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Course outline: the four hours

1. Language-Based Security: motivation

2. Language-Based Information-Flow Security: 
the big picture

3. Dimensions and principles of declassification

4. Dynamic vs. static security enforcement



Dimensions of Declassification
in Theory and Practice
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Confidentiality: preventing 
information leaks
• Untrusted/buggy code should not 

leak sensitive information

• But some applications depend on 
intended information leaks
– password checking 

– information purchase

– spreadsheet computation

– ...

• Some leaks must be allowed: need 
information release (or declassification)

info
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Confidentiality vs. intended leaks

• Allowing leaks might
compromise confidentiality

• Noninterference is violated

• How do we know secrets 
are not laundered
via release mechanisms?

• Need for security assurance
for programs with release

info

info
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“Who”

“What”
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security
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“until”
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conditional 
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Principles of release

• Semantic 
consistency

• Conservativity

• Monotonicity

• Non-occlusion
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What

• Noninterference [Goguen & Meseguer]: as high input 
varied, low-level outputs unchanged

• Selective (partial) flow
– Noninterference within high sub-domains [Cohen’78, Joshi & 

Leino’00]

– Equivalence-relations view [Sabelfeld & Sands’01]

– Abstract noninterference [Giacobazzi & Mastroeni’04,’05]

– Delimited release [Sabelfeld & Myers’04]

• Quantitative information flow [Denning’82, Clark et al.’02, 
Lowe’02]

h1

l

h2

ll’

h1’

l’

h2’
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Security lattice and  
noninterference

Security lattice:                           e.g.:

Noninterference:  flow from l to l’ allowed 
when l v l’

?

> H

L

l’

l
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Noninterference

• Noninterference [Goguen & Meseguer]: as high
input varied, low-level outputs unchanged

• Language-based noninterference for c:

h1

l

h2

ll’

h1’

l’

h2’

M1=L M2 & hM1,ci  M’1 & hM2,ci  M’2 ) M’1 =L M’2

Low-memory equality:
M1 =L M2 iff M1|L=M2|L

Configuration
with M2 and c
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Average salary

• Intention: release average

• Flatly rejected by noninterference

• If accepting, how do we know declassify does 
not release more than intended?

• Essence of the problem: what is released?

• “Only declassified data and no further 
information”

• Expressions under declassify: “escape hatches”

avg:=declassify((h1+...+hn)/n,low); 
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Delimited release
[Sabelfeld & Myers, ISSS’03]

• Command c has expressions 
declassify(ei,L); c is secure if:

• Noninterference 
) security

• For programs with no 
declassification: 
Security ) noninterference

M1=L M2 & hM1,ci  M’1 & hM2,ci  M’2 &
8i .eval(M1,ei)=eval(M2,ei) )

M’1 =L M’2

if M1 and M2 are 
indistinguishable 
through all ei…

…then the entire 
program may not 
distinguish M1 and M2
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Average salary revisited

• Accepted by delimited release:

• Laundering attack rejected:

avg:=declassify((h1+...+hn)/n,low); 

temp:=h1; h1:=h2; h2:=temp;
avg:=declassify((h1+...+hn)/n,low); 

h2:=h1;...; hn:=h1;
avg:=declassify((h1+...+hn)/n,low); 

» avg:=h1
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Electronic wallet 

• If enough money then purchase

• Accepted by delimited release

if declassify(h¸k,low) then (h:=h-k; l:=l+k);

amount 
in wallet

spentcost
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Electronic wallet attack 

• Laundering bit-by-bit attack (h is an n-
bit integer)

• Rejected by delimited release

l:=0;
while(n¸0) do

k:=2n-1;
if declassify(h¸k,low) 

then (h:=h-k; l:=l+k);
n:=n-1;

» l:=h
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Security type system

• Basic idea: prevent new information 
from flowing into variables used in 
escape hatch expressions

• Theorem: 
c is typable ) c is secure

h:=…;

…
declassify(h,low) 

may not use 
other (than h) 
high variables

while … do
declassify(h,low)
… 
h:=…;

may not use 
other (than h) 
high variables
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Who

• Robust declassification in a language setting 
[Myers, Sabelfeld & Zdancewic’04/06]

• Command c[²] has robustness if

• If a cannot distinguish bet. M1 and M2 through c 
then no other a’ can distinguish bet. M1 and M2

8M1,M2,a,a’. hM1,c[a]i ¼L hM2,c[a]i ) 

hM1,c[a’]i ¼L hM2,c[a’]iattacks
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Robust declassification: examples

• Flatly rejected by noninterference, but 
secure programs satisfy robustness:

• Insecure program:

is rejected by robustness

[²]; xLH:=declassify(yHH,LH) [²]; if xLH then 

yLH:=declassify(zHH,LH) 

[²]; if xLL then yLL:=declassify(zHH,LH) 
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Enforcing robustness

• Security typing 
for declassification:

LH ` e : HH

LH ` declassify(e,l’): LH

data must 
be high-
integrity

context 
must be 
high-

integrity
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Where

• Intransitive (non)interference
– assurance for intransitive flow 

[Rushby’92, Pinsky’95, Roscoe & Goldsmith’99]

– nondeterministic systems [Mantel’01]

– concurrent systems [Mantel & Sands’04]

– to be declassified data must pass a 
downgrader [Ryan & Schneider’99, Mullins’00, 
Dam & Giambiagi’00, Bossi et al.’04, Echahed & 
Prost’05, Almeida Matos & Boudol’05]
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When

• Time-complexity based attacker 
– password matching [Volpano & Smith’00] and one-way 

functions [Volpano’00]

– poly-time process calculi [Lincoln et al.’98, Mitchell’01]

– impact on encryption [Laud’01,’03]

• Probabilistic attacker [DiPierro et al.’02, Backes & 

Pfitzmann’03]

• Relative: specification-bound attacker [Dam & 

Giambiagi’00,’03]

• Non-interference “until” [Chong & Myers’04]
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Principle I

• Aid in modular design

• “What” definitions generally 
semantically consistent

• Uncovers semantic anomalies

Semantic consistency

The (in)security of a program is invariant under 
semantics-preserving transformations of 

declassification-free subprograms
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Principle II

• Straightforward to enforce (by 
definition); nevertheless:

• Noninterference “until” rejects

Conservativity

Security for programs with no declassification is 
equivalent to noninterference

if h>h then l:=0
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Principle III

• Or, equivalently, an insecure program 
cannot be made secure by removing
declassification annotations

• “Where”: intransitive noninterference (a 
la M&S) fails it; declassification actions 
are observable

Monotonicity of release

Adding further declassifications to a secure program 
cannot render it insecure

if h then declassify(l=l) else l=l
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Principle IV

Occlusion

The presence of a declassification operation cannot 
mask other covert declassifications
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Checking the principles
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Declassification in practice: 
A case study 
[Askarov & Sabelfeld, ESORICS’05]

• Use of security-typed languages for 
implementation of crypto protocols

• Mental Poker protocol by [Roca et.al, 2003]
– Environment of mutual distrust

– Efficient

• Jif language [Myers et al., 1999-2005] 
– Java extension with security types

– Decentralized Label Model 

– Support for declassification

• Largest code written in security-typed 
language up to publ date [~4500 LOC]
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Security assurance/Declassification

Group Pt. What Who Where

I
1

2

Public key for signature

Public security parameter

Anyone

Player

Initialization

Initialization

II

3

4-7

8-
10

Message signature

Protocol initialization data

Encrypted permuted card

Player

Player

Player

Sending msg

Initialization

Card 
drawing

III
11 Decryption flag Player Card 

drawing

IV
12-

13
14

Player’s secret encryption 
key

Player’s secret permutation

Player

Player

Verification

Verification

Group I – naturally public data   Group II – required by crypto protocol

Group III – success flag pattern Group IV – revealing keys for verification
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Dimensions: Conclusion

• Road map of information release in 
programs

• Step towards policy perimeter 
defense: to protect along each 
dimension

• Prudent principles of 
declassification (uncovering 
previously unnoticed anomalies)

• Need for declassification framework 
for relation and combination along 
the dimensions



30

References

• Declassification: Dimensions and 
Principles
[Sabelfeld & Sands, JCS]


