Disjunctive APT Acceptance Problem for order-n recursion schemes is
(n − 1)-EXPTIME complete.

(n − 1)-EXPTIME decidable: For order-1 APT-types
∧

S1 → · · · →
∧

Sk → q,
we may assume at most one Si ’s is nonempty (and is singleton). Hence only
k × |Q|2 × m many such types (N.B. exponential for general APT).

(n − 1)-EXPTIME hardness: by reduction from emptiness problem of order-n

deterministic PDA [Engelfriet 91].

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 18 / 30

Disjunctive Fragment of Mu-Calculus / Disjunctive APT

Disjunctive APT are APT whose transition function maps each
state-symbol pair to a purely disjunctive positive boolean formula.

Disjunctive APT capture path / linear-time properties; equi-expressive
with“disjunctive fragment” of mu-calculus:

ϕ,ψ ::= Pf ∧ ϕ | Z | ϕ ∨ ψ | 〈i〉ϕ | νZ .ϕ | µZ .ϕ

Theorem (Kobayashi + O., ICALP 2009)

The Disjunctive APT Acceptance Problem for order-n recursion schemes is
(n − 1)-EXPTIME complete.

(n − 1)-EXPTIME decidable: For order-1 APT-types
∧

S1 → · · · →
∧

Sk → q,
we may assume at most one Si ’s is nonempty (and is singleton). Hence only
k × |Q|2 × m many such types (N.B. exponential for general APT).

(n − 1)-EXPTIME hardness: by reduction from emptiness problem of order-n

deterministic PDA [Engelfriet 91].

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 18 / 30

Why study trivial and disjunctive APT?

Corollary

The following problems are (n − 1)-EXPTIME complete: assume G is an
order-n recursion scheme

1 Reachability: “Does [[G]] have a node labelled by a given symbol?”

2 LTL Model-Checking: “Does every path in [[G]] satisfy a given ϕ?”

3 Resource Usage Problem

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 19 / 30

Outline

1 A Typing System Characterising MSO Theories of Recursion Schemes
Preliminaries: Mu-Calculus, APT and Parity Games
An Intersection Type System
Two Relatively Cheap Fragments

2 Application: A New Approach to Verifying Functional Programs
Verification by Reduction to Model Checking Recursion Schemes
Resource Usage Problem: A Case Study
Experimentation: Preliminary Results and Demo:

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 20 / 30

Verification by reduction to model checking recursion schemes

Higher-order

Program +

specification

HORS +

Automaton

for infinite

trees

Program

transformation

Model

Checking

Verification Problem: “Does P satisfy ϕ?”

The functional program P is transformed to a recursion scheme P̃
that generates a tree representing all possible event sequences in P .

[[P̃]] is then model checked against (transformed) property ϕ̃, so that
P � ϕ iff [[P̃]] � ϕ̃.

This method is fully automatic, sound and complete.

Program Classes Models of Computation

imperative programs + iteration finite-state automata

imperative programs + recursion PDA / boolean programs

order-n functional programs order-n recursion schemes

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 21 / 30

Verification by reduction to model checking recursion schemes

Higher-order

Program +

specification

HORS +

Automaton

for infinite

trees

Program

transformation

Model

Checking

Verification Problem: “Does P satisfy ϕ?”

The functional program P is transformed to a recursion scheme P̃
that generates a tree representing all possible event sequences in P .

[[P̃]] is then model checked against (transformed) property ϕ̃, so that
P � ϕ iff [[P̃]] � ϕ̃.

This method is fully automatic, sound and complete.

Program Classes Models of Computation

imperative programs + iteration finite-state automata

imperative programs + recursion PDA / boolean programs

order-n functional programs order-n recursion schemes

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 21 / 30

Resource Usage Problem (Igarashi-Kobayashi, POPL 2002)

Scenario. Higher-order (recursive) functional programs generated from
booleans with dynamic resource creation and access primitives.

Question. Does program P access each resource ρ according to the given
resource specification ρL, where L is a regular language over the alphabet
of resource access primitives.

Example. A simple resource specification: “An opened file is eventually
closed, and after which it is not read”. So L = r∗ c.

l e t r e c g x = i f b then c l o s e (x)
e l s e read (x) ; g (x) i n

l e t r = open i n ” foo ” i n g (r)

Does the program access the resource foo in accord with L?

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 22 / 30

Resource Usage Problem (Igarashi-Kobayashi, POPL 2002)

Scenario. Higher-order (recursive) functional programs generated from
booleans with dynamic resource creation and access primitives.

Question. Does program P access each resource ρ according to the given
resource specification ρL, where L is a regular language over the alphabet
of resource access primitives.

Example. A simple resource specification: “An opened file is eventually
closed, and after which it is not read”. So L = r∗ c.

l e t r e c g x = i f b then c l o s e (x)
e l s e read (x) ; g (x) i n

l e t r = open i n ” foo ” i n g (r)

Does the program access the resource foo in accord with L?

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 22 / 30

An approach to verifying Resource Usage (Kobayashi, POPL 2009)

ρr
⋆
c

br

c r

⊥ br

c r

⊥ br

c r

⊥ ...

1. Transform source program to rec. scheme{
S → ρr

∗
c (G d ⊥)

G x k → br (c k) (r (G x k))

that generates an infinite tree,
each of whose path (from root) corresponds
to a possible access sequence to resource ρ.

2. Reduce resource usage problem to model
checking the scheme against a transformed
property given by a trivial automaton.

3. Further reduce model
checking problem to a type inference problem.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 23 / 30

Resource Usage Verification Problem

Resource Usage Verification Problem

Instance: A functional program P using resources (λ→ + recursion +
booleans + resource creation / access primitives), and specification ϕ
(regular expression).
Question: Does P use resources in accord with ϕ?

Theorem (Kobayashi + O., ICALP 2009)

For an order-n source program, the Resource Usage Problem is
(n − 1)-EXPTIME complete.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 24 / 30

Many verification problems reducible to Resource Usage Problem

Program Reachability: “Given a program (closed term of ground
type), does its computation reach a special construct fail?”

Assertion-based verification problems; safety properties

Flow Analysis: “Given a program and its subterms s and t, does the
value of s flow to the value of t?”

An interesting exception!

What is reachability in higher-order functional programs?

Contextual Reachability

“Given a term P and its (coloured) subterm Nα, is there a program
context C [] such that evaluating C [P] cause control to flow to Nα?”

Many versions of the problem. Connexions with Stirling’s dependency tree
automata.

(See O. + Tzevelekos, “Functional Reachability”, In Proc. LiCS, 2009).

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 25 / 30

Many verification problems reducible to Resource Usage Problem

Program Reachability: “Given a program (closed term of ground
type), does its computation reach a special construct fail?”

Assertion-based verification problems; safety properties

Flow Analysis: “Given a program and its subterms s and t, does the
value of s flow to the value of t?”

An interesting exception!

What is reachability in higher-order functional programs?

Contextual Reachability

“Given a term P and its (coloured) subterm Nα, is there a program
context C [] such that evaluating C [P] cause control to flow to Nα?”

Many versions of the problem. Connexions with Stirling’s dependency tree
automata.

(See O. + Tzevelekos, “Functional Reachability”, In Proc. LiCS, 2009).

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 25 / 30

Classes of comparatively tractable model checking problems

Two useful fragments of the modal mu-calculus / APT:

(1) Trivial APT (“Safety Fragment”): APT with a singleton priority of 0.

(2) Disjunctive APT: APT whose transition function maps each state to
a positive boolean formula that is purely disjunctive.

Theorem (Kobayashi + O., ICALP 2009)

1 The Trivial APT Acceptance Problem for order-n recursion schemes is
still n-EXPTIME complete.

2 The Disjunctive APT Acceptance Problem for order-n recursion
schemes is (n − 1)-EXPTIME complete.

Useful Corollary: The following problems (for order-n schemes) are
(n − 1)-EXPTIME complete:

1 Resource Usage Problem

2 Reachability: “Does [[G]] have a node labelled by a given symbol?”

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 26 / 30

Classes of comparatively tractable model checking problems

Two useful fragments of the modal mu-calculus / APT:

(1) Trivial APT (“Safety Fragment”): APT with a singleton priority of 0.

(2) Disjunctive APT: APT whose transition function maps each state to
a positive boolean formula that is purely disjunctive.

Theorem (Kobayashi + O., ICALP 2009)

1 The Trivial APT Acceptance Problem for order-n recursion schemes is
still n-EXPTIME complete.

2 The Disjunctive APT Acceptance Problem for order-n recursion
schemes is (n − 1)-EXPTIME complete.

Useful Corollary: The following problems (for order-n schemes) are
(n − 1)-EXPTIME complete:

1 Resource Usage Problem

2 Reachability: “Does [[G]] have a node labelled by a given symbol?”

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 26 / 30

Classes of comparatively tractable model checking problems

Two useful fragments of the modal mu-calculus / APT:

(1) Trivial APT (“Safety Fragment”): APT with a singleton priority of 0.

(2) Disjunctive APT: APT whose transition function maps each state to
a positive boolean formula that is purely disjunctive.

Theorem (Kobayashi + O., ICALP 2009)

1 The Trivial APT Acceptance Problem for order-n recursion schemes is
still n-EXPTIME complete.

2 The Disjunctive APT Acceptance Problem for order-n recursion
schemes is (n − 1)-EXPTIME complete.

Useful Corollary: The following problems (for order-n schemes) are
(n − 1)-EXPTIME complete:

1 Resource Usage Problem

2 Reachability: “Does [[G]] have a node labelled by a given symbol?”

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 26 / 30

Preliminary experiments with TRecS (Kobayashi, PPDP 09)

Order Types # Intersection Types (assume 2 states)

1 o → o 22 × 2 = 8
2 (o → o) → o 28 × 2 = 512
3 ((o → o) → o) → o 2512 × 2 = 2513 ≈ 10154

Example. amscomp/compileenv.ml (40 loc) in OCaml compiler 3.11.0

l e t r e a d s e c t () =
l e t fp = open ” foo ” i n
{ r eadc = fun x −> r ead fp ;

c l o s e c = fun x −> c l o s e fp }
l e t main () =

l e t s = r e a d s e c t () i n s . r eadc () ;
s . c l o s e c ()

Result: An order-4 recursion scheme is obtained after “slicing” the source
program and CPS transform; # rules = 23, # APT states = 4. Thanks to
ingenious optimisation techniques, time to infer types = ? msec.
Demo. http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 27 / 30

http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/

Preliminary experiments with TRecS (Kobayashi, PPDP 09)

Order Types # Intersection Types (assume 2 states)

1 o → o 22 × 2 = 8
2 (o → o) → o 28 × 2 = 512
3 ((o → o) → o) → o 2512 × 2 = 2513 ≈ 10154

Example. amscomp/compileenv.ml (40 loc) in OCaml compiler 3.11.0

l e t r e a d s e c t () =
l e t fp = open ” foo ” i n
{ r eadc = fun x −> r ead fp ;

c l o s e c = fun x −> c l o s e fp }
l e t main () =

l e t s = r e a d s e c t () i n s . r eadc () ;
s . c l o s e c ()

Result: An order-4 recursion scheme is obtained after “slicing” the source
program and CPS transform; # rules = 23, # APT states = 4. Thanks to
ingenious optimisation techniques, time to infer types = ? msec.
Demo. http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 27 / 30

http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/

Preliminary experiments with TRecS (Kobayashi, PPDP 09)

Order Types # Intersection Types (assume 2 states)

1 o → o 22 × 2 = 8
2 (o → o) → o 28 × 2 = 512
3 ((o → o) → o) → o 2512 × 2 = 2513 ≈ 10154

Example. amscomp/compileenv.ml (40 loc) in OCaml compiler 3.11.0

l e t r e a d s e c t () =
l e t fp = open ” foo ” i n
{ r eadc = fun x −> r ead fp ;

c l o s e c = fun x −> c l o s e fp }
l e t main () =

l e t s = r e a d s e c t () i n s . r eadc () ;
s . c l o s e c ()

Result: An order-4 recursion scheme is obtained after “slicing” the source
program and CPS transform; # rules = 23, # APT states = 4. Thanks to
ingenious optimisation techniques, time to infer types = ? msec.
Demo. http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 27 / 30

http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/

An abstract model checking framework (Kobayashi, POPL 2009)

Input: (i) Functional program with ground-type values (e.g. int), and dynamic

resource creation and access. (ii) Access specification Spec .

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 28 / 30

References

O. On model checking trees generated by higher-order recursion
schemes. In Proc. LiCS, 2006.

O. Verification of higher-order computation: a game-semantic
approach (Invited ETAPS Unifying Lecture). In Proc. ESOP, 2008.

Hague, Murawski, O. + Serre. Recursion schemes and collapsible
pushdown automata. In Proc. LiCS, 2008.

Carayol, Hague, Meyer, O. + Serre. Winning regions of higher-order
pushdown games. In Proc. LiCS, 2008.

Broadbent + O. On global model checking trees generated by
higher-order recursion schemes. In Proc. FoSSaCS, 2009.

Kobayashi + O. A type theory equivalent to the model checking of
higher-order recursion schemes. In Proc. LiCS, 2009.

O. + Tzevelekos. Functional Reachability. In Proc. LiCS, 2009.

Kobayashi + O. Complexity of model-checking recursion schemes for
fragments of the modal mu-calculus. In Proc. ICALP, 2009.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 29 / 30

Conclusions

Verification of higher-order programs is challenging and worthwhile.

Recursion schemes are a robust and highly expressive language for
infinite structures. Their algorithmic model theory is very rich.

Recent progress in the theory has been made possible by semantic
methods; and new (and highly complex) algorithms extracted.

Verification of functional programs can be reduced to model checking
recursion schemes. The approach is automatic, sound and complete.

Further directions:

1 Is safety a genuine constraint on expressiveness? Equivalently, are
order-n CPDA more expressive than order-n PDA?

2 Extend verification techniques to call-by-value, polymorphism, pattern
matching and recursive data types.

3 Major case study: Develop a fully-fledged model checker for Haskell /
OCaml.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 30 / 30

Conclusions

Verification of higher-order programs is challenging and worthwhile.

Recursion schemes are a robust and highly expressive language for
infinite structures. Their algorithmic model theory is very rich.

Recent progress in the theory has been made possible by semantic
methods; and new (and highly complex) algorithms extracted.

Verification of functional programs can be reduced to model checking
recursion schemes. The approach is automatic, sound and complete.

Further directions:

1 Is safety a genuine constraint on expressiveness? Equivalently, are
order-n CPDA more expressive than order-n PDA?

2 Extend verification techniques to call-by-value, polymorphism, pattern
matching and recursive data types.

3 Major case study: Develop a fully-fledged model checker for Haskell /
OCaml.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 30 / 30

	Theory and Application
	A Typing System Characterising MSO Theories of Recursion Schemes
	Preliminaries: Mu-Calculus, APT and Parity Games
	An Intersection Type System
	Two Relatively Cheap Fragments

	Application: A New Approach to Verifying Functional Programs
	Verification by Reduction to Model Checking Recursion Schemes
	Resource Usage Problem: A Case Study
	Experimentation: Preliminary Results and Demo:

