
Issues of adaptable software for
open-world requirements

Carlo Ghezzi

Politecnico di Milano

Deep-SE Group @ DEI

carlo.ghezzi@polimi.it

1

mailto:carlo.ghezzi@polimi.it

Lectures in the context of the
other lectures

• I will focus on software evolution

– how to support evolution in a sound way using formal
methods

– in particular, on adaptation (self-managed evolution)

• Evolution&change traditionally viewed as antagonistic to
formal methods

• To support evolution, formal methods are instead
necessary; they need to extend to run-time

• I will not discuss new formal approaches, but rather
discuss how formal methods can be
used/adapted/packaged to support software engineers

2

Outline
• Lecture 1

– Introduction&motivations; historical perspective of software evolution
• from the closed world to the open world

• the new main challenges

• Lecture 2

– Software architectures and languages for adaptation and evolution
• architectural styles and middleware support

• architectures supporting self-organization

• language support for dynamic software evolution

• Lectures 3, 4

– Lifelong quality management for adaptive evolvable systems
• functional (behavioral) and nonfunctional (quality) properties

• development-time vs run-time

• specification and verification

• run-time adaptation

3

Introduction and motivations

Historical perspective

Software and software evolution

4

"Pre-history” of software
engineering

• Software production did not follow any precisely
formulated process

– continuous changes
• iteration of coding and error fixing

• Code&fix not compatible with the desired
industrial standards

5

Early history: facts and
assumptions

• Monolithic, stable organizations

• Slow change

– the closed world assumption
• requirements are there, they are stable

• just elicit them right

– software changes should be avoided
• they disrupt a rational development

– causing schedule and cost problems

6

Early history: solutions

• Process level

– The sequential (waterfall) process model

– Refinement, from clearly and fully specified
requirements down to code

– Top-down development -> formal deductive
approaches

• Product level

– Programming languages and methods producing static
verifiable architectures

• Static and centralized system compositions, frozen at design
time

7

A waterfall model
Feasibility study

Requirements analysis&

specification

Design

Coding&Unit test

Integration&System test

Deployment

Maintenance

Maintenance

can be up

to 80% of total costs

8

The machine and the world

Goals

Requirements

Domain

properties

(assumptions)

SpecificationGoals

Requirements

9

What changes in the
environment?

• The requirements we wish to achieve

– e.g., because business goals change

• Domain assumptions

– e.g., because the context/situation
changes

• users, user profiles

• external
resources/services/libraries/devices

10

Maintenance

• Traditionally, any change in the software is
handled as maintenance, and managed offline

– corrective maintenance

• corrects the machine

– adaptive maintenance

• achieves compliance with domain changes

– perfective maintenance

• achieves compliance with requirements changes

11

Software evolution

• Early work in the 1970s by M. Lehman and L.
Belady, then continued until the 2000s by M.
Lehman

• Empirical observations lead to the “laws” of
evolution

• Much empirical research active today, especially
mining data from open-source software
repositories

12Lehman, M.M., ‘Software’s Future: Managing Evolution’, IEEE Software, Vol. 15, No. 1, Jan-Feb 1998.

Lehman’s original classification
• S-type software (rarely observed in practice)

– software has the sole criterion of being
mathematically correct with respect to a fixed
and constant specification

• E-type software

– solution to real-world problem, used and
embedded in a real-world domain

13

Lehman’s “laws” of evolution (1)

14

I

1974

Continuing Change Software must evolve continuously otherwise it

becomes progressively less satisfactory in use

II

1974

Increasing

Complexity

As a system evolves its complexity increases

unless work is done to maintain or reduce it

III

1974

Self Regulation Global system evolution processes are self-

regulating

[System attributes such as size, time between

releases and the number of reported errors are

approximately invariant for each system release]

IV

1978

Conservation of

Organizational

Stability

Average effective global activity rate in an evolving

system tends to remain constant over product

lifetime

15

Lehman’s “laws” of evolution (2)

V

1978

Conservation of

Familiarity

During the active life of a program the amount of

change in successive releases is roughly constant

to allow people to maintain mastery of the system

(excessive growth diminishes that mastery)

VI

1991

Continuing Growth The functional capability of a systems must be

continually increased to maintain user satisfaction

over the system lifetime

VII

1996

Declining Quality Unless special care is taken, the quality of

evolving systems will appear to be declining

VIII

1996

Feedback System

(Recognised 1971,

formulated 1996)

Evolution processes are multi-level, multi-loop,

multi-agent feedback systems

How to deal with evolution

• More flexible processes have been invented

– from iterative to agile

• To support evolution of the software
products, different approaches to
modularity were used, leading to current
mainstream OO languages and OO design
approaches

16

Design for change (Parnas)

body

encapsulates

modifiable

design choices

interface

visible to clients

volatile

stable

hidden to clients

17

component

(module)

interface
interface

interface
interface

18

OO methods

• Support to design for change through
encapsulation

– data abstractions

• Support to dynamic binding to add
flexibility to modularity

– dynamic binding constrained to achieve
statically checkable strong typing

19

Dynamism and type safety

• New subclasses as change units

• Changes are not disruptive (just added to old
software, also at run-time)

– methods to invoke on objects may become
known at run time

• If changes are anticipated and changes can be
cast in the subclass mechanism, dynamic
evolution and dynamic binding can co-exist
with static checking (and type safety)

20

OO design

body

interface Polymorphism

Fax f

Dynamic binding
f.sendFax();

Fax

-body

-interface

Fax with phone

21

A further step: distribution

• Components may be deployed in
different address spaces

• Distinction between logical
structure and physical structure

– modularity vs. allocation

– goal of a seamless transition from
centralized conception to
decentralized deployment

22

Binding crosses network
boundaries

client

server

RMI

23

The "components" scenario

• Systems not developed from scratch, but rather
out of existing parts
– Decentralized developments

– Bottom-up integration vs. top-down decomposition
• Component-based development

• From software developed by a single
organization

• To components developed by independent
organizations with different degrees of
contractual obligations

• No control over evolution of components

24

Gluing software becoming
dominant

• Distinction between components
and connectors

• Middleware provides binding
mechanisms
– Middleware as a decoupling layer

• separation of concerns
– separate component logic from intricacies

of communication/cooperation

25

Middleware

26

Software product lines

• A software product line (SPL) is a set of software
systems that share a common, managed set of
features satisfying the specific needs of a
particular market segment or mission and that are
developed from a common set of core assets in a
prescribed way

– e.g. a product line for TV sets, or for the
software of different cars

• Variants and variation points

27

Summing up

• Product
– monolithic

– centralized

– hard to modify

– static, closed

• Process
– single authority

– pre-planned, 1 end

modular

distributed

controllable changes

constrained dynamic compositions

multiple (components)

incremental, iterative, spiral

28

The machine and the world

Specification

Domain

properties

(assumptions)

Goals

Requirements

29

Domain

properties

(assumptions)

Goals

Requirements

“Open world”

• In an open world requirements and domain
change continuously

• Domain includes “parts” (components,
services) multiple ownership

– No single stakeholder oversees and controls
all parts

– Parts may change over time in an
unannounced manner

• Increasingly, reactions to changes must be self-
managed

30

Adaptation and evolution

• Adaptation is the ability of software to detect
changes and react to them in a self-managed
manner

• Evolution requires the designer in the loop

• To cope with open-world requirements we need
to empower the run-time behavior of software to

– improve its self-managing capabilities

– provide designer support for evolution

31

The challenge

• Can we support continuous adaptation and
evolution without compromising dependability?

– the trustworthiness of a computing system which
allows reliance to be justifiably placed on the
service it delivers

• We need to understand which are the invariant
properties that should be preserved by changes
and ensure that they hold

32

Sources of change? (1)

• Changes originate in the interaction with the
physical environment

• Implied by pervasive/ubiquitous
computing requirements

– mobility and context awareness

– ambient intelligence and disappearing
computer

• external world changes unpredictably

– because context changes

– because new computational objects are
encountered + old disappear

33

Pervasive computing

active devices

offering services

34

Context awareness

• Dynamic context-aware bindings established to
deal with dynamic context changes

– invocation of a print service binds to a printer
based on proximity

• Context is not just location, nor just physical

– light, temperature, ... emotional

– e.g., light the room bound to
• open window shades

• switch electric light on

depending on weather condition

35

Sources of change? (2)

• Changes originate in the business
world

– agile networked organizations

– fast organizational responses to
rapidly changing requirements

• intra and extra organization changes
require continuous adaptation of the
information system

36

Service orientation

• The central role of service, as unit of
value

• Service-oriented business, process and
product architecture to support

– dynamic, goal-oriented, opportunistic
federations of organizations

– rapidly adapting to changing
requirements

37

Networked organizations
Interacting applications
belong to multiple
administrative domains

Web based interactions
based on standard
protocols

Foo Inc.

X Inc.

Mee Inc.

DEI

Many potential
providers can be found
for each required function

Internal applications
exposed for external use

38

What do we need?
Flexible and dependable composition schemes

B

A

Context xxx
Context yyy

39

Components/services

• Both are parts developed by others

• Components

– are normally selected at design-time

– cannot change after they have been deployed

– are run by the application owner

• Services

– run autonomously

– can be discovered and selected dynamically

– can be invoked remotely

40

What do we need?
Ability to detect change

• We need to get real data from the world
through (abstract) sensors; e.g., by
activating suitable probes

– MONITOR

• We need to transform data into information

– LEARN

41

What do we need?
Ability to react to change
• How can detected changes be used to react by generating

a feedback loop to “development” activities?

• Different timescales require different strategies

– Off-line, with human intervention
• Re-design/re-deploy/re-run

– On-line, self-managed
• A must for perpetual applications

evolution

adaptation

42

The MAPE autonomic manager

43MC Huebscher, JA McCann, A survey of autonomic computing—degrees, models, and applications - ACM Computing Surveys, 2008

Where do we focus next?

• Architecture (and languages)

– how can an architecture
support/facilitate adaptation and
evolution?

– can languages help? why?

• Specification and verification

– how can specification and validation be
performed for continuously
evolving/adapting systems?

44

