
Adaptation and
software architecture

How can dynamism
be achieved?

1

Context adaptation requires
dynamic binding

B

A

Context xxx
Context yyy

2

(Implicit) binding via a global
coordination space

• Logically global coordination space acts as a
mediator for composition

• Components remain decoupled

– no explicit naming of target (i.e., no direct
binding)

• The publish-subscribe model

• The tuple-space model

3

P/S decoupled composition

C3 C4 C5 C6

C1 C2

Mediator—Event Dispatcher

subscription

notification

4

5

Publish/Subscribe Services

event dispatcher

want

low air fares

to Europe

want to fly

December

DEN-MXP

want

special offers

by United

subscribe

notify

United offers

DEN-MXP

October

Alitalia offers

DEN-MXP

Nov-Feb

publish

subscriber

•publisher

subscription

publication

notification

Example due to Carzaniga and Wolf

P.T. Eugster et al.” The many faces of publish/subscribe”, ACM Computing Surveys, 2003

G. Cugola et al. “The JEDI event-based infrastructure and its application to the development of the OPSS WFMS”, IEEE TSE, 2001.

Features (1)

• Publish

– event generation

• Subscribe

– declaration of interest

• Event broadcasting to all registered components

• No explicit naming of target component

• Different kinds of guarantees possible

6A. Carzaniga, D. S. Rosenblum, A. L. Wolf, “Design and evaluation of a wide-area event notification service”,

ACM TOCS 2001.

Features (2)

+ Increasingly used for modern applications

+ widely used as "listener mode" for user
interfaces

+ Easy integration strategies

+ Easy addition/deletion of components

– Potential scalability problems

– Ordering of events

7

Features (3)

• Coordination via events+dispatcher
– dispatcher behaves as a mediator (broker)

– subject-based vs. content-based

• Strong decoupling
– no explicit naming of target (no direct binding)

• Asynchrony
– send and forget

• Location/identity abstraction
– destination determined by receiver, not sender

• Loose coupling
– actors added without reconfiguration

– multiple binding schemes
• one-to-many, many-to-one, many-to-many

8

9

Different guarantees

• Asynchronous communication
– Problems with ordering of events

C2

C1

C3

t1: e1 t1: e1

t2: e2

C2

C1

C3

t1: e1 t1: e1

t2: e2

10

Ordering of events

Hypothesis:

e3 generated by C2 as
a consequence of
receipt of e1

C1 C2 C3

Total ordering

e1

e2

e3

C1 C2 C3

Causal ordering

e1

e2

e3

C1 C2 C3

Ordering relative to sender

e1

e2

e3

C1 C2 C3

None

e1

e2

e3

More problems

• Possible delivery guarantees

– Best effort

– At least once

– At most once

– Once and only once

• Understanding a P/S system and reasoning about
its correctness may be hard

11
L. Baresi, C. Ghezzi, L. Mottola “On Accurate Automatic Verification of Publish-Subscribe Architectures”, ICSE 2007

L. Baresi, C. Ghezzi, L. Mottola “Loupe: Verifying Publish-Subscribe Architectures with a Magnifying Lens”, IEEE TSE, to appear

12

Repository-based systems

Components communicate only through a repository

Repository

Comp1 Comp2 Comp3

Linda-like tuple space

C3 C4 C5 C6

C1 C2

Tuple space

sends tuple

removes tuple

via pattern

matching

reads tuple

via pattern

matching

read and remove are nondeterministic and blocking

13

LIME

• Linda in a Mobile Environment

– breaks the notion of a global tuple space

• Shared tuple space transiently formed by hosts in
reach

• TinyLime: version for sensor networks, evolved in
TeenyLime

14

G.P. Picco, A. L. Murphy, GC. Roman. "Lime: A Coordination Middleware Supporting Mobility of Hosts and Agents”, ACM

TOSEM, 2006

P. Costa et al. "Programming Wireless Sensor Networks with the TeenyLIME Middleware", Middleware 2007

Discovery-based binding

• AKA service-oriented architecture

• Possible targets register their
availability

• Binding based on discovery of the
target

• Registration and discovery may
occur at run-time

15E. Di Nitto et al. “A journey to highly dynamic, self-adaptive service-based applications”, Automated Software

Engineering, 2008.

Roles and operations

Service

Requestor

Service

Provider

Service

Registry

Service

Description

Service

Find

Service

description

Publish

Bind

16

Jini case study

Directory of

available

services

JINI

enabled

service

service

registrar

clientservice

template

matching

object ref

presence

announcementservice

item

(descriptor)

JOIN PROCESS LOOKUP PROCESS

CLIENT JOINS

17

Dynamic service compositions

18

Services (not just WS) vs
components

• Both are developed by others than the application developer

• Both encapsulate a function of possible value for others

– different level granularity
• coarse grained vs. fine grained objects

• Components are run in the application's domain, they become
part of our application

• Services are run in their own domains

• Services imply less control and require more trust

• Components normally chosen and bound together at
design/construction time

• Services chosen and bound at run-time

19

More on services

• Services must support “machine understandable”
explicit contracts to allow independent party access

– Allow for SLAs that deal not just with functionality

• Services can be the basis for service compositions

– New value is created through integration and
composition

– New components are recursively created

20

Service composition: roles

service providerservice provider

service provider

service integrator
added-value service

21

Once again

• The role of a service provider/aggregator

– does not have full control of all parts. . .

– but is the ultimately responsible for the overall
functionality and QoS of the composite system

22

23

Mobile code : Why?
“MOVE KNOWLEDGE CLOSE TO RESOURCES”

– More efficient use of communication channels

– Energy efficiency

“LET THE CLIENT DECIDE HOW TO ACCESS RESOURCES”

– More flexibility
Network

Network

Client

Server

Client

Agent

Client

Server

“INJECT NEW FUNCTIONALITY AT RUN-TIME”

“SUPPORT AUTONOMOUS DECISIONS TO RECONFIGURE”

24

Mobile code features

• Location is visible
– both at design-time and at run-time

• Distributed application is a set of nodes
(computational environments)
– providing support to execution of mobile components
– supporting access to resources

• Software migration from node to node
• Node behaviors may change because of migration

25

Two notions of mobility

• Strong mobility

– code & state migrate from an executing
unit to a new computational
environment

• continuations in functional programming

• Weak mobility

– code can migrate among computational
environments

26

An example
How to make a cake

A. Carzaniga,G.P. Picco, G. Vigna, Designing Distributed Applications with Mobile Code Paradigms, ICSE „97

27

PLEASE, MAKE ME

A CHOCOLATE CAKE

Client-Server

RequestA B

Reply

Site A Site B

28

PLEASE, MAKE ME A
CHOCOLATE CAKE.

HERE IS THE RECIPE:

TAKE TWO EGGS...

Remote Evaluation

RequestA

Site A

B

Site B

Reply

29

PLEASE, TELL
ME THE RECIPE

Code On Demand

RequestA

Site A

B

Site B

Reply

30

HERE I AM!

CAN I USE YOUR
OVEN?

Mobile Agent

Migration

Site A Site B

A

Summing up and a question

• Some architectural styles are more easy to evolve
than others

• Ease of evolution supported by

– dynamic composition

– code mobility

• Can the programming language provide native
support to adaptation (and evolution)?

31

Implementing
context-aware systems

Do we need ad-hoc
programming languages?

32

Context-oriented programming
languages

• Treat context explicitly, through first-class
language mechanism

• Provide ad-hoc abstractions that aim at making
programs better “structured”

• Core mechanism is some form of dynamic binding,
which supports context-aware compositions

• Different incarnations in different languages

– ContextL, ContextJ, etc.

•33R. Hirschfeld, P. Costanza, O. Nierstrasz Context-oriented programming. Journal of Object Technology, 2008.

Key concepts
• Behavioral variation

– partial definitions of modules representing
new/modified/removed behavior

• Layer

– first-class entity grouping context-dependent variations

• Activation/deactivation

– refer to layers

• Context

– information which demands adaptation

• Scope

– of layer activation/deactivation ensures that
adaptations effective for well defined parts of program

34

35

PROGRAM

context info from

“abstract sensors”

layer 1

layer 2

layer i

layer activation/

deactivation

Conclusions

• Some architectural styles are more easy to
evolve/adapt than others

• The programming language can provide native
support to context-aware software

36

