Model Checking Higher-Order Computation: II

Luke Ong

Computing Laboratory, University of Oxford

Marktoberdorf Summer School, 4-15 August 2009

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 1 / 30

A B K A B K

A Typing System Characterising MSO Theories of Recursion Schemes

- Preliminaries: Mu-Calculus, APT and Parity Games
- An Intersection Type System
- Two Relatively Cheap Fragments

- Verification by Reduction to Model Checking Recursion Schemes
- Experimentation: Preliminary Results and Demo:

(人間) システン イラン

D A Typing System Characterising MSO Theories of Recursion Schemes

- Preliminaries: Mu-Calculus, APT and Parity Games
- An Intersection Type System
- Two Relatively Cheap Fragments

Application: A New Approach to Verifying Functional Programs

- Verification by Reduction to Model Checking Recursion Schemes
- Resource Usage Problem: A Case Study
- Experimentation: Preliminary Results and Demo:

Lecture slides and references will be viewable on my homepage users.comlab.ox.ac.uk/luke.ong

< 回 ト < 三 ト < 三 ト

Outline

1) A Typing System Characterising MSO Theories of Recursion Schemes

- Preliminaries: Mu-Calculus, APT and Parity Games
- An Intersection Type System
- Two Relatively Cheap Fragments

2 Application: A New Approach to Verifying Functional Programs

- Verification by Reduction to Model Checking Recursion Schemes
- Resource Usage Problem: A Case Study
- Experimentation: Preliminary Results and Demo:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Equivalence, Emerson+Jutla 91)

Let A, φ, T range over APT, modal mu-formulas, ranked trees resp.

- **()** For each A, there exists φ such that A accepts T iff T satisfies φ .
- **2** For each φ , there exists \mathcal{A} such that \mathcal{A} accepts T iff T satisfies φ .

Positive Boolean formulas over X: $B^+(X) \ni \theta$::= t | f | x | $\theta \land \theta$ | $\theta \lor \theta$ Y $\subseteq X$ satisfies θ just if assigning true to elements in Y and false to others makes θ true.

An APT over Σ -labelled trees is a tuple $\mathcal{A} = (\Sigma, Q, \delta, q_I, \Omega)$ where

- Σ is a ranked alphabet; *m* is the largest arity of terminals
- $q_I \in Q$ is the initial state
- $\delta: Q \times \Sigma \longrightarrow B^+(\{1, \dots, m\} \times Q)$ is the transition function
- $\Omega: Q \longrightarrow \{0, \cdots, M-1\}$ is the priority function.

Theorem (Equivalence, Emerson+Jutla 91)

Let A, φ, T range over APT, modal mu-formulas, ranked trees resp.

- **9** For each A, there exists φ such that A accepts T iff T satisfies φ .
- **2** For each φ , there exists \mathcal{A} such that \mathcal{A} accepts T iff T satisfies φ .

Positive Boolean formulas over X: $B^+(X) \ni \theta$::= t | f | x | $\theta \land \theta$ | $\theta \lor \theta$ Y $\subseteq X$ satisfies θ just if assigning true to elements in Y and false to others makes θ true.

An APT over Σ -labelled trees is a tuple $\mathcal{A} = (\Sigma, Q, \delta, q_I, \Omega)$ where

- Σ is a ranked alphabet; *m* is the largest arity of terminals
- $q_I \in Q$ is the initial state
- $\delta: Q \times \Sigma \longrightarrow \mathsf{B}^+(\{1, \ldots, m\} \times Q)$ is the transition function
- $\Omega: Q \longrightarrow \{0, \cdots, M-1\}$ is the priority function.

Run-tree of an APT

A run-tree of an APT is just a set of maximal state-annotated paths in the tree that respect the transition relation.

A tree is accepted by an APT just if there is a run-tree such that every infinite path π in it satisfies the parity condition.

Let $\pi = \pi_1 \pi_2 \cdots$ be an infinite path in r; for each $i \ge 0$, let the state label of the node $\pi_1 \cdots \pi_i$ be q_{n_i} where q_{n_0} , the state label of ϵ , is q_i . We say that

π satisfies the *parity* condition

The largest priority that occurs infinitely often in $\Omega(q_{n_0}) \Omega(q_{n_1}) \Omega(q_{n_2}) \cdots$ is even.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Example

Let $\Sigma = \{ a : 2, b : 1, c : 0 \}.$

Let \mathcal{A} be the APT $(\Sigma, \{q_0, q_1\}, \delta, q_0, \Omega)$, where (let $q \in \{q_0, q_1\})$

$$\delta \hspace{0.1cm} : \hspace{0.1cm} \left\{ egin{array}{ll} (q,a)\mapsto (1,q_{1})\wedge (2,q) \ (q,b)\mapsto (1,q) \ (q,c)\mapsto ext{true} \end{array}
ight. \ \Omega \hspace{0.1cm} : \hspace{0.1cm} \left\{ egin{array}{ll} q_{0}\mapsto 2 \ q_{1}\mapsto 1 \end{array}
ight.$$

A accepts a Σ -tree *t* just if for every path of *t*, if the path ever takes the left branch of a node labeled by *a*, then the path contains *c*.

For a tree rejected by \mathcal{A} , consider the full binary tree with nodes labelled by *a*.

Parity game

A parity game is a tuple $(V_R, V_V, v_0, E, \Omega)$ such that

- $E \subseteq V \times V$ is the edge relation of a directed graph whose node-set $V := V_R + V_V$; $v_0 \in V$ is the start node
- $\Omega: V \longrightarrow \{0, \cdots, M-1\}$ assigns a priority to each node.

Playing a parity game

A play consists in the players, R (Refuter) and V (Verifier), taking turns to move a token along the edges of the graph. At a given stage of the play, suppose the token is on an R-node v (respectively V-node), then R(respectively V) chooses an edge (v, v') and moves the token onto v'. At the start of a play, the token is placed on v_0 .

Thus a play is a finite or infinite path $\pi = v_0 v_{n_1} v_{n_2} \cdots$ in the graph that starts from v_0 .

Parity game

A parity game is a tuple $(V_R, V_V, v_0, E, \Omega)$ such that

- $E \subseteq V \times V$ is the edge relation of a directed graph whose node-set $V := V_R + V_V$; $v_0 \in V$ is the start node
- $\Omega: V \longrightarrow \{0, \cdots, M-1\}$ assigns a priority to each node.

Playing a parity game

A play consists in the players, R (Refuter) and V (Verifier), taking turns to move a token along the edges of the graph. At a given stage of the play, suppose the token is on an R-node v (respectively V-node), then R(respectively V) chooses an edge (v, v') and moves the token onto v'. At the start of a play, the token is placed on v_0 .

Thus a play is a finite or infinite path $\pi = v_0 v_{n_1} v_{n_2} \cdots$ in the graph that starts from v_0 .

Who wins a maximal play?

Let π be a maximal play.

- If π is finite, and ends in a V-node (respectively R-node), then R (respectively V) wins.
- If π is infinite, V wins iff π satisfies the parity condition.

Definitions

A V-strategy \mathcal{W} is a map from plays ending in a V-node to a node extending the play.

 $\mathcal W$ is winning if V wins every (maximal) play π that conforms with the strategy.

An Example: Who has a winning strategy?

Luke Ong (University of Oxford)

Model Checking Functional Programs

4-16 Aug 09, Marktoberdorf

9 / 30

э

An Example: Who has a winning strategy?

Luke Ong (University of Oxford)

Model Checking Functional Programs

4-16 Aug 09, Marktoberdorf

A Game Reading of the Fundamental Semantic Theorem

Theorem (Emerson+Street 89)

Given a labelled transition system \mathcal{L} , a start state s_0 , and a modal mu-formula φ , there is a parity game $G(\mathcal{L}, s_0, \varphi)$ such that $\mathcal{L}, s_0 \vDash \varphi$ iff Verifier has a winning strategy for $G(\mathcal{L}, s_0, \varphi)$.

Example $G(\mathcal{L}, 0, \mu Y.\nu Z.[a]((\langle b \rangle t \lor Y) \land Z))$ where

$$\mathcal{L} = 0 \xrightarrow{a}_{a} 1 \xrightarrow{b} 2$$

(For the game graph, see next slide.)

向下 イヨト イヨト 二日

Game graph of $\mathcal{G}(T, \mu Y.\nu Z.[a]((\langle b \rangle t \lor Y) \land Z))$

Theorem (Characterisation. Kobayashi + O. LiCS 2009)

Given a property φ (APT / mu-calculus) there is a typing system \mathcal{K}_{φ} such that for every recursion scheme G, the tree [[G]] satisfies φ iff G is \mathcal{K}_{φ} -typable.

Theorem (**Parameterised Complexity**. Kobayashi + O. LiCS 2009)

There is a type-inference algorithm polytime in size of recursion scheme, assuming the other parameters are fixed. The runtime is

$$O(p^{1+\lfloor m/2 \rfloor} \exp_n((a |Q| M)^{1+\epsilon}))$$

where p is the number of rewrite rules of the scheme, a is largest arity of the types, M the number of priorities and |Q| the number of states.

Intersection types embedded with states and priorities of an APT

Intersection types: Long history. First used to construct filter models for untyped λ -calculus (Dezani, Barendregt, et al. early 80s).

Fix an APT $\mathcal{A} = (\Sigma, Q, \delta, q_I, \Omega)$.

Idea: Refine intersection types with APT states q and priorities m_i of APT.

$$\begin{array}{rcl} Types & \theta & ::= & q & \mid & \tau \to \theta \\ & \tau & ::= & \bigwedge \left\{ \left(\theta_1, m_1 \right), \cdots, \left(\theta_k, m_k \right) \right\} \end{array}$$

Intuition. A tree function described by $(q_1, m_1) \land (q_2, m_2) \rightarrow q$.

Intersection types embedded with states and priorities of an APT

Intersection types: Long history. First used to construct filter models for untyped λ -calculus (Dezani, Barendregt, et al. early 80s).

Fix an APT
$$\mathcal{A} = (\Sigma, Q, \delta, q_I, \Omega)$$
.

Idea: Refine intersection types with APT states q and priorities m_i of APT.

$$\begin{array}{rcl} \textit{Types} & \theta & ::= & q & \mid \tau \to \theta \\ & \tau & ::= & \bigwedge \left\{ (\theta_1, m_1), \cdots, (\theta_k, m_k) \right\} \end{array}$$

Intuition. A tree function described by $(q_1, m_1) \land (q_2, m_2) \rightarrow q$.

Typing judgement

$$\Gamma \vdash t : \theta$$

where the environment Γ is a finite set of bindings $x : (\theta, m)^b$ with $b \in \{t, f\}$.

- x : (θ, m)^t ∈ Γ means x can be used only before visiting a state with priority larger than m.
- x : (θ, m)^f ∈ Γ means it is additionally required that x can be used after visiting a state with priority m.
- E.g. Suppose $\Omega(q) = 0$. Then $\{x : (q, 1)^t\} \vdash x : q \text{ is valid.}$

|▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● ○ ○ ○ ○ ○

Typing rules are simple: only four rules - one per term-constructor.

Definition of typability. We say that *G* is typable just if Verifier has a winning strategy in a **parity game** determined by the APT (Q, δ, q_I, Ω) .

Intuition of the parity game: A way to construct an infinite tree of type derivations, suitable for parity condition reasoning. Underlying graph is bipartite; two kinds of vertices " $F : (\theta, m)$ " and " Γ ". Verifier tries to prove that scheme is typable; Refuter tries to disprove it. **Start vertex**: $S : (q_I, \Omega(q_I))$.

Refuter: Given Γ , choose $F : (\theta, m) \in \Gamma$ (and ask Verifier to prove why F has type θ).

Proof "Standard" methods (e.g. type soundness via type preservation) apply, except reasoning about priorities, which is novel and of independent interest.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ◇◇◇

Typing rules are simple: only four rules - one per term-constructor.

Definition of typability. We say that *G* is typable just if Verifier has a winning strategy in a **parity game** determined by the APT (Q, δ, q_I, Ω) .

Intuition of the parity game: A way to construct an infinite tree of type derivations, suitable for parity condition reasoning. Underlying graph is bipartite; two kinds of vertices " $F : (\theta, m)$ " and " Γ ". Verifier tries to prove that scheme is typable; Refuter tries to disprove it. **Start vertex**: $S : (q_I, \Omega(q_I))$. **Verifier**: Given $F : (\theta, m)$, choose Γ such that $\Gamma \vdash rhs(F) : \theta$ is valid. **Refuter**: Given Γ , choose $F : (\theta, m) \in \Gamma$ (and ask Verifier to prove why F

has type θ).

Proof "Standard" methods (e.g. type soundness via type preservation) apply, except reasoning about priorities, which is novel and of independent interest.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ◇◇◇

Typing rules are simple: only four rules - one per term-constructor.

Definition of typability. We say that *G* is typable just if Verifier has a winning strategy in a **parity game** determined by the APT (Q, δ, q_I, Ω) .

Intuition of the parity game: A way to construct an infinite tree of type derivations, suitable for parity condition reasoning. Underlying graph is bipartite; two kinds of vertices " $F : (\theta, m)$ " and " Γ ". Verifier tries to prove that scheme is typable; Refuter tries to disprove it. **Start vertex**: $S : (q_1, \Omega(q_1))$. **Verifier**: Given $F : (\theta, m)$, choose Γ such that $\Gamma \vdash rhs(F) : \theta$ is valid.

Refuter: Given Γ , choose $F : (\theta, m) \in \Gamma$ (and ask Verifier to prove why F has type θ).

Proof "Standard" methods (e.g. type soundness via type preservation) apply, except reasoning about priorities, which is novel and of independent interest.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ◇◇◇

$$\frac{(\theta, m)^{b} \uparrow \Omega(\theta) = (\theta, m)^{t}}{x : (\theta, m)^{b} \vdash x : \theta}$$
(T-VAR)

$$\frac{\{(i, q_{ij}) \mid 1 \leq i \leq n, 1 \leq j \leq k_i\} \text{ satisfies } \delta_{\mathcal{A}}(q, a)}{\varnothing \vdash} \qquad (\text{T-CONST})$$

$$a : \bigwedge_{j=1}^{k_1} (q_{1j}, m_{1j}) \to \dots \to \bigwedge_{j=1}^{k_n} (q_{nj}, m_{nj}) \to q \qquad \text{where } m_{ij} = max(\Omega(q_{ij}), \Omega(q))$$

$$\frac{\Gamma_0 \vdash t_0 : (\theta_1, m_1) \land \dots \land (\theta_k, m_k) \to \theta}{\Gamma_i \uparrow m_i \vdash t_1 : \theta_i \text{ for each } i \in \{1, \dots, k\}} \qquad (\text{T-APP})$$

$$\frac{\Gamma, x : \bigwedge_{i \in I} (\theta_i, m_i)^{\mathrm{f}} \vdash t : \theta \qquad I \subseteq J}{\Gamma \vdash \lambda x.t : \bigwedge_{i \in J} (\theta_i, m_i) \to \theta}$$
(T-Abs)

Luke Ong (University of Oxford)

Safety Fragment of Mu-Calculus / Trivial APT

Trivial APT are APT with a single priority of 0. [Aehlig, LMCS 2007] Trivial acceptance condition: A tree is accepted just if there is a run-tree (i.e. state-annotation of nodes respecting the transition relation). Equi-expressive with the "safety fragment" of mu-calculus:

$$\varphi, \psi ::= P_f \mid Z \mid \varphi \lor \psi \mid \varphi \land \psi \mid \langle i \rangle \varphi \mid \nu Z.\varphi.$$

But surprisingly

Theorem (Kobayashi + O., ICALP 2009)

The Trivial APT Acceptance Problem for order-n recursion schemes is still n-EXPTIME complete.

[*n*-EXPTIME hardness by reduction from word acceptance problem of order-*n* alternating PDA which is *n*-EXPTIME complete [Engelfriet 91].]

イロト 不得下 イヨト イヨト 二日

Safety Fragment of Mu-Calculus / Trivial APT

Trivial APT are APT with a single priority of 0. [Aehlig, LMCS 2007] Trivial acceptance condition: A tree is accepted just if there is a run-tree (i.e. state-annotation of nodes respecting the transition relation). Equi-expressive with the "safety fragment" of mu-calculus:

$$\varphi, \psi ::= P_f \mid Z \mid \varphi \lor \psi \mid \varphi \land \psi \mid \langle i \rangle \varphi \mid \nu Z. \varphi.$$

But surprisingly

Theorem (Kobayashi + O., ICALP 2009)

The Trivial APT Acceptance Problem for order-n recursion schemes is still n-EXPTIME complete.

[*n*-EXPTIME hardness by reduction from word acceptance problem of order-*n* alternating PDA which is *n*-EXPTIME complete [Engelfriet 91].]

イロト イポト イヨト イヨト 二日

Safety Fragment of Mu-Calculus / Trivial APT

Trivial APT are APT with a single priority of 0. [Aehlig, LMCS 2007] Trivial acceptance condition: A tree is accepted just if there is a run-tree (i.e. state-annotation of nodes respecting the transition relation). Equi-expressive with the "safety fragment" of mu-calculus:

$$\varphi, \psi ::= P_f \mid Z \mid \varphi \lor \psi \mid \varphi \land \psi \mid \langle i \rangle \varphi \mid \nu Z. \varphi.$$

But surprisingly

Theorem (Kobayashi + O., ICALP 2009)

The Trivial APT Acceptance Problem for order-n recursion schemes is still n-EXPTIME complete.

[*n*-EXPTIME hardness by reduction from word acceptance problem of order-*n* alternating PDA which is *n*-EXPTIME complete [Engelfriet 91].]

イロト イポト イヨト イヨト 二日

Disjunctive Fragment of Mu-Calculus / Disjunctive APT

Disjunctive APT are APT whose transition function maps each state-symbol pair to a purely disjunctive positive boolean formula. Disjunctive APT capture path / linear-time properties; equi-expressive

with "disjunctive fragment" of mu-calculus:

$$\varphi, \psi ::= P_f \land \varphi \mid Z \mid \varphi \lor \psi \mid \langle i \rangle \varphi \mid \nu Z.\varphi \mid \mu Z.\varphi$$

Theorem (Kobayashi + O., ICALP 2009)

The Disjunctive APT Acceptance Problem for order-n recursion schemes is (n-1)-EXPTIME complete.

(n-1)-EXPTIME decidable: For order-1 APT-types $\bigwedge S_1 \to \cdots \to \bigwedge S_k \to q$, we may assume at most one S_i 's is nonempty (and is singleton). Hence only $k \times |Q|^2 \times m$ many such types (N.B. exponential for general APT).

(n-1)-EXPTIME hardness: by reduction from emptiness problem of order-*n* deterministic PDA [Engelfriet 91].

Luke Ong (University of Oxford)

Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf

Disjunctive Fragment of Mu-Calculus / Disjunctive APT

Disjunctive APT are APT whose transition function maps each state-symbol pair to a purely disjunctive positive boolean formula. Disjunctive APT capture path / linear-time properties; equi-expressive

with "disjunctive fragment" of mu-calculus:

$$\varphi, \psi ::= P_f \land \varphi \mid Z \mid \varphi \lor \psi \mid \langle i \rangle \varphi \mid \nu Z.\varphi \mid \mu Z.\varphi$$

Theorem (Kobayashi + O., ICALP 2009)

The Disjunctive APT Acceptance Problem for order-n recursion schemes is (n-1)-EXPTIME complete.

(n-1)-EXPTIME decidable: For order-1 APT-types $\bigwedge S_1 \to \cdots \to \bigwedge S_k \to q$, we may assume at most one S_i 's is nonempty (and is singleton). Hence only $k \times |Q|^2 \times m$ many such types (N.B. exponential for general APT).

(n-1)-EXPTIME hardness: by reduction from emptiness problem of order-*n* deterministic PDA [Engelfriet 91].

Luke Ong (University of Oxford)

Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf

Disjunctive Fragment of Mu-Calculus / Disjunctive APT

Disjunctive APT are APT whose transition function maps each state-symbol pair to a purely disjunctive positive boolean formula. Disjunctive APT capture path / linear-time properties; equi-expressive

with "disjunctive fragment" of mu-calculus:

$$\varphi, \psi ::= P_f \land \varphi \mid Z \mid \varphi \lor \psi \mid \langle i \rangle \varphi \mid \nu Z.\varphi \mid \mu Z.\varphi$$

Theorem (Kobayashi + O., ICALP 2009)

The Disjunctive APT Acceptance Problem for order-n recursion schemes is (n-1)-EXPTIME complete.

(n-1)-EXPTIME decidable: For order-1 APT-types $\bigwedge S_1 \to \cdots \to \bigwedge S_k \to q$, we may assume at most one S_i 's is nonempty (and is singleton). Hence only $k \times |Q|^2 \times m$ many such types (N.B. exponential for general APT).

(n-1)-EXPTIME hardness: by reduction from emptiness problem of order-n deterministic PDA [Engelfriet 91]. ▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Luke Ong (University of Oxford)

Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf

Corollary

The following problems are (n - 1)-EXPTIME complete: assume G is an order-n recursion scheme

- Reachability: "Does [[G]] have a node labelled by a given symbol?"
- 2 LTL Model-Checking: "Does every path in [[G]] satisfy a given φ ?"
- 8 Resource Usage Problem

伺下 イヨト イヨト ニヨ

Outline

1 A Typing System Characterising MSO Theories of Recursion Schemes

- Preliminaries: Mu-Calculus, APT and Parity Games
- An Intersection Type System
- Two Relatively Cheap Fragments

2 Application: A New Approach to Verifying Functional Programs

- Verification by Reduction to Model Checking Recursion Schemes
- Resource Usage Problem: A Case Study
- Experimentation: Preliminary Results and Demo:

(4 間) トイヨト イヨト

Verification by reduction to model checking recursion schemes

Verification Problem: "Does P satisfy φ ?"

- The functional program *P* is transformed to a recursion scheme \tilde{P} that generates a tree representing all possible event sequences in *P*.
- $\llbracket \widetilde{P} \rrbracket$ is then model checked against (transformed) property $\widetilde{\varphi}$, so that $P \vDash \varphi$ iff $\llbracket \widetilde{P} \rrbracket \vDash \widetilde{\varphi}$.

This method is fully automatic, sound and complete.

	Models of Computation
imperative programs + iteration	finite-state automata
imperative programs + recursion	PDA / boolean programs
order- <i>n</i> functional programs	

A B K A B K

Verification by reduction to model checking recursion schemes

Verification Problem: "Does P satisfy φ ?"

- The functional program P is transformed to a recursion scheme \tilde{P} that generates a tree representing all possible event sequences in P.
- $\llbracket \widetilde{P} \rrbracket$ is then model checked against (transformed) property $\widetilde{\varphi}$, so that $P \vDash \varphi$ iff $\llbracket \widetilde{P} \rrbracket \vDash \widetilde{\varphi}$.

This method is fully automatic, sound and complete.

Program Classes	Models of Computation
imperative programs + iteration	finite-state automata
imperative programs + recursion	PDA / boolean programs
order- <i>n</i> functional programs	order- <i>n</i> recursion schemes

A B K A B K

Resource Usage Problem (Igarashi-Kobayashi, POPL 2002)

Scenario. Higher-order (recursive) functional programs generated from booleans with dynamic resource creation and access primitives.

Question. Does program *P* access each resource ρ according to the given resource specification ρ^L , where *L* is a regular language over the alphabet of resource access primitives.

Example. A simple resource specification: "An opened file is eventually closed, and after which it is not read". So $L = r^* c$.

Does the program access the resource foo in accord with L?

Resource Usage Problem (Igarashi-Kobayashi, POPL 2002)

Scenario. Higher-order (recursive) functional programs generated from booleans with dynamic resource creation and access primitives.

Question. Does program P access each resource ρ according to the given resource specification ρ^L , where L is a regular language over the alphabet of resource access primitives.

Example. A simple resource specification: "An opened file is eventually closed, and after which it is not read". So $L = r^* c$.

Does the program access the resource foo in accord with L?

1. Transform source program to rec. scheme

$$\left(\begin{array}{ccc} S \rightarrow \rho^{\mathbf{r}^* \, \mathbf{c}} \, (G \, d \, \bot) \\ G \, x \, k \rightarrow \mathbf{br} \, (c \, k) \, (\mathbf{r} \, (G \, x \, k)) \end{array} \right)$$

that generates an infinite tree, each of whose path (from root) corresponds to a possible access sequence to resource ρ .

2. Reduce resource usage problem to model checking the scheme against a transformed property given by a trivial automaton.

3. Further reduce model checking problem to a type inference problem.

Resource Usage Verification Problem

Instance: A functional program *P* using resources $(\lambda^{\rightarrow} + \text{recursion} + \text{booleans} + \text{resource creation} / \text{access primitives})$, and specification φ (regular expression).

Question: Does *P* use resources in accord with φ ?

Theorem (Kobayashi + O., ICALP 2009)

For an order-n source program, the Resource Usage Problem is (n-1)-EXPTIME complete.

Many verification problems reducible to Resource Usage Problem

- **Program Reachability**: "Given a program (closed term of ground type), does its computation reach a special construct fail?"
- Assertion-based verification problems; safety properties
- Flow Analysis: "Given a program and its subterms s and t, does the value of s flow to the value of t?"

An interesting exception!

What is reachability in higher-order functional programs?

Contextual Reachability

"Given a term P and its (coloured) subterm N^{α} , is there a program context C[] such that evaluating C[P] cause control to flow to N^{α} ?"

Many versions of the problem. Connexions with Stirling's dependency tree automata.

(See O. + Tzevelekos, "Functional Reachability", In *Proc. LiCS*, 200<u>9</u>).

Luke Ong (University of Oxford)

Model Checking Functional Programs

4-16 Aug 09, Marktoberdorf

Many verification problems reducible to Resource Usage Problem

- **Program Reachability**: "Given a program (closed term of ground type), does its computation reach a special construct fail?"
- Assertion-based verification problems; safety properties
- Flow Analysis: "Given a program and its subterms s and t, does the value of s flow to the value of t?"

An interesting exception!

What is reachability in higher-order functional programs?

Contextual Reachability

"Given a term P and its (coloured) subterm N^{α} , is there a program context C[] such that evaluating C[P] cause control to flow to N^{α} ?"

Many versions of the problem. Connexions with Stirling's dependency tree automata.

(See O. + Tzevelekos, "Functional Reachability", In Proc. LiCS, 2009).

Classes of comparatively tractable model checking problems

Two useful fragments of the modal mu-calculus / APT:

- (1) Trivial APT ("Safety Fragment"): APT with a singleton priority of 0.
- (2) Disjunctive APT: APT whose transition function maps each state to a positive boolean formula that is purely disjunctive.

Theorem (Kobayashi + O., ICALP 2009)

- The Trivial APT Acceptance Problem for order-n recursion schemes is still n-EXPTIME complete.
- The Disjunctive APT Acceptance Problem for order-n recursion schemes is (n 1)-EXPTIME complete.

Useful Corollary: The following problems (for order-*n* schemes) are (n-1)-EXPTIME complete:

Resource Usage Problem

@ Reachability: "Does [G] have a node labelled by a given symbol?"

Classes of comparatively tractable model checking problems

Two useful fragments of the modal mu-calculus / APT:

- (1) Trivial APT ("Safety Fragment"): APT with a singleton priority of 0.
- (2) Disjunctive APT: APT whose transition function maps each state to a positive boolean formula that is purely disjunctive.

Theorem (Kobayashi + O., ICALP 2009)

- The Trivial APT Acceptance Problem for order-n recursion schemes is still n-EXPTIME complete.
- The Disjunctive APT Acceptance Problem for order-n recursion schemes is (n 1)-EXPTIME complete.

Useful Corollary: The following problems (for order-*n* schemes) are (n-1)-EXPTIME complete:

Resource Usage Problem

@ Reachability: "Does [G] have a node labelled by a given symbol?"

伺下 イヨト イヨト

- 3

Classes of comparatively tractable model checking problems

Two useful fragments of the modal mu-calculus / APT:

- (1) Trivial APT ("Safety Fragment"): APT with a singleton priority of 0.
- (2) Disjunctive APT: APT whose transition function maps each state to a positive boolean formula that is purely disjunctive.

Theorem (Kobayashi + O., ICALP 2009)

- The Trivial APT Acceptance Problem for order-n recursion schemes is still n-EXPTIME complete.
- The Disjunctive APT Acceptance Problem for order-n recursion schemes is (n 1)-EXPTIME complete.

Useful Corollary: The following problems (for order-*n* schemes) are (n-1)-EXPTIME complete:

- Resource Usage Problem
- **2** Reachability: "Does $\llbracket G \rrbracket$ have a node labelled by a given symbol?"

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Preliminary experiments with TRecS (Kobayashi, PPDP 09)

Order	Types	# Intersection Types (assume 2 states)
1		$2^2 \times 2 = 8$
2		$2^8 \times 2 = 512$
3	$((o \rightarrow o) \rightarrow o) \rightarrow o$	$2^{512}\times 2 = 2^{513}\approx 10^{154}$

Example. amscomp/compileenv.ml (40 loc) in OCaml compiler 3.11.0

```
let read_sect() =
  let fp = open "foo" in
  {readc = fun x -> read fp;
    closec = fun x -> close fp}
let main() =
  let s = read_sect() in s.readc();
    s.closec()
```

Luke Ong (University of Oxford)

Model Checking Functional Programs

ams 4-16 Aug 09, Marktoberdorf

orf 27 / 30

Preliminary experiments with TRecS (Kobayashi, PPDP 09)

Order	Types	# Intersection Types (assume 2 states)
1	m o ightarrow m o	$2^2 \times 2 = 8$
2		$2^8 \times 2 = 512$
3	$((o \rightarrow o) \rightarrow o) \rightarrow o$	$2^{512}\times 2 = 2^{513}\approx 10^{154}$

Example. amscomp/compileenv.ml (40 loc) in OCaml compiler 3.11.0

Result: An order-4 recursion scheme is obtained after "slicing" the source program and CPS transform; # rules = 23, # APT states = 4. Thanks to ingenious optimisation techniques, time to infer types = ? msec. **Demo.** http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/ = ...

Luke Ong (University of Oxford)

Model Checking Functional Programs

Preliminary experiments with TRecS (Kobayashi, PPDP 09)

Order	Types	# Intersection Types (assume 2 states)
1	m o ightarrow m o	$2^2 \times 2 = 8$
2		$2^8 \times 2 = 512$
3	$((o \rightarrow o) \rightarrow o) \rightarrow o$	$2^{512}\times 2 = 2^{513}\approx 10^{154}$

Example. amscomp/compileenv.ml (40 loc) in OCaml compiler 3.11.0

Luke Ong (University of Oxford)

An abstract model checking framework (Kobayashi, POPL 2009)

Input: (i) Functional program with ground-type values (e.g. int), and dynamic resource creation and access. (ii) Access specification Spec.

Model Checking Functional Programs

References

- O. On model checking trees generated by higher-order recursion schemes. In *Proc. LiCS*, 2006.
- O. Verification of higher-order computation: a game-semantic approach (Invited ETAPS Unifying Lecture). In Proc. ESOP, 2008.
- Hague, Murawski, O. + Serre. Recursion schemes and collapsible pushdown automata. In *Proc. LiCS*, 2008.
- Carayol, Hague, Meyer, O. + Serre. Winning regions of higher-order pushdown games. In *Proc. LiCS*, 2008.
- Broadbent + O. On global model checking trees generated by higher-order recursion schemes. In *Proc. FoSSaCS*, 2009.
- Kobayashi + O. A type theory equivalent to the model checking of higher-order recursion schemes. In *Proc. LiCS*, 2009.
- O. + Tzevelekos. Functional Reachability. In *Proc. LiCS*, 2009.
- Kobayashi + O. Complexity of model-checking recursion schemes for fragments of the modal mu-calculus. In *Proc. ICALP*, 2009.

Conclusions

- Verification of higher-order programs is challenging and worthwhile.
- Recursion schemes are a robust and highly expressive language for infinite structures. Their algorithmic model theory is very rich.
- Recent progress in the theory has been made possible by *semantic methods*; and new (and highly complex) algorithms extracted.
- Verification of functional programs can be reduced to model checking recursion schemes. The approach is automatic, sound and complete.

Further directions:

- Is safety a genuine constraint on expressiveness? Equivalently, are order-*n* CPDA more expressive than order-*n* PDA?
- Extend verification techniques to call-by-value, polymorphism, pattern matching and recursive data types.
- Major case study: Develop a fully-fledged model checker for Haskell / OCaml.

イロト イポト イヨト イヨト

Conclusions

- Verification of higher-order programs is challenging and worthwhile.
- Recursion schemes are a robust and highly expressive language for infinite structures. Their algorithmic model theory is very rich.
- Recent progress in the theory has been made possible by *semantic methods*; and new (and highly complex) algorithms extracted.
- Verification of functional programs can be reduced to model checking recursion schemes. The approach is automatic, sound and complete.

Further directions:

- Is safety a genuine constraint on expressiveness? Equivalently, are order-*n* CPDA more expressive than order-*n* PDA?
- Extend verification techniques to call-by-value, polymorphism, pattern matching and recursive data types.
- Major case study: Develop a fully-fledged model checker for Haskell / OCaml.

- 4 同 6 4 日 6 4 日 6