
Formal Verification

John Harrison
Intel Corporation, Hillsboro OR, USA

Formal verification (FV) involves the use of logical reasoning to establish properties of a computer
program (or hardware element, protocol etc.) In the purest form of FV, rigorous logical deduction is
used to prove with full mathematical rigor that the program satisfies a logical specification. This is
often contrasted with the traditional approach of testing on a variety of specific inputs or situations,
which may be a useful way of increasing confidence and catching bugs, but is usually not completely
exhaustive or conclusive.

However, there is increasing interest in intermediate uses of formal methods, which establish non-
trivial properties of the program (for example, that there will be no numeric overflow) without
necessarily proving full functional correctness. Thus, it can be fruitful to think of FV as occupying a
continuum of static analysis techniques with traditional approaches (basic type systems, lint) at one
end and full functional correctness proofs at the other.

Modern FV is supported and made more practical by a wide variety of automatic or semi-automatic
tools, including SAT (Boolean satisfiability) solvers, model checkers, automated theorem provers and
general interactive proof assistants. In the lectures I will talk both about these tools themselves and
how they can be applied.

Bradley and Manna [1] and Kroening and Strichman [4] describe various logical decision procedures
and how they can be applied to program verification. Clarke, Grumberg, and Peled [2] discusses model
checking in more detail, while Peled [7]) and Kropf [5]) survey various approaches to verification
in, respectively, software and hardware applications. Harrison [3] gives a wider introductory survey
of automated reasoning, while MacKenzie [6] is an engaging historical account of the intertwined
development of theorem proving and program verification.

References

1. A.R. Bradley, Z. Manna. The Calculus of Computation: Decision Procedures with Applications
to Verification. Springer; 2007.

2. E.M. Clarke, O. Grumberg, D. Peled. Model Checking. MIT Press; 1999.

3. J. Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge University
Press; 2009.

4. D. Kroening, O. Strichman. Decision Procedures: An Algorithmic Point of View. Springer; 2008.

5. T. Kropf. Introduction to Formal Hardware Verification. Springer; 1999.

6. D. MacKenzie. Mechanizing Proof: Computing, Risk and Trust. MIT Press; 2001.

7. D. Peled. Software Reliability Methods. Springer; 2001.

19


