dependable evolvable pervasive software engineering grou
o—0—8 p pe g g group

09 Sffuo

From requirements to
specification and
(continuous) verification
(Part1 -- SAVVY-WS)

dependable evolvable pervasive software engineering group

.\(\g SHUQ
&) &

K o

. .

S puting

z
o,
7,

S

A)

Our Setting

added-value service

service integrator

service provider

service provider

service provider

{ieepse-

dependable evolvable pervasive software engineering group

a0 Sity
d& c@
(o2

Q

puting

*—o—0

Our setting
assumptions

) domain properties
guarantees

< requirements

renvironment

Service
composition

Service F

dependable evolvable pervasive software engineering group

o—o—
o2 S”“'Q’/
®

g -3

Open world: the problem o

Ay

puting

e External services may evolve autonomously

e The assumptions made at design-time may be
later invalidated

e What can be done at design-time?
e What needs to be done at run-time?

dependable evolvable pervasive software engineering group

—0o—

SAVVY-WS

09 SHUO,
®
o

S

puting

gWan

s

e Service Analysis, Verification and Validation methodologY
for Web Services

— It supports the development of verified composite
services, built as BPEL workflows

e Compositions are guaranteed to satisfy certain global
correctness properties

e External services are assumed to be known at the level of
the interface (abstract services) and their assumed
behavior is specified as we will describe

— any concrete service that offers a “compatible”
interface may be later bound

tegjse- :

dependable evolvable pervasive software engineering group

oo
e Situg,

Conceptual approach

o
puting

e An assumption-promise based approach
- a service integrator assumes that the external services
used in the composition satisfy their stated
specification
— under this assumption, the system is designed to
promise a certain service to its clients
e But since the external services may deviate wrt to their
stated specification
— amonitor does run-time verification

— suitable reactions may be activated
e reactions ignored in this presentation

tegjse- 6

dependable evolvable pervasive software engineering group

.00 Sl'fuo,
®

BPEL—Business Process 3

Execution Language ‘

e Supports the definition of Business Processes (BPs) which
use external Web Services

e BPs coordinate (orchestrate) external Web services
e A BPEL BP can be seen in turn as a service

client 1: receive 2: invoke

Web service Web service

Orchestration
5: reply

(coordinator)
Web service
o
4: ...n: invoke

3: invoke

tegjse- !

=

Web serviceJ
n

—0o—

dependable evolvable pervasive software engineering group

BPEL and WSDL

e WSDL Web Service Description Language

— syntactic description

09 SHUO,
®
o

puting

 BPEL processes are exposed as services through a WSDL

interface

- message exchanges depend on the defined WSDL

operations

PortType of the
WSDL service

Loan Approval Process

J Web

Service

dependable evolvable pervasive software engineering group

—0o—

09 S"fuo
o f“’o,
g puting
WSDL 2
/Q\S\
e Describes the LR LENE
interface of a service types
; A
in terms of abstract | | [message
operations and . [V
section
parameters portType
. C e operation
e (Contains definition Cinput
tput
of message types Y
e The description is an] :
XML document concrete | | |pinding
section | | [service T
ort
leepse- :

dependable evolvable pervasive software engineering group
\(\Q S”""O
CO o
] o Computing
xample: a preview :
u <,
[
)
__________ ' 1. Receive
. 1: Request _ - ¥
Client 6: Invok ¢ esinvoke (syncl=e
— nwoke | Retricve the emplaoyer |
A trawvel status 7
partType | T

! Y

/ ———— Employee

',' ’_,f ‘m\\ 2! Request - Travel

’:' 7 weinwoka lasynces 7 ceinvoka [RsgnElse Status Web

[} . Gt plane ticket offer | | Getplane ticket offer | . "

,:' 'x_f_n:-rn Amarican Alrline::s_»,z’ ‘_?fmrn Dalta Airlines __x' - 3 Reply Service

! S,

/

! Y i
’,’ g 4.1: Invoke - American

N [Arvarican.price <= Delta. prica | -5, e | Amarican price = Delta.price | Aidines

Y o "
N\ _ . > - LY i ~ Web
\ i ARSI , R ELIE 1 R . "
\\\ : Select the American Salact the Delta | 4.2 Call-back Service
N . Airlines tickar S b Airlings tigeat
\\‘ H""-\.LH -___.-f!
L 5.2: Call-back
AY
“\ [6 <<invoke>> } .PGHTW'B. Delta
Return the best offer 5.1: Invoke - Airdines
Y Web
Service

BPEL Process -f-‘.;r Business Travels

10

dependable evolvable pervasive software engineering group

) Sffu
o O/G,

Q

[-%
Computing

BPEL Basic Activities

gWan

"

<invoke partnerLink="..." portType="..." operation="...
inputVariable="..." outputVariable="..."/>
<l-- process invokes an operation on a partner: -->
<receilve partnerLink="..." portType="..." operation="...
variable="..." [createInstance=" "1/>
<!-- process receives invocation from a partner: -->
<reply partnerLink="..." portType="..." operation="
variable="..."/>
<!l-- process sends reply message in partner invocation: -->
<assign>
<copy>
<from variable="..."/> <to variable="..."/>
</copy>+

</assign>
<!- Data assignment between variables -->

{ieep-s8-

11

dependable evolvable pervasive software engineering group

a0 Sity
d& c@
(o2

Q

puting

gWan

More Basic Activities

<throw faultName="..." faultVariable="... "/>

<!-- process signals an internal fault -->

<terminate />

<!- terminates the process execution -->

<wait (for="..." | until="...")/>

<!-- process execution is delayed for a certain period of time or until a
certain deadline is reached -->

<empty />

<!- Do nothing; a convenience element -->

(eBp-se- :

dependable evolvable pervasive software engineering grou
o—0—8 p pe g g group

Sit
09 7
o O/@
[« %
puting

Q

Variables

gWan

s

e Necessary to maintain the process state
e Their types can be:

- WSDL message

- XML type

— XML Schema element

e (Contents of (inbound and outbound) messages are stored
in variables

—0—0
liegpse- :

dependable evolvable pervasive software engineering group

The TeleAssistance (TA) 6
Process 8
% f?.'_'j_'_'f_f_':_'_'ﬁ'_'_'7':_""'_':""'_ """"""""""""""""""""""""""" ' receive TA Process

PA

i WhI|P N
(hom? dfewce) — @

5 p'f-‘k ~p

ortiessags> s>

nMessage OonM nMessage tHospitalizedM

nMessage patHospitalizedMsg

pButtonMSg =

vitalParamsMsg stopMsg
@ ®
(= P
p—— invoke |
LAB if > pan IC
@ ® button

invoke

= N
\V

&S
=

FAS

®
- =) = — invoK
e e Fon it

(eBp-se- .

dependable evolvable pervasive software engineering grou
o—0—

09 SHUO;

Assumed properties o R

A)

m LabServiceTime—Lab

after sending the patient’s data to the lab, a
reply is received within 1 hour

m FASConfirmHospitalization—FA Squad

if the FAS is invoked three times over a week,
with a "High" severity level for a certain
patient, within one day a notification is
received that the patient has been hospitalized

{leepse- .

o—0—

Promised properties o R

m FASInvokeMildAlarm

after receiving a message from the LAB
indicating that an alarm must be issued to the
FAS, the TA process must send a "Mild" alarm
notification to the FAS service within four hours

m MDCheckUp

if a certain patient pushes the pButtonMsg
three times during a time span of a week, the
patient must be hospitalized within one day

{leepse- .

dependable evolvable pervasive software engineering group

Car rental process

)

startRental

09 S“UO/
®

OQ o
g Computing
z
<
()
S

Car Broker Service Tl e ad Car Parking
‘n\“ L e Sensor Service
' = Tl - . - - ™y
. S
- "
crs
findCa stopRental carEnterX carExit

B I
; - ookupCar ‘ stopRental \

arkCarX
Available

arkCarX
Unavailable

User Interaction Service *~_ i
\ . :

N H

. i

h 1

1

1

indCarCB

| Car Information Service
: Ahy
: R

SR |

17

dependable evolvable pervasive software engineering group
o—0—

09 SHUO;

Sample properties o R

A)

m ParkinglnOut (AP)—car parking sensor service

between two events sighaling that a car exits
the parking, an event signaling entrance for the
same car must occur

m RentCar (PP)

if a car enters the parking and does not exit
until a client requests it for renting, then the
request must succeed

{leepse- .

dependable evolvable pervasive software engineering group

Two Kkinds of verification, one
language ©

Sit
09 Ug
o [

o
puting

Q

gWan

e ALBERT (Assertion Language for BPEL pRocess
inTeractions)

— can express assumptions and promises
e (Can be used for two kinds of verification

- design-time (model checking)

e promised properties are satisfied by the workflow under the
assumption that assumed properties hold

- run-time (monitoring+ run-time verification)
e checks if assumptions are valid
— services satisfy their promises

(eBp-se- s

dependable evolvable pervasive software engineering group

S
. it
Q\Og uo’@
g -3
o BPEL process design o Annotation of the BPEL process with ALBERT assertions g puting
e : e =
_— i | _— S
&3 a | z S
&%\ ; —> &3
- i —= | n -
_— H | == " e
i i ALBERT ALBERT
BPEL | i guaranteed ?oZE:s assumed
process ! ! assertions P assertions
___________________________ i e _____X, servicen
e Design-time verification
5 i NO ;
| | ! ;
| | YES BPEL2BIR fp)% i
: | G | — + 6 R :
: BPEL , ; Bogor . !
process ! ! — !
; + a a a
: ALBERT | BPEL process + i
assertions | ' assumed and !
! guaranteed assertions i
e Run-time verification
| Run-time
| monitoring
| architecture
i BPEL engine + Dynamo
—0—©0

20

—0o—

dependable evolvable pervasive software engineering g

OQ

ALBERT Yo

o,
“

Ay

e Alinear temporal logic language

e Variables correspond to BPEL variables

e State atriple (V, |, t), where
— Vis a set of <var, val> pairs
— Iis a location in the workflow: set of labels
— tis the time at which the state is generated

e State changes are associated with location
counter change in the workflow

— internal activities (assign)

— interactions with the world

Sit
09 7
\ O;

{ieep-s8-

21

dependable evolvable pervasive software engineering group
o—0—

Sit
09 7
o

ALBERT in a nutshell o R

s

e [tpredicates on variables
e C(lassical boolean operators and quantifications
e Event predicate

- OnEvent(XXX) true in a state if event XXX occurs in that
state; e.g., onEvent(invoke_XXX)

e true in a state if the service XXX is invoked in that state
e Future Temporal Operators
- Becomes, Until, Within
e Functions
- elapsed, past, count, ...

eeps8- :

dependable evolvable pervasive software engineering group

o—0o—
09 S”""Q;

ALBERT—syntax o

or=-0 | ONQ | Ward | Becomes(d) | Until(d,0) | Within(o,K) | 1 relop i |
onEvent(y1)

an
wWNono,

Yu=var | Yaropt | const | past(v), onEvent(p)) | count(o, K) | fun(e, K) |
fun(v, onEvent(ut), K) | elapsed(onEvent(y))

relopi=< | < | =] >| >

arop:=+ | — | x | +

funz=sum | avg | min | max | ..

(eBp-se- :

dependable evolvable pervasive software engineering group

09 SHUO;
®
o

%9

puting

gWan

XLBERT—semantics

. Semantics is explained by referring to sequences
of time-stamped states of the BPEL process (timed
state word)

- an infinite sequence s, s4, S,, ..., Where each s; is
a state (V, [, t.)

the sequence is strictly monotonic (time consuming operation
occurs in a transition)

to O &2 3 t4 5 t7 s
I Ll 1 1 L | []
. 1 1 >
A O 10 0 0 0 | 0 |
B 0 00 0 | | |
X 0 00 | 0 I 0 0 0

(eBp-se- 2

dependable evolvable pervasive software engineering group
o—0—

09 SH‘-’Q,
o o
™ g puting
Becomes and Until
)
Becomes(X) t 6ttt ts t U g
I I N R
g\‘j:h:"gt‘eeg N N — — >
e % 0 00@o Do o
Un tII(A’ B] to Ut G s G t7 s
true when I I I >
evaluated S I
in t, (and A o o 1 | 0o | o |
alsoint) B 0 00 0 | I

——0
leepse- s

dependable evolvable pervasive software engineering group

o2 SH”"’;
i § cé: % puting
Within
S
Within (X, K)
X true within K instants tit, 3 t ts Tt t7 tg
true when [1 1| I I I
evaluated in t, L T T
with ts-t, < K X 1 0 0 0 | 0 0 0
26

dependable evolvable pervasive software engineering group
o—0—

09 SH‘-’Q,
o o
g puting
past and elapsed 3
S
ast(A,onEvent(B
past((B)) tt t 6 ot t @ te t7 ts
=0 when
| | | L1 1 R
evaluated int; and in t; I I I o I I
=1 whenevaluatedint, A 0 | 0 0 @ 0 | 0 |
B o o0 o () (W1 1
elapsed(onEvent(X))
= t,-t, when tt 6t t3 t ts ts @ tg
evaluated in t7 I |] I I I I I I
I 1 1 >
X 0 00 I 0 @ 0O 0 o0

——0
leepse- 2

dependable evolvable pervasive software engineering group
o—0—

Sit
09 7

o
puting

Q

gp)
o
o
-
—

[]

o G 02 G 4 s U 7 ¥}
|

I I
— T 1T 1 >

0 | 0 0 O 0 0 I
g 0 o0 o) W O

- count(4, k) =1
— Becomes(count(B, k) =4) is true

——0
liegpse- 2

dependable evolvable pervasive software engineering grou
o—e p pe g g group

ALBERT properties

Sit
09 7
o

Q

puting

gWan

s

e Properties are in the form
it is always true that XXX holds
that is, they are process invariants
e In Albert, they have the form

Always XXX
e which stands for XXX and not (true Until not XXX)

e For convention, the outer Always is omitted

(eBp-se- >

dependable evolvable pervasive software engineering grou
o—0—8 p pe g g group

09 SHUO;

Useful derived operators 6

Ay

e We saw Always (also L1)

e Eventually (also ¢)
— ¢X defined as true Until X

e When(X, Y) when A is true in the future, B is also
true

- When(X, Y) defined as ¢X 2 (=X Until X1 Y)

(eBp-se- .

dependable evolvable pervasive software engineering grou
o—0—

09 Sl'fuo

Using ALBERT (TeleAssistance)g::@%

m LabServiceTime (AP)

after sending the patient’s data to the lab, a
reply is received within 1 hour

onEvent(invoke_AnalyzeData) -
Within(onEvent(receive_AnalyzeData), 60)

{leepse- .

o—0o—

Using ALBERT (TA cont.) o R

m AveragelLabServiceTime (AP)
the average response time of requests to

analyze data completed in past 10 hrs should be

less than 45 min.

avg(elapsed(onEvent(invoke_AnalyzeData)),
onEvent(receive_AnalyzeData), 600) <= 45

32

dependable evolvable pervasive software engineering group
o—0—

Using ALBERT (TA cont.) o e

m FASInvokeMildAlarm (PP)

after receiving a message from the LAB
indicating that an alarm must be issued to the
FAS, the TA process must send a "Mild" alarm
notification to the FAS service within four hours

onEvent(receive_AnalyzeData) A
$analysisResult/suggestion = ‘sendAlarm’)

9
Within(onEvent(alarmNotif) A$alarmNotif/level= ‘mild’),240)

——o

{leepse- s

dependable evolvable pervasive software engineering group
o—0—

Using ALBERT (TA cont.) o R

s MDCheckUp (PP)

if a certain patient sends the pButtonMsg three
times during a time span of a week, the patient
must be hospitalized within one day

Vx (Becomes (count(onEventl(pButtonMsg)A$alarmNotif/pld=x,
10080) =3)
9
Within(onEvent(patHospitalized) A$patHospitalized/plD=x, 1440))

——o

{leepse-)

o—0o—

Using ALBERT (CarRental} 3

m ParkinglnOut (AP)
between two events signaling that a car exits

the parking, an event signaling entrance for the

same car must occur

V X ((onEvent(carExit) A$carExit/carlD=x) >
Until(not (onEvent(carExit) A$carExit/carlD=x),
onEventl(carEnter) A$carEnter/carlD=x))

{ieepse-

35

dependable evolvable pervasive software engineering group

0"’\

Using ALBERT (CR cont.) o R
m CISUpdate (AP)

if a car is marked available in the Car InfoSyst
and it is not marked unavailable until a
lookUpCar is performed, then lookup for that car
must show that the car is available
V' x (onEvent(receive_MarkAvail) A $carlnfo/carlD=x A
Until (not (onEvent(receive_MarkUnavail)A$carinfo/carlD=x),
onEvent(invoke_LookUp) A $carlnfo/carld=x)

9
When(onEvent(invoke_LookUp) A $carlnfo/carld=x,

Eventually((onEvent(receive_LookUp) A
$carlnfo/carld=xA$gRes/res!="no")))

{leepse- .

o—0o—

Using ALBERT (CR cont.) e R

m RentCar (PP)

if a car enters the parking and does not exit until
a client requests it for renting, then the request
must succeed

v X (onEvent(carEnter) A $carEnter/carlD=x A
Until (not (onEvent(carExit) A $carEnter/carlD=x),
onEvent(invoke_FindCar) A $carlnfo/carld=x))
9
When(onEvent(invoke_FindCar) A $carlnfo/id=x,

Eventually((onEvent(invoke_FindCarCB) A $carinfo/carld=x
A $queryResult/res!="no")))

——o

{leepse- .

dependable evolvable pervasive software engineering group

c'b\(\g S”UQI‘,@

g -3

[= .

o puting

z
.

S

A)

Execution and monitoring

Formulae
Repository

persistent
EJB

Active Pool

Java

Engine
Aspect)

Data
Analyzer

Execution Data
Manager

ActiveBPEL

Java

38

dependable evolvable pervasive software engineering group

Sit
09 7
Q\ of@
-3
puting

Q

Properties of run-time
verification

gWan

%

e Size of the state history kept in the ActivePool

- Maximum among:
e maximum nesting level of past functions

e 1 (if there is at least a Becomes predicate)
e maximum number of states needed for the various count and
fun time windows

e Number of threads required for the verification
— 1, for each Until (sub)formula

— number of states in the sequence of process states that
may occur in a time interval long K, for each
Within(A,K) (sub)formula

(eBp-se- »

