Abstraction for System Verification

Susanne Graf
VERIMAG, Grenoble, France

Use of appropriate abstraction is a key for successful verification of properties of programs and sy-
stems. Solving a general verification problem M |= 1 is of high complexity — which is sometimes called
“state explosion”. In an abstraction-based approach, we calculate for some appropriate abstraction
function « at a reasonable cost an “abstract interpretation” a(M) of a program or system preserving
the property 1, such that checking a(M) = 1) can be done with a reasonable effort — because both
a(M) and ¢ are sufficiently “small” or have sufficiently “close structure” so as to make this check
feasible. Despite the fact that this method is not complete when « is chosen from a restricted set,
this approach proved to be practical for real applications.

Good news is that abstraction is compositional for almost any usual notion of composition (which
we denote ||). That means, ||;a(M;) | ¢ guarantees that ||;M; = 1. But the bad news is that this is
not enough for successful verification of large systems: it is generally the case that (1) for sufficiently
preservative «, ||;a(M;) = 1 poses still the state explosion problem, (2) whereas if a provides enough
complexity reduction, then |;a(M;) = ¢ does not hold.

Several methods for overcoming this problem have been proposed, such as:

e for systems with a very regular structure, such as a set of (almost) identical M;, it may be
possible to define an additional abstraction o , such that o/(||;a(M;)) is simple, yet strong
enough for successfully checking o (||;a(M;)) = 1.

e decomposition of ¢ into “local guarantees” 1); such that Av; = 1 and «(M;) = 1; holds is
sometimes successful; it may fail because local information is not sufficient to ensure ;.

e iterative composition and abstraction avoids providing local guarantees
caqaz(as(Ms)||are(ae(Ms)|lar(M1))). It may fail because the complexity of intermediate ex-
pressions explodes; the reason is also here that local information is insufficient.

e iterative computation of abstractions MZ-A taking into account increasingly stronger context in-
formation may ensure 1);; it generally fails when there are strong mutual dependencies amongst
components.

We present a general framework of abstraction and show how to use abstractions for reasoning
meaningfully about implementations of large composed systems. We also introduce a general contract
framework and show that the combination of such top-down design constraints with bottom-up
abstractions allows proving stronger properties.

References

1. K. Baukus, S. Bensalem, Y. Lakhnech, K. Stahl. Abstracting wsis Systems to Verify Parame-
terized Networks. TACAS 2000; LNCS 1785; 2000.

2. T. Ball, S. K. Rajamani. The SLAM Toolkit. CAV 2001; LNCS 2102; 2001.

3. P. Cousot, R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approzimation of Fixpoints. 4th POPL; 1977.

17

W

. L. de Alfaro, T. A. Henzinger. Interface Automata. FSE’01; ACM Press; 2001.

t

. S. Graf, G. Liittgen, B. Steffen. Compositional Minimisation of Finite State Systems using
Interface Specifications. Formal Aspects of Computation, Vol. 8; 1996.

6. S. Graf. Characterization of a Sequentially Consistent Memory and Verification of a Cache
Memory by Abstraction. Distributed Computing, Vol. 12; 1999.

7. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, S. Bensalem. Property Preserving Abstractions
for the Verification of Concurrent Systems. Formal Methods in System Design, Vol. 6, Issue 1;
1995.

8. S. Quinton, S. Graf. Contract-based Verification of Hierarchical Systems of Components. SEFM’08;
IEEE Computer Society Press; 2008.

9. S. Quinton, S. Graf, R. Passerone. Contract-based Reasoning for Component-Systems with Com-
plex Interactions. submitted for publication; 2010.

http://www-verimag.imag.fr/~graf/?link=Publications

18

