Course outline: the four hours

1. Language-Based Security: motivation

2. Language-Based Information-Flow Security:
the big picture

3. Dimensions and principles of declassification
4. Dynamic vs. static security enforcement

Dimensions of Declassification
in Theory and Practice

Confidentiality: preventing

information leaks

e Untrusted/buggy code should not
leak sensitive information

e But some applications depend on
iIntended information leaks
— password checking
— information purchase
— spreadsheet computation

e Some |leaks must be allowed: need
information release (or declassification)

Confidentiality vs. intended leaks

Y
e Allowing leaks might "

compromise confidentiality .
e Noninterference is violated nig
e How do we know secrets

are not laundered
via release mechanisms? .

R
N
e Need for security assurance 8@@

for programs with release

State-of-the-art

O conditioned
O relaxed noninterference
noninterference

Oadmissibility Orobust

declassification
O harmless flows O partial security O intra_msitive
O delimited noninterference
Orelative secrecy release
o selective O conditional
flows noninterference O abstract

noninterference
noninterference

quantitative Oyntil” O computational
security security
O admissibility
O constrained O approximate

noninterference noninterference

‘who* | Dimensions of release

O conditioned
O relaxed noninterference
noninterference

Oadmissibility j Orobust
/7 declassification

O harmlessjflows O partial security /Z Ointransitive

Orelative secrecy release

|

Qselective O conditional

flows noninterference | O abstract
I noninterference
noninterference :
quantitative Ow|ntil” I Ocomp_l;tatlonal “Where”
security SCCuUrl

O admissibility 1

strained O approximate
noninterference noninterference

“What”

Principles of rglease
“*Who"

@ conditioned
@ relaxed noninterference
noninterference

@ admissibility . @ robust
declassification

O harmlessflows O partial security / O intransitive
Helimited Noninterference

@ relative secrecy release
o Conse rvat|V|ty o Selective O conditional |
flows noninterference I O abstract
P noninterference
¢ MonOton ICIty o noninterference ional W 11
. o quani;itative “until” I ® ggg:ﬁiutatlona Where
e Non-occlusion ™ security

O non-disclosure 1

@ approximate
noninterference

“"Wha

What

e Noninterference [Goguen & Meseguer]: @s high input
varied, low-level outputs unchanged

hy— —hy” hy— — hy

| — — [’ | — — |’

o Selective (partial) flow

— Noninterference within high sub-domains [Cohen'78, Joshi &
Leino’00]

— Equivalence-relations view [Sabelfeld & Sands’01]
— Abstract noninterference [Giacobazzi & Mastroeni’'04,’05]
— Delimited release [Sabelfeld & Myers'04]

e Quantitative information flow [Denning’82, Clark et al.'02,
Lowe'02]

Security lattice and
noninterference - H

Security lattice: e.g..

1 L

Noninterference: flow from | to " allowed
whenl C |

Noninterference

e Noninterference [Goguen & Meseguer]: as high
input varied, low-level outputs unchanged

hl—

| —

—h,’

II

hz_>

| —

4
—

II

e Language-based noninterference for c:

M1=\L Mz & <M1,C> U M’]_ & <M2,C> U MIZ — Mll =L MIZ

~

-

Low-memory equality:
M; = M, iff M;[=M,|,

~

J

Configuration
with M, and ¢

10

Average salary

e Intention: release average

avg:=declassify((h,+...+h,)/n,low);

e Flatly rejected by noninterference

e If accepting, how do we know declassify does
not release more than intended?

e Essence of the problem: what is released?

e "Only declassified data and no further
information”

e Expressions under declassify: “escape hatches”

11

Delimited release

[Sabelfeld & Myers, ISSS'03] /!f M, and M, are N

e Command c has expressions Inelnglisnzizle
: . . through all e,...
declassify(e, L); cis secure if: ~ J
M,= M, & (My,c) M/'%MZ,Q M, &
Vi .eval(M,,e)=eval(M,,e) =
MI1 =\\L MI2

— security . \/...then the entire)
e For programs with no program may not

declassification: distinguish M, and M,

Security = noninterference

12

Average salary revisited

e Accepted by delimited release:

avg:=declassify((h,+...+h.)/n,low);

temp:=h;; hy:=h,; h,:=temp;
avg:=declassify((h,+...+h.)/n,low);

e | aundering attack rejected:

h,:=hy;...; h:=hy; ~| avg:=h,

avg:=declassify((h,+...+h.)/n,low);

13

Electronic wallet

o If enough money then purchase

if declassify(h>k,low) then (h:=h-k; |:=l+k);

_
{amou ntt cost spent

in walle

e Accepted by delimited release

14

Electronic wallet attack

e |Laundering bit-by-bit attack (h is an n-

it integer)

1:=0;

while(n>0) do
Ki=2"; ~ | I:=h
if declassify(h>k,low)

then (h:=h-k; |:=1+k);

n:=n-1;

e Rejected by delimited release

Security type system

e Basic idea: prevent new information
from flowing into variables used in
escape hatch expressions

4)

may not use

hile ... do
hi=...: other (than h) | |W _
\high variables | declassify(h,low)
N
i may not use
declassify(h,low) hi=..: 4 other (than h)
_high variables |
e Theorem:

c is typable = c is secure

16

Who

e Robust declassification in a language setting
[Myers, Sabelfeld & Zdancewic'04/06]

e Command c[e] has robustness if
vwa’- <M11C[a]> L <M21C[a]> =
[attacks , (My,c[a’]) = (My,c[a’])

e If a cannot distinguish bet. M, and M, through c
then no other a’ can distinguish bet. fVI and M,

17

Robust declassification: examples

o Flatly rejected by noninterference, but
secure programs satisfy robustness:

[e]; X, :=declassify(y,,,LH) | | [o]; if X, then

Yy, - =declassify(z,.,,LH)

e [nsecure program:

[e]; if X, then y,, :=declassify(z,,,LH)

IS rejected by robustness

18

Enforcing robustness

e Security typing
for declassification:

context

must be data must

high- be high-

| integrity , integrity
LHF e : HH

LH - declassify(e,l’): LH

19

Where

e Intransitive (non)interference

—assurance for intransitive flow
[Rushby92, Pinsky’95, Roscoe & Goldsmith99]

—nondeterministic systems [Mantel'01]
—concurrent systems [Mantel & Sands'04]

—to be declassified data must pass a

downgrader [Ryan & Schneider'99, Mullins’00,

Dam & Giambiagi’'00, Bossi et al.'04, Echahed &
Prost’05, Almeida Matos & Boudol'05]

20

When

e Time-complexity based attacker

— password matching [Volpano & Smith’00] and one-way
functions [Volpano’00]

— poly-time process calculi [Lincoln et al.’98, Mitchell'01]
— impact on encryption [Laud’01,’03]

e Probabilistic attacker [Dipierro et al.’02, Backes &
Pfitzmann’03]

o Relative: specification-bound attacker [pam &
Giambiagi'00,'03]

e Non-interference “until” [Chong & Myers'04]

21

Principle I

Semantic consistency

The (in)security of a program is invariant under
semantics-preserving transformations of
declassification-free subprograms

e Aid in modular design

e "What" definitions generally
semantically consistent

e Uncovers semantic anomalies

22

Prl Nncl ple II Conservativity

Security for programs with no declassification is
equivalent to noninterference

e Straightforward to enforce (by
definition); nevertheless:

e Noninterference “until” rejects

if h>h then |:=0

23

Pri nCi ple III Monotonicity of release

Adding further declassifications to a secure program
cannot render it insecure

e Or, equivalently, an insecure program
cannot be made secure by removing
declassification annotations

e “Where": intransitive noninterference (a
la M&S) fails it; declassification actions
are observable

if h then declassify(l=I) else |=]

24

Principle IV

Occlusion

The presence of a declassification operation cannot
mask other covert declassifications

25

Checking the principles

What
_ . Semantic e | Monotonicity Non-
Propert) consistency Conservativiry of release occlusion
Partial release [Coh78, JLOO, 5501, GMO4, GMO3] v v N/A v
Delimited release [SMO4) v v v v
Relaxed noninterference [LZ05a] ¥ v v v
Maive release v v v b
Who
Robust declassification [MSZ04] ' v v v
(ualified robust declassification [MSZ04] V' v v b
Where
Intransitive noninerference [MS04] | ' v . v
When
Admissibility [DGO0, GDO3] ¥ v « v
Moninterference “until™ [CMO4] ¥ # v v
'peless noninterference “until” ' v . b
Type

* Semantic anomalies

Declassification in practice:

A case study
[Askarov & Sabelfeld, ESORICS'05]

e Use of security-typed languages for

implementation of crypto protocols
e Mental Poker protocol by [Roca et.al, 2003]
— Environment of mutual distrust %
— Efficient -
e Jif language [Myers et al., 1999-2005]
— Java extension with security types a
— Decentralized Label Model —
— Support for declassification 0
e Largest code written in security-typed
language up to publ date [~4500 LOC] X

Security assurance/Declassification

Group Pt. What Who Where
1 Public key for signature Anyone | Initialization
I 2 Public security parameter |Player |Initialization
3 Message signature Player | Sending msg

II 4-7 | Protocol initialization data | Player | Initialization
8- Encrypted permuted card Player | Card

10 drawing
II1 11 | Decryption flag Player | Card
drawing

12- | Player’s secret encryption | Player | Verification

IV |13 |key Player | Verification
14 | Player’s secret permutation

Group | — naturally public data Group Il — required by crypto protocol

Group Il — success flag pattern Group IV — revealing keys for verification
28

Dimensions: Conclusion

Road map of information release in
programs

Step towards policy perimeter
defense: to protect along each
dimension

Prudent principles of
declassification (uncovering
previously unnoticed anomalies)

Need for declassification framework A
for relation and combination along
the dimensions

29

References

e Declassification: Dimensions and
Principles
[Sabelfeld & Sands, JCS]

30

