
Abstraction for System Verification

Susanne Graf
VERIMAG, Grenoble, France

Use of appropriate abstraction is a key for successful verification of properties of programs and sy-
stems. Solving a general verification problem M |= ψ is of high complexity – which is sometimes called
“state explosion”. In an abstraction-based approach, we calculate for some appropriate abstraction
function α at a reasonable cost an “abstract interpretation” α(M) of a program or system preserving
the property ψ, such that checking α(M) |= ψ can be done with a reasonable effort – because both
α(M) and ψ are sufficiently “small” or have sufficiently “close structure” so as to make this check
feasible. Despite the fact that this method is not complete when α is chosen from a restricted set,
this approach proved to be practical for real applications.

Good news is that abstraction is compositional for almost any usual notion of composition (which
we denote ‖). That means, ‖iα(Mi) |= ψ guarantees that ‖iMi |= ψ. But the bad news is that this is
not enough for successful verification of large systems: it is generally the case that (1) for sufficiently
preservative α, ‖iα(Mi) |= ψ poses still the state explosion problem, (2) whereas if α provides enough
complexity reduction, then ‖iα(Mi) |= ψ does not hold.

Several methods for overcoming this problem have been proposed, such as:

• for systems with a very regular structure, such as a set of (almost) identical Mi, it may be
possible to define an additional abstraction α′ , such that α′(‖iα(Mi)) is simple, yet strong
enough for successfully checking α′(‖iα(Mi)) |= ψ.

• decomposition of ψ into “local guarantees” ψi such that ∧ψi ⇒ ψ and α(Mi) |= ψi holds is
sometimes successful; it may fail because local information is not sufficient to ensure ψi.

• iterative composition and abstraction avoids providing local guarantees
. . . α123(α3(M3)‖α12(α2(M2)‖α1(M1))). It may fail because the complexity of intermediate ex-
pressions explodes; the reason is also here that local information is insufficient.

• iterative computation of abstractions MA
i taking into account increasingly stronger context in-

formation may ensure ψi; it generally fails when there are strong mutual dependencies amongst
components.

We present a general framework of abstraction and show how to use abstractions for reasoning
meaningfully about implementations of large composed systems. We also introduce a general contract
framework and show that the combination of such top-down design constraints with bottom-up
abstractions allows proving stronger properties.

References

1. K. Baukus, S. Bensalem, Y. Lakhnech, K. Stahl. Abstracting ws1s Systems to Verify Parame-
terized Networks. TACAS 2000; LNCS 1785; 2000.

2. T. Ball, S. K. Rajamani. The SLAM Toolkit. CAV 2001; LNCS 2102; 2001.

3. P. Cousot, R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. 4th POPL; 1977.

17

4. L. de Alfaro, T. A. Henzinger. Interface Automata. FSE’01; ACM Press; 2001.

5. S. Graf, G. Lüttgen, B. Steffen. Compositional Minimisation of Finite State Systems using
Interface Specifications. Formal Aspects of Computation, Vol. 8; 1996.

6. S. Graf. Characterization of a Sequentially Consistent Memory and Verification of a Cache
Memory by Abstraction. Distributed Computing, Vol. 12; 1999.

7. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, S. Bensalem. Property Preserving Abstractions
for the Verification of Concurrent Systems. Formal Methods in System Design, Vol. 6, Issue 1;
1995.

8. S. Quinton, S. Graf. Contract-based Verification of Hierarchical Systems of Components. SEFM’08;
IEEE Computer Society Press; 2008.

9. S. Quinton, S. Graf, R. Passerone. Contract-based Reasoning for Component-Systems with Com-
plex Interactions. submitted for publication; 2010.

http://www-verimag.imag.fr/∼graf/?link=Publications

18

