
Adaptation and 
software architecture

How can dynamism
be achieved?
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Context adaptation requires 
dynamic binding

B
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Context xxx
Context yyy
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(Implicit) binding via a global 
coordination space

• Logically global coordination space acts as a 
mediator for composition

• Components remain decoupled

– no explicit naming of target (i.e., no direct 
binding)

• The publish-subscribe model

• The tuple-space model
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P/S decoupled composition
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Publish/Subscribe Services
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Example due to Carzaniga and Wolf

P.T. Eugster et al.” The many faces of publish/subscribe”,  ACM Computing Surveys, 2003

G. Cugola et al. “The JEDI event-based infrastructure and its application to the development of the OPSS WFMS”, IEEE TSE, 2001.



Features (1)

• Publish

– event generation

• Subscribe

– declaration of interest

• Event broadcasting to all registered components

• No explicit naming of target component

• Different kinds of guarantees possible

6A. Carzaniga, D. S. Rosenblum, A. L. Wolf, “Design and evaluation of a wide-area event notification service”, 

ACM TOCS 2001.



Features (2)

+ Increasingly used for modern applications

+ widely used as "listener mode" for user
interfaces

+ Easy integration strategies

+ Easy addition/deletion of components

– Potential scalability problems

– Ordering of events
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Features (3)

• Coordination via events+dispatcher
– dispatcher behaves as a mediator (broker)

– subject-based vs. content-based

• Strong decoupling
– no explicit naming of target (no direct binding)

• Asynchrony
– send and forget

• Location/identity abstraction
– destination determined by receiver, not sender

• Loose coupling
– actors added without reconfiguration

– multiple binding schemes
• one-to-many, many-to-one, many-to-many

8



9

Different guarantees

• Asynchronous communication
– Problems with ordering of events
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Ordering of events

Hypothesis:

e3 generated by C2 as 
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More problems

• Possible delivery guarantees

– Best effort

– At least once

– At most once

– Once and only once

• Understanding a P/S system and reasoning about
its correctness may be hard

11
L. Baresi, C. Ghezzi, L.  Mottola “On Accurate Automatic Verification of Publish-Subscribe Architectures”, ICSE 2007

L. Baresi, C. Ghezzi, L.  Mottola “Loupe: Verifying Publish-Subscribe Architectures with a Magnifying Lens”, IEEE TSE, to appear
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Repository-based systems

Components communicate only through a repository

Repository

Comp1 Comp2 Comp3



Linda-like tuple space

C3 C4 C5 C6

C1 C2

Tuple space

sends tuple
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via pattern

matching

read and remove are nondeterministic and blocking
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LIME 

• Linda in a Mobile Environment 

– breaks the notion of a global tuple space

• Shared tuple space transiently formed by hosts in 
reach

• TinyLime: version for sensor networks, evolved in 
TeenyLime

14

G.P. Picco, A. L. Murphy, GC. Roman. "Lime: A Coordination Middleware Supporting Mobility of Hosts and Agents”, ACM 

TOSEM, 2006

P. Costa et al. "Programming Wireless Sensor Networks with the TeenyLIME Middleware", Middleware 2007



Discovery-based binding

• AKA service-oriented architecture

• Possible targets register their 
availability

• Binding based on discovery of the 
target

• Registration and discovery may 
occur at run-time

15E. Di Nitto et al. “A journey to highly dynamic, self-adaptive service-based applications”, Automated Software

Engineering, 2008.



Roles and operations  
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Jini case study
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Dynamic service compositions
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Services (not just WS) vs
components

• Both are developed by others than the application developer

• Both encapsulate a function of possible value for others

– different level granularity 
• coarse grained vs. fine grained objects

• Components are run in the application's domain, they become 
part of our application

• Services are run in their own domains

• Services imply less control and require more trust

• Components normally chosen and bound together at 
design/construction time

• Services chosen and bound at run-time
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More on services

• Services must support “machine understandable” 
explicit contracts to allow independent party access

– Allow for SLAs that deal not just with functionality

• Services can be the basis for service compositions

– New value is created through integration and 
composition

– New components are recursively created
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Service composition: roles

service providerservice provider

service provider

service integrator
added-value service
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Once again

• The role of a service provider/aggregator

– does not have full control of all parts. . .

– but is the ultimately responsible for the overall 
functionality and QoS of the composite system
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Mobile code : Why?
“MOVE KNOWLEDGE CLOSE TO RESOURCES”

– More efficient use of communication channels

– Energy efficiency

“LET THE CLIENT DECIDE HOW TO ACCESS RESOURCES”

– More flexibility
Network

Network

Client

Server

Client

Agent

Client

Server

“INJECT NEW FUNCTIONALITY AT RUN-TIME”

“SUPPORT AUTONOMOUS DECISIONS TO RECONFIGURE”
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Mobile code features

• Location is visible
– both at design-time and at run-time

• Distributed application is a set of nodes
(computational environments)
– providing support to execution of mobile components
– supporting access to resources

• Software migration from node to node
• Node behaviors may change because of migration
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Two notions of mobility

• Strong mobility

– code & state migrate from an executing
unit to a new computational
environment

• continuations in functional programming

• Weak mobility

– code can migrate among computational
environments
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An example
How to make a cake

A. Carzaniga,G.P.  Picco, G. Vigna, Designing Distributed Applications with Mobile Code  Paradigms, ICSE „97
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PLEASE, MAKE ME 

A CHOCOLATE CAKE

Client-Server

RequestA B

Reply

Site A Site B
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PLEASE, MAKE ME A 
CHOCOLATE CAKE.

HERE IS THE RECIPE:

TAKE TWO EGGS...

Remote Evaluation
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B

Site B

Reply



29

PLEASE, TELL
ME THE RECIPE

Code On Demand

RequestA

Site A

B

Site B

Reply



30

HERE I AM!

CAN I USE YOUR 
OVEN?

Mobile Agent

Migration

Site A Site B

A



Summing up and a question

• Some architectural styles are more easy to evolve 
than others

• Ease of evolution supported by

– dynamic composition

– code mobility

• Can the programming language provide native 
support to adaptation (and evolution)?
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Implementing 
context-aware systems

Do we need ad-hoc
programming languages?
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Context-oriented programming 
languages

• Treat context explicitly, through first-class 
language mechanism

• Provide ad-hoc abstractions that aim at making 
programs better “structured”

• Core mechanism is some form of dynamic binding, 
which supports context-aware compositions

• Different incarnations in different languages

– ContextL, ContextJ, etc.

•33R. Hirschfeld, P. Costanza, O. Nierstrasz Context-oriented programming. Journal of Object Technology, 2008.



Key concepts
• Behavioral variation

– partial definitions of modules representing 
new/modified/removed behavior

• Layer

– first-class entity grouping context-dependent variations

• Activation/deactivation

– refer to layers

• Context

– information which demands adaptation

• Scope

– of layer activation/deactivation ensures that 
adaptations effective for well defined parts of program
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PROGRAM
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Conclusions

• Some architectural styles are more easy to 
evolve/adapt than others

• The programming language can provide native 
support to context-aware software
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