Abstraction for System Verification

Susanne Graf VERIMAG, Grenoble, France

Use of appropriate abstraction is a key for successful verification of properties of programs and systems. Solving a general verification problem $M \models \psi$ is of high complexity – which is sometimes called "state explosion". In an abstraction-based approach, we calculate for some appropriate abstraction function α at a reasonable cost an "abstract interpretation" $\alpha(M)$ of a program or system preserving the property ψ , such that checking $\alpha(M) \models \psi$ can be done with a reasonable effort – because both $\alpha(M)$ and ψ are sufficiently "small" or have sufficiently "close structure" so as to make this check feasible. Despite the fact that this method is not complete when α is chosen from a restricted set, this approach proved to be practical for real applications.

Good news is that abstraction is compositional for almost any usual notion of composition (which we denote \parallel). That means, $\parallel_i \alpha(M_i) \models \psi$ guarantees that $\parallel_i M_i \models \psi$. But the bad news is that this is not enough for successful verification of large systems: it is generally the case that (1) for sufficiently preservative α , $\parallel_i \alpha(M_i) \models \psi$ poses still the state explosion problem, (2) whereas if α provides enough complexity reduction, then $\parallel_i \alpha(M_i) \models \psi$ does not hold.

Several methods for overcoming this problem have been proposed, such as:

- for systems with a very regular structure, such as a set of (almost) identical M_i , it may be possible to define an additional abstraction α' , such that $\alpha'(||_i\alpha(M_i))$ is simple, yet strong enough for successfully checking $\alpha'(||_i\alpha(M_i)) \models \psi$.
- decomposition of ψ into "local guarantees" ψ_i such that $\wedge \psi_i \Rightarrow \psi$ and $\alpha(M_i) \models \psi_i$ holds is sometimes successful; it may fail because local information is not sufficient to ensure ψ_i .
- iterative composition and abstraction avoids providing local guarantees $\ldots \alpha_{123}(\alpha_3(M_3) \| \alpha_{12}(\alpha_2(M_2) \| \alpha_1(M_1)))$. It may fail because the complexity of intermediate expressions explodes; the reason is also here that local information is insufficient.
- iterative computation of abstractions M_i^A taking into account increasingly stronger context information may ensure ψ_i ; it generally fails when there are strong mutual dependencies amongst components.

We present a general framework of abstraction and show how to use abstractions for reasoning meaningfully about implementations of large composed systems. We also introduce a general contract framework and show that the combination of such top-down design constraints with bottom-up abstractions allows proving stronger properties.

References

- K. Baukus, S. Bensalem, Y. Lakhnech, K. Stahl. Abstracting ws1s Systems to Verify Parameterized Networks. TACAS 2000; LNCS 1785; 2000.
- 2. T. Ball, S. K. Rajamani. The SLAM Toolkit. CAV 2001; LNCS 2102; 2001.
- 3. P. Cousot, R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. 4th POPL; 1977.

- 4. L. de Alfaro, T. A. Henzinger. Interface Automata. FSE'01; ACM Press; 2001.
- 5. S. Graf, G. Lüttgen, B. Steffen. Compositional Minimisation of Finite State Systems using Interface Specifications. Formal Aspects of Computation, Vol. 8; 1996.
- 6. S. Graf. Characterization of a Sequentially Consistent Memory and Verification of a Cache Memory by Abstraction. Distributed Computing, Vol. 12; 1999.
- C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, S. Bensalem. Property Preserving Abstractions for the Verification of Concurrent Systems. Formal Methods in System Design, Vol. 6, Issue 1; 1995.
- 8. S. Quinton, S. Graf. Contract-based Verification of Hierarchical Systems of Components. SEFM'08; IEEE Computer Society Press; 2008.
- 9. S. Quinton, S. Graf, R. Passerone. Contract-based Reasoning for Component-Systems with Complex Interactions. submitted for publication; 2010.

http://www-verimag.imag.fr/~graf/?link=Publications