
Model-based testing

NATO Summer School
Marktoberdorf, August, 2010

Ed Brinksma
University of Twente

CONTENTS

Introduction control-oriented testing

Input-output conformance testing

Real-time conformance testing

Test coverage measures

August 2010NATO Summer School, Marktoberdorf 2

CONTENTS

Introduction control-oriented testing

Input-output conformance testing

Real-time conformance testing

Test coverage measures

August 2010NATO Summer School, Marktoberdorf 3

PRACTICAL PROBLEMS OF TESTING

Testing is:
 important
 much practiced
 30% - 50% of project effort
 expensive
 time critical
 not constructive

(but sadistic?)

August 2010NATO Summer School, Marktoberdorf 4

But also:
 ad-hoc, manual, error-prone
 limited theory / research
 little attention in curricula
 not cool :

“if you’re a bad programmer
 you might be a tester”

Attitude is changing:
 more awareness
 more professionalImprovements possible

with formal methods ! ?

TYPES OF TESTING

August 2010NATO Summer School, Marktoberdorf 5

unit

integration

system

performance
robustness

functional
behaviour

glass box black box

Level

Accessibility

Aspect

usability

reliability

TEST AUTOMATION

August 2010NATO Summer School, Marktoberdorf 6

Traditional test automation
= tools to execute and manage test cases

specification

test
tool

implementation
under test

pass

fail

TTCNTTCNtest
cases

Why not generate
test automatically?!

VERIFICATION AND TESTING

Verification :
 formal manipulation
 prove properties
 performed on model

Testing :
 experimentation
 show error
 concrete system

August 2010NATO Summer School, Marktoberdorf 7

formal
world

concrete
world

Verification is only as good as the
validity of the model on which it is

based

Testing can only show the
presence of errors, not their

absence

TESTING WITH FORMAL METHODS

 Testing with respect to a formal specification

 Precise, formal definition of correctness :

good and unambiguous basis for testing

 Formal validation of tests

 Algorithmic derivation of tests :

tools for automatic test generation

 Allows to define measures expressing coverage

and quality of testing

August 2010NATO Summer School, Marktoberdorf 8

CHALLENGES OF TESTING THEORY

 Infinity of testing:
 too many possible input combinations: infinite breadth
 too many possible input sequences: infinite depth
 too many invalid and unexpected inputs

 Exhaustive testing never possible:
 when to stop testing ?
 how to invent effective and efficient test cases with high

probability of detecting errors ?

 Optimization problem of testing yield vs. effort
 usually stop when time is over

August 2010NATO Summer School, Marktoberdorf 9

FORMAL TESTING

August 2010NATO Summer School, Marktoberdorf 10

test
execution

pass / fail

test
generation

test suite TS

specification
S

implementation
i

correctness
criterion

implementation
relation

imp

i passes Ts

i imp s

⇔⇑ ⇓ soundexhaustive

FORMAL TESTING : CONFORMANCE

August 2010NATO Summer School, Marktoberdorf 11

s ∈ SPECS specification
IUT implementation under test

IUT is concrete, physical object

Model the physical world

But IUT is black box ! ?

Assume that model iIUT exists

specification
S

implementation
IUT

correctness
criterion

IUT conforms-to s

FORMAL TESTING : CONFORMANCE

August 2010NATO Summer School, Marktoberdorf 12

specification
S

implementation
iIUT

formal
correctness

criterion
iIUT imp s

s ∈ SPECS Specification
iIUT ∈ MODS model of IUT

Test assumption :
 each concrete IUT can be modelled
 by some iIUT ∈ MODS

Conformance : iIUT imp s

iIUT is not known ;
testing to learn about iIUT

FORMAL TESTING : TEST DERIVATION

August 2010NATO Summer School, Marktoberdorf 13

test
generation

test suite TS

specification
S

Test generation :

der : SPECS → ℘(TESTS)

Test suite - set of test cases : T ⊆ TESTS
Test case : t ∈ TESTS

FORMAL TESTING : TEST EXECUTION

August 2010NATO Summer School, Marktoberdorf 14

test
execution

 OBS

test suite T
implementation

IUT

Test execution leads to a set of observations :
 exec : TESTS × IMPS → ℘(OBS)

i IUT

Model of test execution :
 obs : TESTS × MODS → ℘(OBS)

TEST HYPOTHESIS

August 2010NATO Summer School, Marktoberdorf 15

 OBS

test suite T

Observational framework : TESTS, OBS, exec, obs
Test hypothesis : for all IUT in IMPS . ∃ iIUT ∈ MODS .

 ∀t ∈ TESTS . exec (t, IUT) = obs (t, iIUT)

obsi IUT

test execution

IUT

exec

FORMAL TESTING : VERDICTS

August 2010NATO Summer School, Marktoberdorf 16

Observations are interpreted :
 νt : ℘(OBS) → { fail, pass}

test
execution

 OBS νt

pass

fail

TESTING FOR CONFORMANCE

August 2010NATO Summer School, Marktoberdorf 17

IUT passes Ts ⇔def ∀ t ∈ Ts . IUT passes t

IUT passes t ⇔def νt (exec (t, IUT)) = pass

Test hypothesis :

∀ t ∈ TESTS . exec (t, IUT) = obs (t, iIUT)Proof obligation :
 ∀ i ∈ MODS .

(∀ t ∈ Ts . νt (obs (t, i)) = pass) ⇔ i imp s

IUT passes Ts ⇔ i conforms-to s
?

Definition : i conforms-to sIUT conforms-to s

iIUT imp s

⇔

∀ t ∈ Ts . νt (obs (t, iIUT)) = pass

⇔

∀ t ∈ Ts . νt (exec (t, IUT)) = pass

⇔

∀ t ∈ Ts . IUT passes t

⇔

IUT passes Ts

⇔

TESTING FOR CONFORMANCE

August 2010NATO Summer School, Marktoberdorf 18

IUT passes Ts

Proof of completeness on model leads to completeness for
tested systems :

i conforms-to s

exhaustive

⇒
⇐

sound

Proof obligation :

 ∀ i ∈ MODS .

 (∀ t ∈ Ts . νt (obs (t, i)) = pass) ⇔ i imp s

FORMAL TESTING

August 2010NATO Summer School, Marktoberdorf 19

exec :
TESTS ×

IMPS → ℘
(OBS)

der : SPECS →
℘(TESTS)

Ts ⊆ TESTS

s ∈SPECS

IUT ∈IMPS

imp

iIUT ∈MODS

obs :
TESTS ×

MODS → ℘
(OBS)

νt: ℘
(OBS)→

{fail,pass}
 OBS

pass

fail

Soundness and exhaustivess:
∀ i∈MODS .
 (∀ t∈der(s) . νt (obs(t,i)) = pass)
 ⇔ i imp s

Test hypothesis :
∀ IUT∈IMPS . ∃ iIUT ∈MODS .
 ∀ t∈TESTS . exec(t,IUT) = obs(t,iIUT)

TESTING PREORDERS

August 2010NATO Summer School, Marktoberdorf 20

implementation
i

specification
s

environment
e

environment
e

↓ ↓ ↓
? ? ?

≤

i ≤ s ⇔ ∀ e ∈ Env . obs (e, i) ⊆ obs (e, s)
For all environments e

all observations of an implementation i in e
should be explained by

observations of the specification s in e.

LABELLED TRANSITION SYSTEMS

August 2010NATO Summer School, Marktoberdorf 21

()

}.{

......'

......'

'

}{

,,,

000

101

101

0

0

222111

21

 -

 and for -

 and for -

 for -

: writeWe
 relation; transition the -

action invisible the with labels; of set a -
states initial of setnonempty a -

states of set a -

 with tuple a is LTS An

 Laany forsssSsCTraces

ssssaass

ssssaass

s,a,s'ss

SLS
LL L

SS

S

LSSA

a

n

aaa

n

n

aaa

n

a

nm
nnkmkmk

n

!"!#=

==

==

!$

%%$&

'=

&

$=

(/(

$$$$$$$$$(

$$$$

$

)

******)

)

*

*

)

)

)

**

PARALLEL COMPOSITION

August 2010NATO Summer School, Marktoberdorf 22

()
() ()() () ()
() ()() () ()
() ()() () () }}{\,,,,,,{

}}{\,,,,,,{

},,,,,,,

,,,,

,,,

1212

2121

21

21
0
2

0
121

22
0
22

!

!

!

"###$$"

"###$$"

%#$#$$$=&

&"'=

==

&
&

&&

&

LLaSstt,a,tsats

LLaStss,a,tsats

atatss,a,tsas,t

LLSSSSBA

LSSBA

 {

 with Then

 LTSs. two be and Let

CLASSICAL TESTING PREORDER

August 2010NATO Summer School, Marktoberdorf 23

 ↓ ↓
 LTS(L) CTraces(e||s)

i ≤te s ⇔ ∀ e ∈ E . obs (e, i) ⊆ obs (e, s)

implementation
i

specification
s

environment
e

environment
e

≤te

Philosophical question:
can we observe deadlocks?

In testing one may
ignore the difference
between livelock and

deadlock

TESTING PREORDER

August 2010NATO Summer School, Marktoberdorf 24

implementation
i

specification
s

environment
e

environment
e

≤te

i ≤te s ⇔ ∀ e ∈ LTS(L) . ∀ σ ∈ L* .
 e||i deadlocks after σ ⇒ e||s deadlocks after σ

⇔ FP(i) ⊆ FP(s)

FP(p) = { 〈 σ, A 〉 | p after σ refuses A }

i ≤te s ⇔ ∀ e ∈ LTS(L) . ∀ σ ∈ L* .
 { σ | σ∈Ctraces(e||i)} ⊆ { σ | σ σ∈Ctraces(e||s)}

Aa all for p and p p

iff A refuses after p
a

!"/##"
$

$

QUIRKY COFFEE MACHINE [Langerak]

August 2010NATO Summer School, Marktoberdorf 25

Can we distinguish between these machines?

coin coin

tea coffee
bang bang

coffee tea

coin coin

tea coffee
bang bang

coffeetea

≈te

They are
testing equivalent!

REFUSAL PREORDER

August 2010NATO Summer School, Marktoberdorf 26

i ≤rf s ⇔ ∀ e ∈ E . obs (e, i) ⊆ obs (e, s)

implementation
i

specification
s

environment
e

environment
e

≤rf

 ↓ ↓
 LTS(L∪{δ}) CTracesδ(e||i)

e observes with δ
deadlock on all

alternative actions

CTracesδ (e||i) =
 {σ∈(L∪{δ})* | e||i after σ refuses L}

NATO
Summer
School,

Marktoberdo
rf

27 Aug
ust

2010

QUIRKY COFFEE MACHINE REVISITED

coin coin

tea coffee
bang bang

coffee tea

coin coin

tea coffee
bang bang

coffeetea

≈te

≈rf

δ

coin

coffee

coffee

bang

tester

δ only enabled
if coffee is not

CONTENTS

Introduction control-oriented testing

Input-output conformance testing

Real-time conformance testing

Test coverage measures

August 2010NATO Summer School, Marktoberdorf 28

CONTENTS

Introduction control-oriented testing

Input-output conformance testing

Real-time conformance testing

Test coverage measures

August 2010NATO Summer School, Marktoberdorf 29

I/O TRANSITION SYSTEMS

 testing actions are usually directed, i.e. there are inputs
and outputs

L=Lin∪Lout with Lin∩Lout=∅

 systems can always accept all inputs: input enabledness

 for all states s, for all a∈Lin s ⇒

 testers are I/O systems
 output (stimulus) is input for the SUT
 input (response) is output of the SUT

August 2010NATO Summer School, Marktoberdorf 30

a

QUIESCENCE

 Because of input enabledness S||T deadlocks iff T produces no
stimuli and S no responses. This is known as quiescence

 Observing quiescence leads to two implementation relations for
I/O systems I and S :

 I ≤iote S iff for all I/O testers T :

CTraces(I||T) ⊆ CTraces(S||T) (quiescence)

2. I ≤iorf S iff for all I/O testers T :

CTracesδ(I||T) ⊆ Ctracesδ(S||T) (repetitive quiescence)

August 2010NATO Summer School, Marktoberdorf 31

INPUT-OUTPUT QCM

August 2010NATO Summer School, Marktoberdorf 32

coin? coin?

tea? coffee?
bang? bang?

coffee!

tea?

coffee?

tea !

coffee?

tea?

tea !

states must be
saturated with
input loops for

input
enabledness

≈iote

≈iorf

coin!

coffee!

coffee?
δ

bang!

coffee !

coffee?

coffee!

quiescent
states

QUIESCENT LABELLED TRANSITION SYSTEMS

August 2010NATO Summer School, Marktoberdorf 33

}{\

,|),,{(

},{,,

)(

,,,

,,,

)(

0

0

1
0

!

!

!

!

!

!

!

!!

!

AA

OI

O

tracestraces

sSsss

LSS

A

LLLLLSSA

sssss

LLSSA

=

"#=$$%

$%#

&#=$=

%%%%

$#=

$$

 Moreover,

quiescent} is

 with

QLTS the is QLTS underlying its then

 , and withLTS an be Let

quiescent. is and then if that such

 label (output) special with

 LTS an is QLTSA
This definition is

closed under
determinisation.

IMPLEMENTATION RELATION IOCO

August 2010NATO Summer School, Marktoberdorf 34

)()(*

(.))

!!!

"
"

siiorf

OI

outoutLsi

LLL

si

#$%#

&=

 iff

define wethen , over

 applying after(possibly
 QTLSs be be and Let

For implementations we will require input-enabledness,

But not for specifications.

In this setting it makes sense to restrict testing

to the traces of the implementation:

)()(!!! sisioco outouttracessi "#$" iff

INTUITION BEHIND IOCO

August 2010NATO Summer School, Marktoberdorf 35

Intuition:

i ioco-conforms to s, iff

1. if i produces output x after a specified trace σ,
 then s can produce x after σ

2. if i cannot produce any output after a specified trace σ,
 then s cannot produce any output after σ (quiescence δ)

)()(!!! sisioco outouttracessi "#$" iff

ADDING QUIESCENCE

August 2010NATO Summer School, Marktoberdorf 36

 !coffee

?dime

?dime
?quart

?dime
?quart

i
?quart

 !coffee

?dime

?dime
?quart

?dime
?quart

δ(i)
?quart

δ

δ

CALCULATING OUT

August 2010NATO Summer School, Marktoberdorf 37

δ

δ
outi (ε) =

outi (?dime) =

outi (?dime.?dime =

outi (?dime.!coffee) =

outi (?quart) =

outi (!coffee) =

outi (?dime.!tea) =

outi (δ) =

 !coffee

?dime

?dime
?quart

?dime
?quart

i
?quart

{ δ }

{ !coffee }

{ !coffee }

{ δ }

{ δ }
∅

∅

{δ }

IMPLEMENTATION RELATION IOCO

August 2010NATO Summer School, Marktoberdorf 38

 !coffee

?dime

?dime

?dime

i

 !coffee

?dime

s

!tea

outi (?dime) = { !coffee } outs(?dime) = { !coffee, !tea }

)()(!!! sisioco outouttracessi "#$" iff

ioco!

IMPLEMENTATION RELATION IOCO

August 2010NATO Summer School, Marktoberdorf 39

 !coffee

?dime

s

?dime

?dime

 !coffee

?dime

i

!tea

?dime

out i(?dime) = { !coffee, !tea } out s(?dime) = { !coffee}⊄

)()(!!! sisioco outouttracessi "#$" iff

ioco!/

IMPLEMENTATION RELATION IOCO

August 2010NATO Summer School, Marktoberdorf 40

?dime

?dime
?quart

 !coffee

?quart
i

!tea !coffee

?dime

s

outi (?dime) = { !coffee }
outi (?quart) = { !tea }

outs (?dime) = { !coffee }
 outs (?quart) = ∅

But ?quart ∉ Tracesδ(s)

)()(!!! sisioco outouttracessi "#$" iff

ioco!

IMPLEMENTATION RELATION IOCO

August 2010NATO Summer School, Marktoberdorf 41

outi (?dime.? dime) = outs (? dime.? dime) = { !tea, !coffee }

i

?dime

?dime

?dime ?dime

!tea

?dime

?dime

 !coffee

?dime

s

 !coffee

?dime

?dime

?dime ?dime

!tea

?dime

?dime

?dime

?dime

!tea

outi (? dime.δ.? dime) = { !coffee } ≠ outs (? dime.δ.? dime) = { !tea, !coffee }

)()(!!! sisioco outouttracessi "#$" iff

is
si

ioco

ioco

!/

!
δ δ

FORMAL TESTING

August 2010NATO Summer School, Marktoberdorf 42

test
execution

pass / fail

test
generation

test suite TS

specification
S

implementation
i

correctness
criterion

implementation
relation

ioco

i passes Ts

i ioco s

⇔ ?

TEST CASES

A test (case) t over L=LI ∪ LδO is an LTS with
 t is deterministic
 t does not contain an infinite path
 t is acyclic and connected
 for all states s of t we have either
 after(s)= ∅, or (termination)
 after(s)= LδO , or (response observation)
 after(s)= {a?} ∪ LO (stimulus)

August 2010NATO Summer School, Marktoberdorf 43

Alternatively, a test case can be
characterised by the

prefix-closed set of its traces

INPUT-OUTPUT QCM AGAIN

August 2010NATO Summer School, Marktoberdorf 44

coin? coin?

tea? coffee?
bang? bang?

coffee!

tea?

coffee?

tea !

coffee?

tea?

tea !
≈iote

≈iorf

coin!

coffee!

coffee?
δ

bang!

coffee !

coffee?

coffee!

TEST ANNOTATIONS

Let t be a test case:
 an annotation of t is a function

a: Ctracest → { pass, fail }
 the pair ṫ = (t,a) is an annotated test case

When a is clear from the context, or irrelevant,
we use t for both test case and its annotation.

August 2010NATO Summer School, Marktoberdorf 45

ANNOTATED TEST CASES VS TTCN

August 2010NATO Summer School, Marktoberdorf 46

test case t

!coin

 !coin ; Start timer1

 ?tea fail

 ?timer1 fail

 ?coffee

 !coin ; Start timer2

 ?tea pass

 ?timer2 pass

 ?coffee fail

 coffee!

coin?

coin ?

tea!

 coffee!tea!

 δ

coin?

 δ

pass

failfail

failpass

EXECUTION AND EVALUATION

Let A be a QLTS over L and t a test over L.
The executions of t with A are defined as
 exect (A) = Ctraces(t||A)
 in fact, exect (A) = Ctraces(t) ∩ traces(A)

Let ṫ = (t,a) be an annotated test case.
The verdict of ṫ is the function

vṫ :QLTS(L) → {pass,fail} with

vṫ (A) = pass if for all σ∈ exect (A) a(σ) = pass
 fail otherwise

August 2010NATO Summer School, Marktoberdorf 47

This can be lifted
in the obvious way

to sets of tests,
i.e. test suites.

A SOUND AND COMPLETE TEST SUITE

Given a specification s we define the annotation

as
ioco(σ) = fail if ∃σ1∈tracess, a!∈LδO σ1a! ≤ σ

and σ1a∉tracess
pass otherwise

Given s and any t∈Tests(s), its annotated version
(t, as

ioco) is sound w.r.t. s under ⊆ioco.

The test suite T={(t, as
ioco) | t∈Tests(s)} is sound and

complete w.r.t. s under ⊆ioco.

August 2010NATO Summer School, Marktoberdorf 48

Tests(s) contains all
tests over the same

label set L as s

DESIRABLE TEST CASE PROPERTIES

Let s be specification over a label set L, then

 a test t is fail-fast w.r.t. s if
σ∉tracess implies that ∀a∈L σa∉t

 a test t is input-minimal w.r.t. s if
for all σa?∈t with a?∈LI it holds that

 σ∈tracess implies σa?∈tracess

August 2010NATO Summer School, Marktoberdorf 49

ANNOTATED TEST GENERATION ALGORITHM

August 2010NATO Summer School, Marktoberdorf 50

To generate a test case t(S) from a transition system
specification with S set of states (initially S = S0)

1 end test case

PASS

Apply the following steps recursively, non-deterministically

2 observe output

FAIL

t(S after o!)

FAIL

allowed outputs o!

forbidden outputs

o!
δ

3 supply input

supply i?

t(S after i?)

observe output (no δ)

fail-fast, input-minimal,
ioco-sound &

(in the limit) ioco-complete

TEST GENERATION EXAMPLE

August 2010NATO Summer School, Marktoberdorf 51

Equation solver for y2=x

test

?-2
?2

PASS PASS

otherwise

FAIL

?-3

PASS

otherwise
?3

FAIL

specification

? x (x >= 0)

! √x

? x (x < 0)

! -√x !4

!9

TEST EXECUTION EXAMPLE

August 2010NATO Summer School, Marktoberdorf 52

?-3

PASS

otherwise
?3

FAIL

?-2
?2

PASS PASS

otherwise

FAIL

? x (x >= 0)

! √x

? x (x < 0)

! -√x

? y

implementation test| |

!9

!4

FORMAL TESTING WITH TRANSITION SYSTEMS

August 2010NATO Summer School, Marktoberdorf 53

νt: ℘
(traces)→
{fail,pass}

traces

der : LTS →
℘(TTS)

Ts ⊆ TTS

s ∈ LTS

⊆ ioco

iIUT ∈IOTS pass

fail

obs : TTS
× IOTS →
℘(traces)

SOME TEST GENERATION TOOLS FOR IOCO

 TVEDA (CNET - France Telecom)
 derives TTCN tests from single process SDL specification
 developed from practical experiences
 implementation relation R1 ≈ ioco

 TGV (IRISA - Rennes)
 derives tests in TTCN from LOTOS or SDL
 uses test purposes to guide test derivation
 implementation relation: unfair extension of ioco

 TestComposer (Verilog)
 Combination of TVEDA and TGV in ObjectGeode

 TestGen (Stirling)
 Test generation for hardware validation

 TorX (University of Twente, ESI)

August 2010NATO Summer School, Marktoberdorf 54

A TEST TOOL : TORX

 On-the-fly test generation and test execution

 Implementation relation: ioco

 Specification languages: LOTOS, Promela, FSP, Automata

August 2010NATO Summer School, Marktoberdorf 55

TorX IUT
observe
output

offer
input

next
input

specification
check
output

pass
fail
inconclusive

user:
manual
automatic

NATO
Summer
School,

Marktoberdo
rf

56 Aug
ust

2010

TORX TOOL ARCHITECTURE

explorer primer driver adapter IUTspec.

 states
transitions

abstract
actions

abstract
actions

concrete
actions

specification
text

TorX IUTspecification

ON-THE-FLY ↔ BATCH TESTING

August 2010NATO Summer School, Marktoberdorf 57

TTCNTTCNTTCNTTCNTTCNTTCNTTCNtest
rep. batch test executionbatch test generation

TTCNTTCNTTCNTTCNTTCNTTCNTTCNtest
rep.

on the fly

explorer primer driver adapter IUTspec.

ON-THE-FLY TESTING

explorer primer driver adapter IUTIUTIUT
 bits

 bytes

 states

transitions
abstract
 actions transition

? x (x >= 0)

! √x

? x (x < 0)

! -√x

specification implementation

? x (x >= 0)

! √x

? x (x < 0)

? x

Concrete action
! 00001001

New menu
! x (x < 0)
! x (x >= 0)

Abstract action
! 9
Abstract action
? 3

Choice
! 9

Concrete action
? 00000011

Action
? 3
Choice
! -1

New menu
! x (x < 0)
! x (x >= 0)

Check
? 3

Abstract action
! -1

Concrete action
! 11111111

Concrete action
? (timeout)

Abstract action
? (quiescence)

Action
? (quiescence)

Check
? (quiescence)

New menu
! x (x < 0)
! x (x >= 0)

spec

TORX

August 2010NATO Summer School, Marktoberdorf 59

TORX CASE STUDIES

 Conference Protocol

 EasyLink TV-VCR protocol

 Cell Broadcast Centre component

 Road Toll Payment Box protocol

 V5.1 Access Network protocol

 Easy Mail Notification

 FTP Client

 “Oosterschelde” storm surge barrier-control

 TANGRAM: testing VLSI lithography machine

August 2010NATO Summer School, Marktoberdorf 60

academic

Philips

CMG

Interpay

Lucent

CMG

academic

CMG

ASML

THE CONFERENCE PROTOCOL EXPERIMENT

 Academic benchmarking experiment,
initiated for test tool evaluation and comparison

 Based on really testing different implementations

 Simple, yet realistic protocol (chatbox service)

 Specifications in LOTOS, Promela, SDL, EFSM

 28 different implementations in C

 one of them (assumed-to-be) correct

 others manually derived mutants

 http://fmt.cs.utwente.nl/ConfCase

August 2010NATO Summer School, Marktoberdorf 61

THE CONFERENCE PROTOCOL

August 2010NATO Summer School, Marktoberdorf 62

CPE

UDP Layer

CPECPE

join
leave
send

receive

Conference Service

CONFERENCE PROTOCOL TEST ARCHITECTURE

August 2010NATO Summer School, Marktoberdorf 63

CPE
= IUT

UT-PCO = C-SAP

LT-PCO

UDP Layer

U-SAP LT-PCO

Tester
TorX

B C

A

THE CONFERENCE PROTOCOL EXPERIMENTS

 TorX - LOTOS, Promela : on-the-fly ioco testing
Axel Belinfante et al.,
Formal Test Automation: A Simple Experiment
IWTCS 12, Budapest, 1999.

 Tau Autolink - SDL : semi-automatic batch testing

 TGV - LOTOS : automatic batch testing with test purposes
Lydie Du Bousquet et al.,
Formal Test Automation: The Conference Protocol with TGV/TorX
TestCom 2000, Ottawa.

 PHACT/Conformance KIT - EFSM : automatic batch testing
Lex Heerink et al.,
Formal Test Automation: The Conference Protocol with PHACT
TestCom 2000, Ottawa.

August 2010NATO Summer School, Marktoberdorf 64

CONFERENCE PROTOCOL RESULTS

August 2010NATO Summer School, Marktoberdorf 65

Results:

fail
pass
core dump

PHACT
EFSM

21
6
1

TorX
LOTOS

25
3
0

pass 000
444
666

000
444
666
289
293
398

TGV
LOTOS
random
25
3
0

TGV
LOTOS
purposes
24
4
0

TorX
Promela

25
3
0

000
444
666
332

000
444
666

000
444
666

CONFERENCE PROTOCOL ANALYSIS

 Mutants 444 and 666 react to PDU’s from non-existent partners:

 no explicit reaction is specified for such PDU’s,

so ioco-correct, and TorX does not test such behaviour

 So, for LOTOS/Promela with TGV/TorX:

All ioco-erroneous implementations detected

 EFSM:

 two “additional-state” errors not detected

 one implicit-transition error not detected

August 2010NATO Summer School, Marktoberdorf 66

CONFERENCE PROTOCOL ANALYSIS

 TorX statistics
 all errors found after 2 - 498 test events

 maximum length of tests : > 500,000 test events

 EFSM statistics
 82 test cases with “partitioned tour method” (= UIO)

 length per test case : < 16 test events

 TGV with manual test purposes
 ~ 20 test cases of various length

 TGV with random test purposes
 ~ 200 test cases of 200 test events

August 2010NATO Summer School, Marktoberdorf 67

INTERPAY HIGHWAY TOLLING SYSTEM

August 2010NATO Summer School, Marktoberdorf 68

HIGHWAY TOLLING PROTOCOL

Characteristics :

 simple protocol

 parallelism: many cars at the same time

 encryption

 system passed traditional testing phase

August 2010NATO Summer School, Marktoberdorf 69

 HIGHWAY TOLLING SYSTEM

August 2010NATO Summer School, Marktoberdorf 70

Payment
Box

(PB)Road Side
Equipment

Onboard
Unit

UDP/IPWireless

HIGHWAY TOLLING: TEST ARCHITECTURE

August 2010NATO Summer School, Marktoberdorf 71

Test Context

ObuSim

spec

PB
+

ObuSim
+

TCP/IP
+

UDP/IP

Payment
Box

TCP/IP

TorX

PCO

SUT

UDP/IP IAP

HIGHWAY TOLLING: RESULTS

 Test results :

 1 error during validation (design error)

 1 error during testing (coding error)

 Automated testing :

 beneficial: high volume and reliability

 many and long tests executed (> 50,000 test events)

 very flexible: adaptation and many configurations

 Real-time :
 interference computation time on-the-fly testing

 interference quiescence and time-outs
August 2010NATO Summer School, Marktoberdorf 72

STORM SURGE BARRIER CONTROL

August 2010NATO Summer School, Marktoberdorf 73

Oosterschelde Stormvloedkering (OSVK)

SVKO EMERGENCY CLOSING SYSTEM

 Collect water level sensor readings (12x, 10Hz)
 Calculate mean outer-water level and mean inner-

water level
 Determine closing conditions
if (closing_condition)

{notify officials

 start diesel engines

 block manual control

 control local computers}

 Failure rate: 10-4/closing event

August 2010NATO Summer School, Marktoberdorf 74

TESTING SVKO

August 2010NATO Summer School, Marktoberdorf 75

 test controller (Unix port)
 many timed observations

 shortest timed delay: 2 seconds
 longest timed delay: 85 minutes

water level sensor

water level sensor

12x collector controller

diesel generator

power control

barrier control
user control

signal wire communication

RESULTS

 real-time control systems can be tested with TorX-
technology
 addition of discrete real time
 time stamped actions

 quiescence action is not used
 time spectrum of 3 orders of magnitude
 deterministic system

 adhoc implementation relation

August 2010NATO Summer School, Marktoberdorf 76

RT TORX HACKS: APPROACH 1

Ignore RT functionality:

 test pure functional behaviour

 analyse timing requirements using TorX log files &
assumed frequency of wire polling actions

August 2010NATO Summer School, Marktoberdorf 77

RT TORX HACKS: APPROACH 2

Add timestamps to observations

 adapter adds timestamps to observations when they

are made and passed on to the driver

 timestamps are used to analyse TorX log files

August 2010NATO Summer School, Marktoberdorf 78

TIMING ERROR LOGGING

int time,newtime;
...
input?value,time // input: stimulus
... // variable time is set here
output!param,&newtime // output: observation

// & is extension to promela:
if // variable newtime is set here
:: (newtime==time+60) // expected delay of 60 is
 print(“OK”,...) // checked & logged
:: (newtime!=time+60)
 print(“NOK”,...)
fi;

August 2010NATO Summer School, Marktoberdorf 79

RT TORX HACKS: APPROACH 3

Add timestamps to stimuli & observations
 adapter add timestamps to observations when they are made

and passed on to the driver

 adapter adds timestamps to stimuli when they are applied and
returned to the driver

 analysis:

 timing error logging: observed errors are written to TorX
log file

 timing error failure: observed errors cause fail verdict of
test case

August 2010NATO Summer School, Marktoberdorf 80

TIMING ERROR FAILURE

int time;
... // input: stimulus
input?value,time // variable time is set here
...
if // output: observation
:: output!param,(time+59) // wait 60 (-1)
:: output!param,(time+60) // wait 60
:: output!param,(time+61) // wait 60 (+1)
fi // if observation is not made
 // after approx. 60 units,

 // quiescence will be
 // observed

August 2010NATO Summer School, Marktoberdorf 81

CONTENTS

Introduction control-oriented testing

Input-output conformance testing

Real-time conformance testing

Test coverage measures

August 2010NATO Summer School, Marktoberdorf 82

CONTENTS

Introduction control-oriented testing

Input-output conformance testing

Real-time conformance testing

Test coverage measures

August 2010NATO Summer School, Marktoberdorf 83

REAL-TIME TESTING AND I/O SYSTEMS

 can the notion of repetitive quiescence be combined

with real-time testing?

 is there a well-defined and useful conformance relation

that allows sound and (relative) complete test

derivation?

 can the TorX test tool be adapted to support Real-

timed conformance testing?

August 2010NATO Summer School, Marktoberdorf 84

WITH REAL-TIME DO WE STILL NEED QUIESCENCE?

August 2010NATO Summer School, Marktoberdorf 85

coin? coin?

tea? coffee?
bang? bang?

coffee!

tea?

coffee?

tea !

coffee?

tea?

tea !

Yes!

the example
processes

should also
be distinct

in a real-time
context

coffee!

REAL-TIME AND QUIESCENCE

 s is quiescent iff:
for no output action a and delay d: s ⇒

 special transitions:
 s → s for every quiescent system state s

 testers observing quiescence take time:
TestM: set of test processes having only δ(M)-actions to
observe quiescence

 assume that implementations are M-quiescent:
for all reachable states s and s’:
 if s ⇒ s’ then s’ is quiescent

August 2010NATO Summer School, Marktoberdorf 86

a(d)

δ

ε(M)

REAL-TIME AND QUIESCENCE

August 2010NATO Summer School, Marktoberdorf 87

i tiocoM s ⇔ ∀σ ∈ Tracesδ(M)(s) :

outM (i after σ) ⊆ outM (s after σ)

i ≤tiorf s ⇔ ∀T ∈ TestM:

Deadlocksδ(i||T) ⊆ Deadlocksδ(s||T)

 ⇔ ∀σ ∈ (L ∪ { δ(M) })*:

outM (i after σ) ⊆ outM (s after σ)

 M

PROPERTIES

 for all M1 ≤ M2:

i ≤tiorf s implies i ≤tiorf s

 for all time-independent i,s and M1,M2>0

i ≤tiorf s iff i ≤tiorf s iff i ≤iorf s

August 2010NATO Summer School, Marktoberdorf 88

M1 M2

M1 M2

A LIMITATION

August 2010NATO Summer School, Marktoberdorf 89

states are
saturated
with input
loops that
reset the
clocks x xx=M

tea !
x=M

coffee!

x≤M

coin? coin?

tea? coffee?
tea?coffee?

x≤M

x=M
coffee!

x=M
tea !

x<M
bang?

x<M
bang?x≥M

bang?
x≥M

bang?

x≤M x≤M

x x

this process cannot
be distinguished

from the next

REAL-TIME TEST CASES

August 2010NATO Summer School, Marktoberdorf 90

 labels in L ∪ { δ }, G(d)

 tree-structured
 finite, deterministic
 final states pass and fail
 from each state ≠ pass, fail

 choose an input i? and a time k and
wait for the time k accepting all
outputs o! and after k time units
provide input i?

 or wait for time M accepting all
outputs o! and δ

Test case t ∈ TTA
TTA – Test Timed Automata :

 off!
x=5

x:=0

on?
x:=0

off!
x<5

 off!

 δ
 x=M

failfail

failpass

x≤M

 δ
x=M

x≤M

x≤k

x:= 0

 off!

fail

TIMED TEST GENERATION PROTO-ALGORITHM

August 2010NATO Summer School, Marktoberdorf 91

To generate a test case t(S) from a timed transition system specification
with S set of states (initially S = {s0})

1. end test case PASS

Apply the following steps recursively, non-deterministically

allowed outputs oj!
after d time-units

2. choose k ∈ (0, M) and input µ

FAIL FAIL

forbidden outputs oi!
after d’ time-units

o1!
x=dn

x=d1
x=d’n’

x=k

x ≤ k

tµ t1 tn

x:=0

x=d’1
on’!

µ? o1!
on!

allowed outputs oj!
after d time-units

3. wait for observing possible output

FAIL FAIL

forbidden outputs oi!
after d’ time-units

δ
x=d’1 x=dn

x=d1
x=d’n’

x=M

x ≤ M

tδ t1 tn

x:=0

o1! on’! o1!
on!

August 2010NATO Summer School, Marktoberdorf 92

Example

m? m?

t? c?
b? b?

c!
t?

c?
t!

c?

t?

t!

c!

spec:

impl:
M=k

test:

m? m?

t? c?
b? b?

t!
c?

c?
t!

t?

t?

c!

c!

x<k

x<k

x<k

x<k

δ

fail
m?

x≤1

x=1
x:=0

x=M
x:=0

c?
x=1
x:=0

c?
x=1
x:=0

b?
x=1
x:=0

fail

fail

fail

pass

fail

fail

fail

failfail

x≤1

x≤M

x≤1

x≤1

x≤M

c!

c!

c!

c!

c!

c!

fail

fail
t!

t!

t!δ
pass

t!

t!

t!x=M
δ

SOUNDNESS & COMPLETENESS

 the non-timed generation algorithm can be shown to generate
only sound real-time test cases

 test generation is complete
for every erroneous trace it can generate a
test that exposes it

 test generation is not limit complete
because of continuous time there are uncountably many timed error
traces and only countably many test are generated by repeated runs

 test generation is almost limit complete
repeated test geration runs will eventually generate a test case that
will expose one of the non-spurious errors of a non-conforming
implementation

August 2010NATO Summer School, Marktoberdorf 93

non-spurious errors
=

errors with a positive
probability of

occurring

CONTENTS

Introduction control-oriented testing

Input-output conformance testing

Real-time conformance testing

Test coverage measures

August 2010NATO Summer School, Marktoberdorf 94

CONTENTS

Introduction control-oriented testing

Input-output conformance testing

Real-time conformance testing

Test coverage measures

August 2010NATO Summer School, Marktoberdorf 95

COVERAGE: MOTIVATION

 Testing is inherently incomplete
 Test selection is crucial

 Coverage metrics
 Quantitative evaluation of test suite
 Count how much of specification/implementation
 has been examined

 Examples:
 White box (implementation coverage):
 Statement, path, condition coverage

 Black box (specification coverage)
 State, transition coverage

August 2010NATO Summer School, Marktoberdorf 96

TRADITIONAL COVERAGE MEASURES

Traditional measures are:

 based on syntactic model features
 states, transitions, statements, tests

 uniform
 all system parts treated as bequally important

Disadvantages:

 replacing the spec by an equivalent one yields different coverage
 we need a semantic approach

 some bugs are more important than others;
 test crucial behaviour first and better

August 2010NATO Summer School, Marktoberdorf 97

OUR APPROACH

 Considers black box coverage
 similar ideas could apply to white box coverage

 Is semantic
 Semantically equivalent specs yield same coverage

 Is risk-based
 more important bugs/system parts

 higher contribution to coverage

 Allows for optimization
 Cheapest test suite with 90% coverage

 Maximal coverage within cost budget

August 2010NATO Summer School, Marktoberdorf 98

FAULT MODELS

 f: Observation  R≥0

 f(σ) = 0 : correct behaviour

 f(σ) > 0 : incorrect behaviour

 : f(σ) severity

 0 < Σσ f(σ) < ∞

 Observations are traces
 Observations = L*

 L = (LI, LU)

 How to obtain f?
 E.g. via fault automaton

August 2010NATO Summer School, Marktoberdorf 99

f: L*  R≥0
f(play? song!) = 0 correct
f(play? silence!) = 10 incorrect
f(song!) = 3 incorrect

EXAMPLE TEST CASE

August 2010NATO Summer School, Marktoberdorf 100

 f: L*  R
 f(play? song!) = 0
 f(play? δ) = 10
 f(play? song! play? δ) = 10
 f(song!) = 3

 ∑ σ f(σ) = 100 (assumption)

 Absolute Coverage abscov(f,t)
 sum the error weights
 10 + 10 + 0 = 20

 Relative Coverage

abscov(f,t)
totcov(f)

20
100

=

should be ≠ 0, ≠∞

play?

song!

play?

song!δ

δ

passfail

fail 1
0

1
0

0

Test t

EXAMPLE TEST SUITE

August 2010NATO Summer School, Marktoberdorf 101

Absolute Coverage
 count each trace once !
 10 + 10 + 0 + 0 + 2 = 22

Relative Coverage
abscov(f,t)
totcov(f)

22
100

=

play?

song!

play?

song!δ

δ

10

10 0

Test t play?

song!δ

δ

10

20

song!

Test
t’

= 22%

FAULT SPECIFICATIONS

August 2010NATO Summer School, Marktoberdorf 102

fault model
 f(σ) = 0 if σ trace of automaton
 f(σ) = 3 if σ ends in 3-state
 f(σ) = 10 if σ ends in 10-state

infinite total coverage !!
 ∑ σ f(σ) = 3 + 10 + 3 + 10 + ... = ∞

Solution 1: restrict to traces of lenght k
 Omit here, works as solution 2, less

efficient, more boring
Solution 2: discounting
 errors in short traces are worse
 Lower the weight proportional to length

song!

play?

3

play?

10

song! δ

Use your favorite
Formalism, e.g.
UML state charts,
LOTOS, etc

 · α |σ|-1

 · α |σ|-1

FAULT SPECIFICATIONS

August 2010NATO Summer School, Marktoberdorf 103

fault model
 f(σ) = 0 if σ automaton trace
 f(σ) = 3 if σ end in 3-state
 f(σ) = 10 if σ ends in 10-state
Example
 f(play?) = 0
 f(play? δ) = 10 · α
 f(play? song! song!) = 3 · α 2


·α|σ|-1
 ·α|σ|-1

song!

play?

3

play?

10

song!
δ

• α < 1/out(spec) = 1/2

• α can vary per transition

• tune α

FAULT SPECIFICATIONS

August 2010NATO Summer School, Marktoberdorf 104

Total coverage becomes fcomputable:

 tc(s) = 3 + α tc(t)
 tc(t) = 10 + α tc(t) + α tc (s)

 tc(x) = wgt(x) + α ∑y: succ(x) tc(y)

Solve linear equations

 tc = wgt (I - α A)-1

with A adjacency matrix

song!

play?

3

play?

10

song!
δ

s t

Relative Coverage
abscov(f,t)
totcov(f)

 10 + 7α
1 – α - α2 tc(s) =

TEST SUITE COVERAGE

August 2010NATO Summer School, Marktoberdorf 105

Absolute test suite coverage
 count each trace once!
 merge test cases first

song!

play?

song!

play?

δ

δ

10

10 0

10 · α

10 · α3
Relative test suite coverage

abscov(f,t)
totcov(f) = 10α+ 3α2 +10α3

1 – α - α2
 10 +7α

play?

song!δ

δ

10

30

song!

3 · α 2

10 · α

OPTIMIZATION

August 2010NATO Summer School, Marktoberdorf 106

song!

play?

3

Find best test case of lenght n
 v1(s) = 3
 v1(t) = 10
 vk+1(s) = max(3, α vk(t))
 vk+1(t) = max(10 + α vk(s), α vk(t))

Complexity: O(n #transitions in spec)

play?

10

song!
δ

s t

More optimizations:
 Test suite of k tests &

lenght n;
 Best test case in

budget;
 Add costs


PROPERTIES

Framework for black box coverage

 robustness
 small changes in weight yield small changes in coverage

 relcov(s) continuous

 tunable (calibration)
 change α : get as much total coverage as desired

August 2010NATO Summer School, Marktoberdorf 107

CALIBRATION

August 2010NATO Summer School, Marktoberdorf 108

song!

play?

3

α small  present is important, future unimportant

  few small test cases with high (>0.999) coverage

tune α  make tests with length >k important, i.e
 make cov(Tk, f) as small as desired.
  α(s) = 1/n(s) - ε n(s) =outinf(s)
  limε  0 cov(Tk,fα) = 0 for all k

play?

10

song!
δ

s t

August 2010NATO Summer School, Marktoberdorf 109

CONCLUSIONS

CONCLUSIONS

 model-based testing offers theory and tools for (real-time)
conformance testing, in particular:
 test generation, execution & evaluation
 coverage analysis

 ioco-theory, TorX and related tools have been evaluated against
many industrial cases
 on-the-fly application very productive
 good coverage with random test execution

 current theory is control-oriented
 OK for classical embedded applications
 must be extended to cope with data-intensive systems

August 2010NATO Summer School, Marktoberdorf 110

FUTURE WORK

 integration with data-oriented testing
classical, symbolic

 stochastic systems
continuous & discrete time Markov chains

 quality of service
performance testing

 hybrid systems
testing discrete vs polling continuous behaviour

 actual coverage measures
actual coverage during test execution

 integration white/black box spectrum
grey-box testing

 ...

August 2010NATO Summer School, Marktoberdorf 111

RESOURCES

 http://fmt.cs.utwente.nl/tools/torx/introduction.html

 http://www.testingworld.org/

 http://www.laquso.com/knowledge/toolstable.php

 http://www.irisa.fr/vertecs/

 http://www.cs.aau.dk/~marius/tuppaal/

August 2010NATO Summer School, Marktoberdorf 112

TEST SELECTION : TEST PURPOSES

 User specifies what (s)he wants to test :

 very detailed behaviours

 generic : criteria, strategies

 Questions :

 Appropriate formalism for test purposes?

 Relation between test purposes and test suites?

 Interpretation of test results w.r.t. test purposes?

 When is a test suite able to “challenge” the implementation to “satisfy”

the test purpose?

August 2010NATO Summer School, Marktoberdorf 113

 TEST PURPOSE : EXAMPLE

August 2010NATO Summer School, Marktoberdorf 114

Test purpose:
 can the machine

deliver coffee?

Desired observation
= observation objective :
 ?coin . !coffee

!coffee!coin

?coin ?coin

miss
miss

hit

?coffee?coin

!coin

θ

pass
fail pass

TEST PURPOSES

August 2010NATO Summer School, Marktoberdorf 115

test
execution

pass / fail

test
generation

test suite T

specification
S

implementation
i

correctness
criterion

test purposes

OBSERVATION OBJECTIVES

August 2010NATO Summer School, Marktoberdorf 116

 Observation objective related to
observations made during testing

 Steering the test in order to meet certain
observations is exhibition testing

 Exhibition is orthogonal to conformance

TESTING FOR CONFORMANCE

August 2010NATO Summer School, Marktoberdorf 117

s ∈ SPECS

IUT ∈ IMPS

Physical world

IUT conforms-to s

iIUT ∈ MODS

Formal world

s ∈ SPECS

iIUT imp s

TESTING FOR EXHIBITION

August 2010NATO Summer School, Marktoberdorf 118

e ∈ TOBS

IUT ∈ IMPS

Physical world

IUT exhibits e

iIUT ∈ MODS

Formal world

e ∈TOBS

iIUT rev e

OBSERVATION & EXHIBITION

 hit-function :

He: P(OBS) → { hit, miss }

 i hits e by te =df He (EXEC (te, i)) = hit

 i hits e by Te =df

He (∪{ EXEC (te, i) | te ∈Te }) = hit

August 2010NATO Summer School, Marktoberdorf 119

TESTING FOR EXHIBITION

i hits e by Te ⇔ i rev e

e-sound : i rev e ⇐ i hits e by Te

e-exhaustive : i rev e ⇒ i hits e by Te

We want an e-sound and e-exhaustive test suite

August 2010NATO Summer School, Marktoberdorf 120

COMBINING EXHIBITION AND CONFORMANCE

August 2010NATO Summer School, Marktoberdorf 121

i rev e MODS

i imp s

i passes T

{ i | i hits e by T } ∩ { i | i imp s } ≠ Ø

practical approach :

IOTS : REVEAL RELATIONS

 Lδ = LI ∪ LU ∪ {δ}

 TOBS = P ((Lδ)*)

 rev relation:

 i rios e =df

 tracesδ (i) ∩ e ≠ ∅

 Hrios-e (O) = hit ⇔ prefix(O) ∩ e ≠ ∅

August 2010NATO Summer School, Marktoberdorf 122

i rios { ?coin . !coffee, ?coin . !milk . !coffee}

!coffee

!milk

!milk

?coin

!coffee

implementation

TESTING FOR CONFORMANCE AND EXHIBITION

August 2010NATO Summer School, Marktoberdorf 123

e = { ?coin . !coffee, ?coin . !milk . !coffee }

implementation

!coffee

!milk

?coin

!coffee !sugar !tea

!sugar

!tea

!milk!sugar

!coffee

!milk

?coin

!coffee

δ

!milk δ

pass fail fail

pass
hit

hit
fail

pass

pass

miss
miss

!sugar

!tea

fail

!tea

test case, incl. purpose

fail

TORX : TEST PURPOSES, SELECTION, ……

August 2010NATO Summer School, Marktoberdorf 124

driver adapter

test
purpose
explorer

primer’

spec.
explorer primer

co
m

bi
na

to
r

stochastic
selector

TTCNTTCNtest
log

explorer primer

inverse
test purposes

denoted by regular
expressions, e.g.
(LI . LU* . δ)n

