
1

Course outline: the four hours

1. Language-Based Security: motivation

2. Language-Based Information-Flow Security:
the big picture

3. Dimensions and principles of declassification

4. Dynamic vs. static security enforcement

Dimensions of Declassification
in Theory and Practice

3

Confidentiality: preventing
information leaks
• Untrusted/buggy code should not

leak sensitive information

• But some applications depend on
intended information leaks
– password checking

– information purchase

– spreadsheet computation

– ...

• Some leaks must be allowed: need
information release (or declassification)

info

4

Confidentiality vs. intended leaks

• Allowing leaks might
compromise confidentiality

• Noninterference is violated

• How do we know secrets
are not laundered
via release mechanisms?

• Need for security assurance
for programs with release

info

info

5

State-of-the-art

quantitative
security

noninterference
“until”

selective
flows

admissibility

partial security

approximate
noninterference

harmless flows

admissibility

conditional
noninterference abstract

noninterference

computational
security

relaxed
noninterference

intransitive
noninterference

robust
declassification

constrained
noninterference

delimited
release

conditioned
noninterference

relative secrecy

6

Dimensions of release“Who”

“What”

“Where”quantitative
security

noninterference
“until”

selective
flows

admissibility

partial security

approximate
noninterference

harmless flows

admissibility

conditional
noninterference abstract

noninterference

computational
security

relaxed
noninterference

intransitive
noninterference

robust
declassification

constrained
noninterference

delimited
release

conditioned
noninterference

relative secrecy

7

“Who”

“What”

“Where”quantitative
security

noninterference
“until”

selective
flows

non-disclosure

partial security

approximate
noninterference

harmless flows

admissibility

conditional
noninterference abstract

noninterference

computational
security

relaxed
noninterference

intransitive
noninterference

robust
declassification

constrained
noninterference

delimited
release

conditioned
noninterference

relative secrecy

Principles of release

• Semantic
consistency

• Conservativity

• Monotonicity

• Non-occlusion

8

What

• Noninterference [Goguen & Meseguer]: as high input
varied, low-level outputs unchanged

• Selective (partial) flow
– Noninterference within high sub-domains [Cohen’78, Joshi &

Leino’00]

– Equivalence-relations view [Sabelfeld & Sands’01]

– Abstract noninterference [Giacobazzi & Mastroeni’04,’05]

– Delimited release [Sabelfeld & Myers’04]

• Quantitative information flow [Denning’82, Clark et al.’02,
Lowe’02]

h1

l

h2

ll’

h1’

l’

h2’

9

Security lattice and
noninterference

Security lattice: e.g.:

Noninterference: flow from l to l’ allowed
when l v l’

?

> H

L

l’

l

10

Noninterference

• Noninterference [Goguen & Meseguer]: as high
input varied, low-level outputs unchanged

• Language-based noninterference for c:

h1

l

h2

ll’

h1’

l’

h2’

M1=L M2 & hM1,ci  M’1 & hM2,ci  M’2) M’1 =L M’2

Low-memory equality:
M1 =L M2 iff M1|L=M2|L

Configuration
with M2 and c

11

Average salary

• Intention: release average

• Flatly rejected by noninterference

• If accepting, how do we know declassify does
not release more than intended?

• Essence of the problem: what is released?

• “Only declassified data and no further
information”

• Expressions under declassify: “escape hatches”

avg:=declassify((h1+...+hn)/n,low);

12

Delimited release
[Sabelfeld & Myers, ISSS’03]

• Command c has expressions
declassify(ei,L); c is secure if:

• Noninterference
) security

• For programs with no
declassification:
Security) noninterference

M1=L M2 & hM1,ci  M’1 & hM2,ci  M’2 &
8i .eval(M1,ei)=eval(M2,ei))

M’1 =L M’2

if M1 and M2 are
indistinguishable
through all ei…

…then the entire
program may not
distinguish M1 and M2

13

Average salary revisited

• Accepted by delimited release:

• Laundering attack rejected:

avg:=declassify((h1+...+hn)/n,low);

temp:=h1; h1:=h2; h2:=temp;
avg:=declassify((h1+...+hn)/n,low);

h2:=h1;...; hn:=h1;
avg:=declassify((h1+...+hn)/n,low);

» avg:=h1

14

Electronic wallet

• If enough money then purchase

• Accepted by delimited release

if declassify(h¸k,low) then (h:=h-k; l:=l+k);

amount
in wallet

spentcost

15

Electronic wallet attack

• Laundering bit-by-bit attack (h is an n-
bit integer)

• Rejected by delimited release

l:=0;
while(n¸0) do

k:=2n-1;
if declassify(h¸k,low)

then (h:=h-k; l:=l+k);
n:=n-1;

» l:=h

16

Security type system

• Basic idea: prevent new information
from flowing into variables used in
escape hatch expressions

• Theorem:
c is typable) c is secure

h:=…;

…
declassify(h,low)

may not use
other (than h)
high variables

while … do
declassify(h,low)
…
h:=…;

may not use
other (than h)
high variables

17

Who

• Robust declassification in a language setting
[Myers, Sabelfeld & Zdancewic’04/06]

• Command c[²] has robustness if

• If a cannot distinguish bet. M1 and M2 through c
then no other a’ can distinguish bet. M1 and M2

8M1,M2,a,a’. hM1,c[a]i ¼L hM2,c[a]i)

hM1,c[a’]i ¼L hM2,c[a’]iattacks

18

Robust declassification: examples

• Flatly rejected by noninterference, but
secure programs satisfy robustness:

• Insecure program:

is rejected by robustness

[²]; xLH:=declassify(yHH,LH) [²]; if xLH then

yLH:=declassify(zHH,LH)

[²]; if xLL then yLL:=declassify(zHH,LH)

19

Enforcing robustness

• Security typing
for declassification:

LH ` e : HH

LH ` declassify(e,l’): LH

data must
be high-
integrity

context
must be
high-

integrity

20

Where

• Intransitive (non)interference
– assurance for intransitive flow

[Rushby’92, Pinsky’95, Roscoe & Goldsmith’99]

– nondeterministic systems [Mantel’01]

– concurrent systems [Mantel & Sands’04]

– to be declassified data must pass a
downgrader [Ryan & Schneider’99, Mullins’00,
Dam & Giambiagi’00, Bossi et al.’04, Echahed &
Prost’05, Almeida Matos & Boudol’05]

21

When

• Time-complexity based attacker
– password matching [Volpano & Smith’00] and one-way

functions [Volpano’00]

– poly-time process calculi [Lincoln et al.’98, Mitchell’01]

– impact on encryption [Laud’01,’03]

• Probabilistic attacker [DiPierro et al.’02, Backes &

Pfitzmann’03]

• Relative: specification-bound attacker [Dam &

Giambiagi’00,’03]

• Non-interference “until” [Chong & Myers’04]

22

Principle I

• Aid in modular design

• “What” definitions generally
semantically consistent

• Uncovers semantic anomalies

Semantic consistency

The (in)security of a program is invariant under
semantics-preserving transformations of

declassification-free subprograms

23

Principle II

• Straightforward to enforce (by
definition); nevertheless:

• Noninterference “until” rejects

Conservativity

Security for programs with no declassification is
equivalent to noninterference

if h>h then l:=0

24

Principle III

• Or, equivalently, an insecure program
cannot be made secure by removing
declassification annotations

• “Where”: intransitive noninterference (a
la M&S) fails it; declassification actions
are observable

Monotonicity of release

Adding further declassifications to a secure program
cannot render it insecure

if h then declassify(l=l) else l=l

25

Principle IV

Occlusion

The presence of a declassification operation cannot
mask other covert declassifications

26

Checking the principles

27

Declassification in practice:
A case study
[Askarov & Sabelfeld, ESORICS’05]

• Use of security-typed languages for
implementation of crypto protocols

• Mental Poker protocol by [Roca et.al, 2003]
– Environment of mutual distrust

– Efficient

• Jif language [Myers et al., 1999-2005]
– Java extension with security types

– Decentralized Label Model

– Support for declassification

• Largest code written in security-typed
language up to publ date [~4500 LOC]

28

Security assurance/Declassification

Group Pt. What Who Where

I
1

2

Public key for signature

Public security parameter

Anyone

Player

Initialization

Initialization

II

3

4-7

8-
10

Message signature

Protocol initialization data

Encrypted permuted card

Player

Player

Player

Sending msg

Initialization

Card
drawing

III
11 Decryption flag Player Card

drawing

IV
12-

13
14

Player’s secret encryption
key

Player’s secret permutation

Player

Player

Verification

Verification

Group I – naturally public data Group II – required by crypto protocol

Group III – success flag pattern Group IV – revealing keys for verification

29

Dimensions: Conclusion

• Road map of information release in
programs

• Step towards policy perimeter
defense: to protect along each
dimension

• Prudent principles of
declassification (uncovering
previously unnoticed anomalies)

• Need for declassification framework
for relation and combination along
the dimensions

30

References

• Declassification: Dimensions and
Principles
[Sabelfeld & Sands, JCS]

