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PRACTICAL PROBLEMS OF TESTING

Testing is:
 important
 much practiced
 30% - 50% of project effort
 expensive
 time critical
 not constructive

(but sadistic?)
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But also:
 ad-hoc, manual, error-prone
 limited theory / research
 little attention in curricula
 not cool :

“if you’re a bad programmer
 you might be a tester”

Attitude is changing:
 more awareness
 more professionalImprovements possible

with formal methods ! ?



TYPES OF TESTING
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unit

integration

system

performance
robustness

functional
behaviour

glass box black box

Level

Accessibility

Aspect

usability

reliability



TEST AUTOMATION
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Traditional test automation
=  tools to execute and manage test cases

specification

test
tool

implementation
under test 

pass

fail

TTCNTTCNtest
cases

Why not generate
test automatically?!



VERIFICATION AND TESTING

Verification :
 formal manipulation
 prove properties
 performed on model

Testing :
 experimentation
 show error
 concrete system
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formal
world

concrete
world

Verification is only as good as the
validity of the model on which it is

based

Testing can only show the
presence of errors, not their

absence



TESTING WITH FORMAL METHODS

 Testing with respect to a formal specification

 Precise, formal definition of correctness :

good and unambiguous basis for testing

 Formal validation of tests

 Algorithmic derivation of tests :

tools for automatic test generation

 Allows to define measures expressing coverage

and quality of testing
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CHALLENGES OF TESTING THEORY

 Infinity of testing:
 too many possible input combinations:    infinite breadth
 too many possible input sequences:   infinite depth
 too many invalid and unexpected inputs

 Exhaustive testing never possible:
 when to stop testing ?
 how to invent effective and efficient test cases with high

probability of detecting errors ?

 Optimization problem of testing yield vs. effort
 usually stop when time is over ......
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FORMAL TESTING
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test
execution

pass / fail

test
generation

test suite TS

specification
S

implementation
i

correctness
criterion

implementation
relation

imp

i passes Ts

i imp s

⇔⇑ ⇓ soundexhaustive



FORMAL TESTING :  CONFORMANCE
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s ∈ SPECS   specification
IUT          implementation under test

IUT is concrete, physical object

Model the physical world

But IUT is black box  ! ?

Assume that model  iIUT  exists

specification
S

implementation
IUT

correctness
criterion

IUT conforms-to s



FORMAL TESTING :  CONFORMANCE
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specification
S

implementation
iIUT

formal
correctness

criterion
iIUT imp s

s ∈ SPECS Specification
iIUT ∈ MODS model of IUT

Test assumption :
   each concrete IUT can be modelled
   by some iIUT ∈  MODS

Conformance :   iIUT  imp  s

iIUT  is not known ;
testing to learn about iIUT



FORMAL TESTING :  TEST DERIVATION
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test
generation

test suite TS

specification
S

Test generation :

der : SPECS → ℘(TESTS)

Test suite - set of test cases :       T  ⊆ TESTS
Test case :    t  ∈ TESTS



FORMAL TESTING :  TEST EXECUTION
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test
execution

    OBS

test suite T
implementation

IUT

Test execution leads to a set of observations :
   exec :  TESTS  ×  IMPS  →  ℘(OBS )

i IUT

Model of test execution :
   obs :  TESTS  ×  MODS  →  ℘(OBS )



TEST HYPOTHESIS
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 OBS

test suite T

Observational framework :   TESTS,  OBS,  exec,  obs
Test hypothesis : for all IUT in IMPS . ∃ iIUT ∈ MODS .

      ∀t ∈ TESTS . exec (t, IUT) =  obs (t, iIUT)

obsi IUT

test execution

IUT

exec



FORMAL TESTING :  VERDICTS
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Observations are interpreted :
   νt :  ℘(OBS)  →  { fail, pass}

test
execution

  OBS νt

pass

fail



TESTING FOR CONFORMANCE
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IUT  passes  Ts      ⇔def      ∀ t ∈ Ts .  IUT  passes t

IUT  passes  t    ⇔def  νt ( exec ( t, IUT ) )  =  pass

Test hypothesis :

∀ t ∈ TESTS .   exec ( t, IUT )   =   obs ( t, iIUT )Proof obligation :
  ∀ i ∈ MODS .

( ∀ t ∈ Ts .  νt ( obs ( t, i ) )  =  pass )  ⇔  i imp s

IUT  passes  Ts     ⇔  i conforms-to s
?

Definition :   i  conforms-to  sIUT  conforms-to  s

iIUT   imp  s

⇔

∀ t ∈ Ts .  νt ( obs ( t, iIUT ) ) =   pass

⇔

∀ t ∈ Ts .  νt ( exec ( t, IUT ) )   =   pass

⇔

∀ t ∈ Ts .  IUT  passes  t

⇔

IUT  passes  Ts

⇔



TESTING FOR CONFORMANCE
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IUT  passes  Ts

Proof of completeness on model leads to completeness for
tested systems :

i conforms-to  s

exhaustive

⇒
⇐

sound

Proof obligation :

  ∀ i ∈ MODS .

      ( ∀ t ∈ Ts .  νt ( obs ( t, i ) )  =  pass )   ⇔   i imp s



FORMAL TESTING
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exec :
TESTS ×

IMPS →  ℘
(OBS)

der : SPECS →
℘(TESTS)

Ts   ⊆ TESTS

s ∈SPECS

IUT ∈IMPS

imp

iIUT ∈MODS

obs :
TESTS ×

MODS →  ℘
(OBS)

νt: ℘
(OBS)→

{fail,pass}
  OBS

pass

fail

Soundness and exhaustivess:
∀ i∈MODS .
  (∀ t∈der(s) . νt (obs(t,i)) = pass )
   ⇔ i imp s

Test hypothesis :
∀ IUT∈IMPS . ∃ iIUT ∈MODS .
   ∀ t∈TESTS . exec(t,IUT) = obs(t,iIUT)



TESTING PREORDERS
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implementation
i

specification
s

environment
e

environment
e

↓  ↓      ↓
?       ?            ?

≤

i ≤ s    ⇔   ∀ e ∈ Env .  obs ( e, i )  ⊆  obs (e, s )
For all environments e

all observations of an implementation i in e
should be explained by                  

observations of the specification s in e.



LABELLED TRANSITION SYSTEMS
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PARALLEL COMPOSITION
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CLASSICAL TESTING PREORDER
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     ↓      ↓
                   LTS(L)   CTraces(e||s)

    

i  ≤te  s    ⇔   ∀ e ∈ E .  obs ( e, i )  ⊆  obs (e, s )

implementation
i

specification
s

environment
e

environment
e

≤te

Philosophical question:
can we observe deadlocks?

In testing one may
ignore the difference
between livelock and

deadlock



TESTING PREORDER
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implementation
i

specification
s

environment
e

environment
e

≤te

i  ≤te  s    ⇔   ∀ e ∈ LTS(L) . ∀ σ ∈ L* .
         e||i deadlocks after σ   ⇒  e||s deadlocks after σ

⇔    FP(i)  ⊆  FP(s) 

FP(p)  =  { 〈 σ, A 〉 |  p after σ refuses A }

i  ≤te  s    ⇔   ∀ e ∈ LTS(L) . ∀ σ ∈ L* .
         { σ | σ∈Ctraces(e||i)}   ⊆ { σ | σ σ∈Ctraces(e||s)}

Aa all for p  and  p p

iff A  refuses  after p
a

!"/##"
$

$



QUIRKY COFFEE MACHINE [Langerak]
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Can we distinguish between these machines?

coin coin

tea coffee
bang bang

coffee tea

coin coin

tea coffee
bang bang

coffeetea

≈te

They are 
testing equivalent!



REFUSAL PREORDER
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i  ≤rf  s    ⇔   ∀ e ∈ E .  obs ( e, i )  ⊆  obs (e, s )

implementation
i

specification
s

environment
e

environment
e

≤rf

         ↓      ↓
        LTS(L∪{δ})    CTracesδ(e||i)

e observes with δ
deadlock on all

alternative actions

CTracesδ (e||i) =
   {σ∈(L∪{δ})* | e||i after σ refuses L}
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QUIRKY COFFEE MACHINE REVISITED

coin coin

tea coffee
bang bang

coffee tea

coin coin

tea coffee
bang bang

coffeetea

≈te

≈rf

δ

coin

coffee

coffee

bang

tester

δ only enabled
if coffee is not
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I/O TRANSITION SYSTEMS

 testing actions are usually directed, i.e. there are inputs
and outputs

L=Lin∪Lout with Lin∩Lout=∅

 systems can always accept all inputs: input enabledness

 for all states s, for all a∈Lin s ⇒

 testers are I/O systems
 output (stimulus) is input for the SUT
 input (response) is output of the SUT
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a



QUIESCENCE

 Because of input enabledness S||T deadlocks  iff  T produces no
stimuli and S no responses.  This is known as quiescence

 Observing quiescence leads to two implementation relations for
I/O systems I and S :

  I ≤iote S iff for all I/O testers  T :

CTraces(I||T)  ⊆ CTraces(S||T)       (quiescence)

2. I ≤iorf S iff for all I/O testers  T :

CTracesδ(I||T) ⊆ Ctracesδ(S||T) (repetitive quiescence)
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INPUT-OUTPUT QCM
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coin? coin?

tea? coffee?
bang? bang?

coffee!

tea?

coffee?

tea !

coffee?

tea?

tea !

states must be
saturated with
input loops for

input
enabledness

≈iote

≈iorf

coin!

coffee!

coffee?
δ

bang!

coffee !

coffee?

coffee!

quiescent
states



QUIESCENT LABELLED TRANSITION SYSTEMS
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QLTS the is  QLTS underlying its then

 , and   withLTS an be   Let

quiescent. is  and  then  if that such
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   LTS an is QLTSA 
This definition is

closed under
determinisation.



IMPLEMENTATION RELATION IOCO
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)()(*

(.))

!!!

"
"

siiorf

OI

outoutLsi

LLL

si

#$%#

&=

        iff           

define  wethen , over

  applying after(possibly 
 QTLSs be be  and  Let

For implementations we will require input-enabledness,

But not for specifications.

In this setting it makes sense to restrict testing 

to the traces of the implementation:

)()( !!! sisioco outouttracessi "#$"        iff           



INTUITION BEHIND IOCO
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Intuition:

i ioco-conforms to s, iff

1.  if  i  produces output  x  after a specified trace  σ,
 then  s  can produce  x  after  σ

2.  if  i  cannot produce any output after a specified trace  σ,
 then  s  cannot produce any output after  σ   (quiescence  δ)

)()( !!! sisioco outouttracessi "#$"        iff           



ADDING QUIESCENCE

August 2010NATO Summer School, Marktoberdorf 36

 !coffee

?dime

?dime
?quart

?dime
?quart

i
?quart

 !coffee

?dime

?dime
?quart

?dime
?quart

δ(i)
?quart

δ

δ



CALCULATING OUT
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δ

δ
outi (ε)    =

outi (?dime)    =

outi (?dime.?dime    =

outi (?dime.!coffee)  =

outi (?quart )    =

outi (!coffee )    =

outi (?dime.!tea )    =

outi (δ)    =

 !coffee

?dime

?dime
?quart

?dime
?quart

i
?quart

{ δ }

{ !coffee }

{ !coffee }

{ δ }

{ δ }
∅

∅

{δ }



IMPLEMENTATION RELATION  IOCO
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 !coffee

?dime

?dime

?dime

i

 !coffee

?dime

s

!tea

outi (?dime)   =   { !coffee } outs(?dime)   =   { !coffee, !tea }

)()( !!! sisioco outouttracessi "#$"        iff           

ioco!



IMPLEMENTATION RELATION  IOCO
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 !coffee

?dime

s

?dime

?dime

 !coffee

?dime

i

!tea

?dime

out i(?dime)  =  { !coffee, !tea } out s(?dime)  =  { !coffee}⊄

)()( !!! sisioco outouttracessi "#$"        iff           

ioco!/



IMPLEMENTATION RELATION  IOCO
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?dime

?dime
?quart

 !coffee

?quart
i

!tea  !coffee

?dime

s

outi (?dime)  =  { !coffee }
outi (?quart)  =   { !tea }

outs (?dime)      =  { !coffee }
 outs (?quart)   =  ∅

But  ?quart ∉ Tracesδ( s ) 

)()( !!! sisioco outouttracessi "#$"        iff           

ioco!



IMPLEMENTATION RELATION  IOCO
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outi (?dime.? dime)  = outs (? dime.? dime)  =  { !tea, !coffee }

i

?dime

?dime

?dime ?dime

!tea

?dime

?dime

 !coffee

?dime

s

 !coffee

?dime

?dime

?dime ?dime

!tea

?dime

?dime

?dime

?dime

!tea

outi (? dime.δ.? dime) = { !coffee }  ≠ outs (? dime.δ.? dime) = { !tea, !coffee }

)()( !!! sisioco outouttracessi "#$"        iff           

is
si

ioco

ioco

!/

!
δ δ



FORMAL TESTING
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test
execution

pass / fail

test
generation

test suite TS

specification
S

implementation
i

correctness
criterion

implementation
relation

ioco

i passes Ts

i ioco s

⇔ ?



TEST CASES

A test (case) t  over L=LI ∪ LδO is an LTS with
 t is deterministic
 t does not contain an infinite path
 t is acyclic and connected
 for all states s of t we have either
 after(s)= ∅, or    (termination)
 after(s)=  LδO , or (response observation)
 after(s)= {a?} ∪ LO (stimulus)
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Alternatively, a test case can be
characterised by the

prefix-closed set of its traces



INPUT-OUTPUT QCM AGAIN
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coin? coin?

tea? coffee?
bang? bang?

coffee!

tea?

coffee?

tea !

coffee?

tea?

tea !
≈iote

≈iorf

coin!

coffee!

coffee?
δ

bang!

coffee !

coffee?

coffee!



TEST ANNOTATIONS

Let t be a test case:
 an annotation of t is a function

a: Ctracest → { pass, fail }
 the pair ṫ = (t,a) is an annotated test case

When a is clear from the context, or irrelevant,
we use t for both test case and its annotation.

August 2010NATO Summer School, Marktoberdorf 45



ANNOTATED TEST CASES VS TTCN
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test case t

!coin

    !coin ; Start timer1

        ?tea fail

        ?timer1 fail

        ?coffee

            !coin ;  Start timer2

                ?tea pass

                ?timer2 pass

                ?coffee fail

 coffee!

coin?

coin ?

tea!

 coffee!tea!

 δ

coin?

 δ

pass

failfail

failpass



EXECUTION AND EVALUATION

Let A be a QLTS over L and t a test over L.
The executions of t with A are defined as
 exect (A) = Ctraces(t||A)
 in fact, exect (A) = Ctraces(t) ∩ traces(A)

Let ṫ = (t,a) be an annotated test case.
The verdict of ṫ is the function

vṫ :QLTS(L) → {pass,fail} with

vṫ (A) = pass if for all σ∈ exect (A)  a(σ) = pass
            fail otherwise
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This can be lifted
in the obvious way

to sets of tests,
i.e. test suites.



A SOUND AND COMPLETE TEST SUITE

Given a specification s we define the annotation

as
ioco(σ) = fail if ∃σ1∈tracess, a!∈LδO   σ1a! ≤ σ 

and σ1a∉tracess
pass otherwise

Given s and any t∈Tests(s), its annotated version
(t, as

ioco) is sound w.r.t. s under ⊆ioco.

The test suite T={(t, as
ioco) | t∈Tests(s)} is sound and

complete w.r.t. s under ⊆ioco.
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Tests(s) contains all
tests over the same

label set L as s



DESIRABLE TEST CASE PROPERTIES

Let s be specification over a label set L, then

 a test t is fail-fast w.r.t. s if
σ∉tracess implies that ∀a∈L σa∉t

 a test t is input-minimal w.r.t. s if
for all σa?∈t with a?∈LI it holds that

    σ∈tracess  implies σa?∈tracess
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ANNOTATED TEST GENERATION ALGORITHM
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To generate a test case  t(S)  from a transition system
specification with  S  set of states  ( initially S = S0)

1 end test case

PASS

Apply the following steps recursively, non-deterministically

2 observe output

FAIL

t(S after o!)

FAIL

allowed outputs o!

forbidden outputs

o!
δ

3 supply input

supply i?

t(S after i?)

observe output (no δ)

fail-fast, input-minimal,
ioco-sound & 

(in the limit) ioco-complete



TEST GENERATION EXAMPLE
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Equation solver for y2=x

test

?-2
?2

PASS PASS

otherwise

FAIL

?-3

PASS

otherwise
?3

FAIL

specification

? x (x >= 0)

! √x

? x (x < 0)

! -√x !4

!9



TEST EXECUTION EXAMPLE
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?-3

PASS

otherwise
?3

FAIL

?-2
?2

PASS PASS

otherwise

FAIL

? x (x >= 0)

! √x

? x (x < 0)

! -√x

? y

implementation test| |

!9

!4



FORMAL TESTING WITH TRANSITION SYSTEMS
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νt: ℘
(traces)→
{fail,pass}

traces

der : LTS →
℘(TTS)

Ts   ⊆ TTS

s ∈ LTS

⊆ ioco

iIUT ∈IOTS pass

fail

obs :  TTS
× IOTS →
℘(traces)



SOME TEST GENERATION TOOLS FOR IOCO

 TVEDA   (CNET - France Telecom)
 derives TTCN tests from single process SDL specification
 developed from practical experiences
 implementation relation  R1 ≈ ioco

 TGV        (IRISA - Rennes)
 derives tests in TTCN from LOTOS or SDL
 uses test purposes to guide test derivation
 implementation relation:  unfair extension of ioco

 TestComposer (Verilog)
 Combination of TVEDA and TGV in ObjectGeode

 TestGen  (Stirling)
 Test generation for hardware validation

 TorX        (University of Twente, ESI)
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A TEST TOOL :  TORX

 On-the-fly test generation and test execution

 Implementation relation:  ioco

 Specification languages:   LOTOS,  Promela,  FSP,  Automata
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TorX IUT
observe
output

offer
input

next
input

specification
check
output

pass
fail
inconclusive

user:
manual
automatic
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TORX TOOL ARCHITECTURE

explorer primer driver adapter IUTspec.

  states
transitions

abstract
actions

abstract
actions

concrete
actions

specification
text

TorX IUTspecification



ON-THE-FLY  ↔  BATCH TESTING
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TTCNTTCNTTCNTTCNTTCNTTCNTTCNtest
rep. batch test executionbatch test generation

TTCNTTCNTTCNTTCNTTCNTTCNTTCNtest
rep.

on the fly

explorer primer driver adapter IUTspec.



ON-THE-FLY TESTING

explorer primer driver adapter IUTIUTIUT
  bits

 bytes

  states

transitions
abstract
  actions transition

? x (x >= 0)

! √x

? x (x < 0)

! -√x

specification implementation

? x (x >= 0)

! √x

? x (x < 0)

? x

Concrete action
! 00001001

New menu
! x (x < 0)
! x (x >= 0)

Abstract action
! 9
Abstract action
? 3

Choice
! 9

Concrete action
? 00000011

Action
? 3
Choice
! -1

New menu
! x (x < 0)
! x (x >= 0)

Check
? 3

Abstract action
! -1

Concrete action
! 11111111

Concrete action
? (timeout)

Abstract action
? (quiescence)

Action
? (quiescence)

Check
? (quiescence)

New menu
! x (x < 0)
! x (x >= 0)

spec



TORX
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TORX CASE STUDIES

 Conference Protocol

 EasyLink TV-VCR protocol

 Cell Broadcast Centre component

 Road Toll  Payment Box protocol

 V5.1 Access Network protocol

 Easy Mail Notification

 FTP Client

 “Oosterschelde” storm surge barrier-control

 TANGRAM: testing VLSI lithography machine
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academic

Philips

CMG

Interpay

Lucent

CMG

academic

CMG

ASML



THE CONFERENCE PROTOCOL EXPERIMENT

 Academic benchmarking experiment,
initiated for test tool evaluation and comparison

 Based on really testing different implementations

 Simple, yet realistic protocol  (chatbox service)

 Specifications in LOTOS, Promela, SDL, EFSM

 28 different implementations in  C

 one of them (assumed-to-be) correct

 others manually derived mutants

 http://fmt.cs.utwente.nl/ConfCase
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THE CONFERENCE PROTOCOL
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CPE

UDP Layer

CPECPE

join
leave
send

receive

Conference Service



CONFERENCE PROTOCOL TEST ARCHITECTURE
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CPE
= IUT

UT-PCO = C-SAP

LT-PCO

UDP Layer

U-SAP LT-PCO

Tester
TorX

B C

A



THE CONFERENCE PROTOCOL EXPERIMENTS

 TorX  -   LOTOS,  Promela :  on-the-fly  ioco  testing
Axel Belinfante et al.,
Formal Test Automation: A Simple Experiment
IWTCS 12, Budapest, 1999.

 Tau Autolink  -  SDL :  semi-automatic batch testing

 TGV  -  LOTOS :  automatic batch testing with test purposes
Lydie Du Bousquet et al.,
Formal Test Automation: The Conference Protocol with TGV/TorX
TestCom 2000, Ottawa.

 PHACT/Conformance KIT  -  EFSM :  automatic batch testing
Lex Heerink et al.,
Formal Test Automation: The Conference Protocol with PHACT
TestCom 2000, Ottawa.
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CONFERENCE PROTOCOL RESULTS
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Results:

fail
pass
core dump

PHACT
EFSM

21
6
1

TorX
LOTOS

25
3
0

pass 000
444
666

000
444
666
289
293
398

TGV
LOTOS
random
25
3
0

TGV
LOTOS
purposes
24
4
0

TorX
Promela

25
3
0

000
444
666
332

000
444
666

000
444
666



CONFERENCE PROTOCOL ANALYSIS

 Mutants 444 and 666 react to PDU’s from non-existent partners:

 no explicit reaction is specified for such PDU’s,

so ioco-correct, and TorX does not test such behaviour

 So, for LOTOS/Promela with TGV/TorX:

All ioco-erroneous implementations detected

 EFSM:

 two “additional-state” errors not detected

 one implicit-transition error not detected
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CONFERENCE PROTOCOL ANALYSIS

 TorX statistics
 all errors found after  2 - 498  test events

 maximum length of tests :   >  500,000  test events

 EFSM statistics
 82 test cases with “partitioned tour method”   ( = UIO )

 length per test case :   <  16  test events

 TGV with manual test purposes
 ~ 20  test cases of various length

 TGV with random test purposes
 ~ 200  test cases of  200  test events
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INTERPAY HIGHWAY TOLLING SYSTEM
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HIGHWAY TOLLING PROTOCOL

Characteristics :

 simple protocol

 parallelism: many cars at the same time

 encryption

 system passed traditional testing phase
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 HIGHWAY TOLLING SYSTEM
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Payment
Box

(PB)Road Side
Equipment

Onboard
Unit

UDP/IPWireless



HIGHWAY TOLLING: TEST ARCHITECTURE
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Test Context

ObuSim

spec

PB
+

ObuSim
+

TCP/IP
+

UDP/IP

Payment
Box

TCP/IP

TorX

PCO

SUT

UDP/IP IAP



HIGHWAY TOLLING: RESULTS

 Test results :

 1 error during validation   (design error)

 1 error during testing   (coding error)

 Automated testing :

 beneficial:  high volume and reliability

 many and long tests executed   ( > 50,000 test events )

 very flexible:  adaptation and many configurations

 Real-time :
 interference computation time on-the-fly testing

 interference quiescence and time-outs
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STORM SURGE BARRIER CONTROL
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Oosterschelde Stormvloedkering (OSVK)



SVKO EMERGENCY CLOSING SYSTEM

 Collect water level sensor readings (12x, 10Hz)
 Calculate mean outer-water level and mean inner-

water level
 Determine closing conditions
if (closing_condition)

{notify officials

 start diesel engines

 block manual control

 control local computers}

 Failure rate: 10-4/closing event
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TESTING SVKO
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 test controller (Unix port)
 many timed observations

 shortest timed delay: 2 seconds
 longest timed delay: 85 minutes

water level sensor

water level sensor

12x collector controller

diesel generator

power control

barrier control
user control

signal wire communication



RESULTS

 real-time control systems can be tested with TorX-
technology
 addition of discrete real time
 time stamped actions

 quiescence action is not used
 time spectrum of 3 orders of magnitude
 deterministic system

 adhoc implementation relation
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RT TORX HACKS: APPROACH 1

Ignore RT functionality:

 test pure functional behaviour

 analyse timing requirements using TorX log files &
assumed frequency of wire polling actions
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RT TORX HACKS: APPROACH 2

Add timestamps to observations

 adapter adds timestamps to observations when they

are made and passed on to the driver

 timestamps are used to analyse TorX log files
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TIMING ERROR LOGGING

int time,newtime;
...
input?value,time         // input: stimulus
...                      // variable time is set here
output!param,&newtime    // output: observation

// & is extension to promela:
if // variable newtime is set here
:: (newtime==time+60)    // expected delay of 60 is
    print(“OK”,...)      // checked & logged
:: (newtime!=time+60)
    print(“NOK”,...)
fi;

August 2010NATO Summer School, Marktoberdorf 79



RT TORX HACKS: APPROACH 3

Add timestamps to stimuli & observations
 adapter add timestamps to observations when they are made

and passed on to the driver

 adapter adds timestamps to stimuli when they are applied and
returned to the driver

 analysis:

 timing error logging: observed errors are written to TorX
log file

 timing error failure: observed errors cause fail verdict of
test case
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TIMING ERROR FAILURE

int time;
...   // input: stimulus
input?value,time   // variable time is set here
...
if     // output: observation
:: output!param,(time+59)   // wait 60 (-1)
:: output!param,(time+60)    // wait 60
:: output!param,(time+61)    // wait 60 (+1)
fi   // if observation is not made
                             // after approx. 60 units,

  // quiescence will be
  // observed
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REAL-TIME TESTING AND I/O SYSTEMS

 can the notion of repetitive quiescence be combined

with real-time testing?

 is there a well-defined and useful conformance relation

that allows sound and (relative) complete test

derivation?

 can the TorX test tool be adapted to support Real-

timed conformance testing?
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WITH REAL-TIME DO WE STILL NEED QUIESCENCE?
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coin? coin?

tea? coffee?
bang? bang?

coffee!

tea?

coffee?

tea !

coffee?

tea?

tea !

Yes!

the example 
processes

should also 
be distinct

in a real-time 
context

coffee!



REAL-TIME AND QUIESCENCE

 s is quiescent iff:
for no output action a and delay d: s ⇒

 special transitions:
 s → s for every quiescent system state  s

 testers observing quiescence take time:
TestM: set of test processes having only δ(M)-actions to
observe quiescence

 assume that implementations are M-quiescent:
for all reachable states s and s’:
         if s  ⇒  s’ then s’ is quiescent
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a(d)

δ

ε(M)



REAL-TIME AND QUIESCENCE
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i tiocoM  s   ⇔ ∀σ ∈ Tracesδ(M)( s ) :

outM ( i after σ)  ⊆  outM ( s after σ)

i ≤tiorf  s ⇔ ∀T ∈ TestM:

Deadlocksδ(i||T) ⊆ Deadlocksδ(s||T)

 ⇔ ∀σ ∈ ( L ∪ { δ(M) } )*:

outM ( i after σ)  ⊆  outM ( s after σ)

 M



PROPERTIES

 for all M1 ≤ M2:

i ≤tiorf  s implies i ≤tiorf  s

 for all time-independent i,s and M1,M2>0

i ≤tiorf  s  iff  i ≤tiorf  s  iff  i ≤iorf  s
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M1 M2

M1 M2



A LIMITATION
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states are
saturated
with input
loops that
reset the
clocks x xx=M

tea !
x=M

coffee!

x≤M

coin? coin?

tea? coffee?
tea?coffee?

x≤M

x=M
coffee!

x=M
tea !

x<M
bang?

x<M
bang?x≥M

bang?
x≥M

bang?

x≤M x≤M

x x

this process cannot
be distinguished

from the next



REAL-TIME TEST CASES
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 labels in  L ∪ { δ }, G(d)

 tree-structured
 finite, deterministic
 final states pass and fail
 from each state ≠  pass, fail

 choose an input i? and a time k and
wait for the time k accepting all
outputs o! and after k  time units
provide input  i?

 or wait for time M accepting all
outputs o! and δ

Test case  t ∈ TTA
TTA – Test Timed Automata :

 off!
x=5      

x:=0               

on?
x:=0

off!
x<5

 off!

 δ
     x=M

failfail

failpass

x≤M

     δ
x=M

x≤M

x≤k

x:= 0

 off!

fail



TIMED TEST GENERATION PROTO-ALGORITHM
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To generate a test case  t(S)  from a timed transition system specification
with  S  set of states  ( initially S = {s0} )

1. end test case PASS

Apply the following steps recursively, non-deterministically

allowed outputs oj!
after d time-units

2. choose k ∈ (0, M) and input µ

FAIL FAIL

forbidden outputs oi!
after d’ time-units

o1!
x=dn

x=d1
x=d’n’

x=k

x ≤ k

tµ t1 tn

x:=0

x=d’1
on’!

µ? o1!
on!

allowed outputs oj!
after d time-units

3. wait for observing possible output

FAIL FAIL

forbidden outputs oi!
after d’ time-units

δ
x=d’1 x=dn

x=d1
x=d’n’

x=M

x ≤ M

tδ t1 tn

x:=0

o1! on’! o1!
on!
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Example

m? m?

t? c?
b? b?

c!
t?

c?
t!

c?

t?

t!

c!

spec:

impl:
M=k

test:

m? m?

t? c?
b? b?

t!
c?

c?
t!

t?

t?

c!

c!

x<k

x<k

x<k

x<k

δ

fail
m?

x≤1

x=1
x:=0

x=M
x:=0

c?
x=1
x:=0

c?
x=1
x:=0

b?
x=1
x:=0

fail

fail

fail

pass

fail

fail

fail

failfail

x≤1

x≤M

x≤1

x≤1

x≤M

c!

c!

c!

c!

c!

c!

fail

fail
t!

t!

t!δ
pass

t!

t!

t!x=M
δ



SOUNDNESS & COMPLETENESS

 the non-timed generation algorithm can be shown to generate
only sound real-time test cases

 test generation is complete
for every erroneous trace it can generate a
test that exposes it

 test generation is not limit complete
because of continuous time there are uncountably many timed error
traces and only countably many test are generated by repeated runs

 test generation is almost limit complete
repeated test geration runs will eventually generate a test case that
will expose one of the non-spurious errors of a non-conforming
implementation
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non-spurious errors
=

errors with a positive
probability of

occurring
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COVERAGE: MOTIVATION

 Testing is inherently incomplete
 Test selection is crucial

 Coverage metrics
 Quantitative evaluation of test suite
 Count how much of specification/implementation
   has been examined

 Examples:
 White box (implementation coverage):
 Statement, path, condition coverage

 Black box (specification coverage)
 State, transition coverage
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TRADITIONAL COVERAGE MEASURES

Traditional measures are:

 based on syntactic model features
 states, transitions, statements, tests

 uniform
 all system parts treated as bequally important

Disadvantages:

 replacing the spec by an equivalent one yields different coverage
 we need a semantic approach

 some bugs are more important than others;
 test crucial  behaviour first and better
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OUR APPROACH

 Considers black box coverage
 similar ideas could apply to white box coverage

 Is semantic
  Semantically equivalent specs yield same coverage

 Is risk-based
 more important bugs/system parts

 higher contribution to coverage

 Allows for optimization
 Cheapest test suite with 90% coverage

 Maximal coverage within cost budget
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FAULT MODELS

 f: Observation  R≥0

 f(σ) = 0 : correct behaviour

 f(σ) > 0 : incorrect behaviour

                : f(σ) severity

 0 < Σσ f(σ) < ∞

 Observations are traces
 Observations  = L*

 L = (LI, LU)

 How to obtain f?
 E.g. via fault automaton
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f: L*  R≥0
f(play? song!) = 0       correct
f(play? silence!) = 10  incorrect
f(song!) = 3               incorrect



EXAMPLE TEST CASE
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 f: L*  R
 f(play? song!) = 0
 f(play? δ) = 10
 f(play? song! play? δ ) = 10
 f(song!) = 3

 ∑ σ f(σ) = 100 (assumption)

 Absolute Coverage abscov(f,t)
 sum the error weights
 10 + 10 + 0  = 20

 Relative Coverage

abscov(f,t)
totcov(f)

20
100

=

should be ≠ 0, ≠∞

play?

song!

play?

song!δ

δ

passfail

fail 1
0

1
0

0

Test t



EXAMPLE TEST SUITE
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Absolute Coverage
 count each trace once !
 10 + 10 + 0  + 0 + 2 = 22

Relative Coverage
abscov(f,t)
totcov(f)

22
100

=

play?

song!

play?

song!δ

δ

10

10 0

Test t play?

song!δ

δ

10

20

song!

Test
t’

= 22%



FAULT SPECIFICATIONS
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fault model
 f(σ) = 0                 if σ trace of automaton
 f(σ) = 3                 if σ ends in 3-state
 f(σ) = 10               if σ ends in 10-state

infinite total coverage !!
 ∑ σ f(σ) = 3 + 10 + 3 + 10 + ...  = ∞

Solution 1: restrict to traces of lenght k
 Omit here, works as solution 2, less

efficient, more boring
Solution 2: discounting
 errors in short traces are worse
 Lower the weight proportional to length

song!

play?

3

play?

10

song! δ

Use your favorite
Formalism, e.g.
UML state charts,
LOTOS, etc

 · α |σ|-1 

  · α |σ|-1



FAULT SPECIFICATIONS
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fault model
 f(σ) = 0                if σ automaton trace
 f(σ) = 3                if σ end in 3-state
 f(σ) = 10              if σ ends in 10-state
Example
 f(play?) = 0
 f(play? δ ) = 10 · α
 f(play? song! song! ) = 3 · α 2
 ....

·α|σ|-1
 ·α|σ|-1

song!

play?

3

play?

10

song!
δ

•  α  < 1/out(spec) = 1/2

•  α  can vary per transition

•  tune α 



FAULT SPECIFICATIONS
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Total coverage becomes fcomputable:

   tc(s)  =  3 +  α tc(t)
   tc(t)  = 10 + α tc(t) + α tc (s)

   tc(x)  =  wgt(x) + α ∑y: succ(x)  tc(y)

Solve linear equations

     tc    =  wgt (I - α A)-1

with A adjacency matrix

song!

play?

3

play?

10

song!
δ

s t

Relative Coverage
abscov(f,t)
totcov(f)

  10 + 7α  
1 – α -  α2 tc(s) = 



TEST SUITE COVERAGE
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Absolute test suite coverage
 count each trace once!
 merge test cases first

song!

play?

song!

play?

δ

δ

10

10 0

10 · α

10 · α3
Relative test suite coverage

abscov(f,t)
totcov(f) = 10α+ 3α2 +10α3 

1 – α -  α2 
  10 +7α  

play?

song!δ

δ

10

30

song!

3 · α 2

10 · α



OPTIMIZATION

August 2010NATO Summer School, Marktoberdorf 106

song!

play?

3

Find best test case of lenght n
  v1(s)      =  3
  v1(t)      =  10
  vk+1(s)   = max(3, α vk(t))
  vk+1(t)   = max(10 + α vk(s), α vk(t))

Complexity: O(n #transitions in spec)

play?

10

song!
δ

s t

More optimizations:
 Test suite of k tests &

lenght n;
 Best test case in

budget;
 Add costs
 ....



PROPERTIES

Framework for black box coverage

 robustness
 small changes in weight yield small changes in coverage

 relcov(s) continuous

 tunable (calibration)
 change α : get as much total coverage as desired
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CALIBRATION
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song!

play?

3

α  small  present is important, future unimportant

             few small test cases with high (>0.999) coverage

tune α    make tests with length >k important, i.e
                 make cov(Tk, f) as small as desired.
              α(s) = 1/n(s) - ε                 n(s) =outinf(s)
                 limε  0 cov(Tk,fα) = 0        for all k

play?

10

song!
δ

s t
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CONCLUSIONS



CONCLUSIONS

 model-based testing offers theory and tools for  (real-time)
conformance testing, in particular:
 test generation, execution & evaluation
 coverage analysis

 ioco-theory, TorX and related tools have been evaluated against
many industrial cases
 on-the-fly application very productive
 good coverage with random test execution

 current theory is control-oriented
 OK for classical embedded applications
 must be extended to cope with data-intensive systems
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FUTURE WORK

 integration with data-oriented testing
classical, symbolic

 stochastic systems
continuous & discrete time Markov chains

 quality of service
performance testing

 hybrid systems
testing discrete vs polling continuous behaviour

 actual coverage measures
actual coverage during test execution

 integration white/black box spectrum
grey-box testing

 ...
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RESOURCES

 http://fmt.cs.utwente.nl/tools/torx/introduction.html

 http://www.testingworld.org/

 http://www.laquso.com/knowledge/toolstable.php

 http://www.irisa.fr/vertecs/

 http://www.cs.aau.dk/~marius/tuppaal/
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TEST SELECTION :  TEST PURPOSES

 User specifies what (s)he wants to test :

 very detailed behaviours

 generic :  criteria,  strategies

 Questions :

 Appropriate formalism for test purposes?

 Relation between test purposes and test suites?

 Interpretation of test results w.r.t. test purposes?

 When is a test suite able to “challenge” the implementation to “satisfy”

the test purpose?
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 TEST PURPOSE :  EXAMPLE
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Test purpose:
  can the machine

deliver coffee?

Desired observation
= observation objective :
    ?coin . !coffee

!coffee!coin

?coin ?coin

miss
miss

hit

?coffee?coin

!coin

θ

pass
fail pass



TEST PURPOSES
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test
execution

pass / fail

test
generation

test suite T

specification
S

implementation
i

correctness
criterion

test purposes



OBSERVATION OBJECTIVES
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 Observation objective related to
observations made during testing

 Steering the test in order to meet certain
observations is  exhibition testing

 Exhibition is orthogonal to conformance



TESTING FOR CONFORMANCE
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s ∈ SPECS

IUT ∈ IMPS

Physical world

IUT conforms-to s

iIUT ∈ MODS

Formal world

s ∈ SPECS

iIUT imp s



TESTING FOR EXHIBITION

August 2010NATO Summer School, Marktoberdorf 118

e ∈ TOBS

IUT ∈ IMPS

Physical world

IUT exhibits e

iIUT ∈ MODS

Formal world

e ∈TOBS

iIUT rev e



OBSERVATION & EXHIBITION

 hit-function :

He: P(OBS)  →  { hit, miss }

 i hits e by te  =df  He ( EXEC (te, i ) )  =  hit

 i hits e by Te =df

He ( ∪{ EXEC (te, i ) | te ∈Te } )  =  hit
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TESTING FOR EXHIBITION

i  hits e by Te   ⇔   i rev e

e-sound : i rev e   ⇐   i  hits e by Te

e-exhaustive : i rev e   ⇒   i  hits e by Te

We want an e-sound and e-exhaustive test suite
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COMBINING EXHIBITION AND CONFORMANCE
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i rev e MODS

i imp s

i passes T

{ i | i hits e by T  }  ∩  { i | i imp s }   ≠   Ø

practical approach :



IOTS :  REVEAL RELATIONS

 Lδ = LI ∪ LU ∪ {δ}

 TOBS =  P ((Lδ)*)

 rev relation:

  i rios e =df

   tracesδ (i ) ∩ e ≠ ∅

 Hrios-e (O) = hit  ⇔  prefix(O) ∩ e ≠ ∅
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i  rios  { ?coin . !coffee,   ?coin . !milk . !coffee}

!coffee

!milk

!milk

?coin

!coffee

implementation



TESTING FOR CONFORMANCE AND EXHIBITION
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e  =  { ?coin . !coffee, ?coin . !milk . !coffee }

implementation

!coffee

!milk

?coin

!coffee !sugar !tea

!sugar

!tea

!milk!sugar

!coffee

!milk

?coin

!coffee

δ

!milk δ

pass fail fail

pass
hit

hit
fail

pass

pass

miss
miss

!sugar

!tea

fail

!tea

test case, incl. purpose

fail



TORX :  TEST PURPOSES, SELECTION, ……
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driver adapter

test
purpose
explorer

primer’

spec.
explorer primer

co
m

bi
na

to
r

stochastic
selector

TTCNTTCNtest
log

explorer primer

inverse
test purposes

denoted by regular
expressions, e.g.
( LI . LU* . δ )n


