
From requirements to
specification and
(continuous) verification
(Part 1 -- SAVVY-WS)

1

Our setting

service providerservice provider

service provider

service integrator
added-value service

2

Our setting

3

Service

composition

assumptions

domain properties
guarantees

requirements

Service A

Service D

Service C

Service B

Service F

environment

Open world: the problem

• External services may evolve autonomously

• The assumptions made at design-time may be
later invalidated

• What can be done at design-time?

• What needs to be done at run-time?

4

SAVVY-WS

• Service Analysis, Verification and Validation methodologY
for Web Services

– It supports the development of verified composite
services, built as BPEL workflows

• Compositions are guaranteed to satisfy certain global
correctness properties

• External services are assumed to be known at the level of
the interface (abstract services) and their assumed
behavior is specified as we will describe

– any concrete service that offers a “compatible”
interface may be later bound

5

Conceptual approach

• An assumption-promise based approach

– a service integrator assumes that the external services
used in the composition satisfy their stated
specification

– under this assumption, the system is designed to
promise a certain service to its clients

• But since the external services may deviate wrt to their
stated specification

– a monitor does run-time verification

– suitable reactions may be activated
• reactions ignored in this presentation

6

BPEL—Business Process
Execution Language

• Supports the definition of Business Processes (BPs) which
use external Web Services

• BPs coordinate (orchestrate) external Web services

• A BPEL BP can be seen in turn as a service

7

Orchestration

(coordinator)

Web service

1

Web service

3
Web service

n

Web service

2

1: receive 2: invoke

3: invoke 4: …n: invoke

5: reply

client

Web

Service

Loan Approval Process

receive

reply

PortType of the

WSDL service

BPEL and WSDL

• WSDL Web Service Description Language

– syntactic description

• BPEL processes are exposed as services through a WSDL
interface

– message exchanges depend on the defined WSDL
operations

8

WSDL

• Describes the
interface of a service
in terms of
operations and
parameters

• Contains definition
of message types

• The description is an
XML document

9

concrete

section

abstract

section

Example: a preview

10

6. <<invoke>>

Return the best offer

1. Receive

BPEL Basic Activities

<invoke partnerLink="..." portType="..." operation="..."

inputVariable="..." outputVariable="..."/>

<!-- process invokes an operation on a partner: -->

<receive partnerLink="..." portType="..." operation="..."

variable="..." [createInstance="..."]/>

<!-- process receives invocation from a partner: -->

<reply partnerLink="..." portType="..." operation="..."

variable="..."/>

<!-- process sends reply message in partner invocation: -->

<assign>

<copy>

<from variable="..."/> <to variable="..."/>

</copy>+

</assign>

<!– Data assignment between variables -->

11

More Basic Activities

<throw faultName="..." faultVariable="... "/>

<!-- process signals an internal fault -->

<terminate />

<!– terminates the process execution -->

<wait (for="..." | until="...")/>

<!-- process execution is delayed for a certain period of time or until a

certain deadline is reached -->

<empty />

<!– Do nothing; a convenience element -->

12

Variables

• Necessary to maintain the process state

• Their types can be:

– WSDL message

– XML type

– XML Schema element

• Contents of (inbound and outbound) messages are stored
in variables

13

The TeleAssistance (TA)
Process

receive

while

pick

invoke

if

invoke

"mild"

panic

button

invoke

"high"

14

Assumed properties

 LabServiceTime—Lab

after sending the patient’s data to the lab, a

reply is received within 1 hour

 FASConfirmHospitalization—FA Squad

if the FAS is invoked three times over a week,

with a "High" severity level for a certain

patient, within one day a notification is

received that the patient has been hospitalized

15

Promised properties

 FASInvokeMildAlarm

after receiving a message from the LAB
indicating that an alarm must be issued to the
FAS, the TA process must send a "Mild" alarm
notification to the FAS service within four hours

 MDCheckUp

if a certain patient pushes the pButtonMsg
three times during a time span of a week, the
patient must be hospitalized within one day

16

Car rental process

17

Sample properties

 ParkingInOut (AP)—car parking sensor service

between two events signaling that a car exits
the parking, an event signaling entrance for the
same car must occur

 RentCar (PP)

if a car enters the parking and does not exit
until a client requests it for renting, then the
request must succeed

18

Two kinds of verification, one
language

• ALBERT (Assertion Language for BPEL pRocess
inTeractions)
– can express assumptions and promises

• Can be used for two kinds of verification
– design-time (model checking)

• promised properties are satisfied by the workflow under the
assumption that assumed properties hold

– run-time (monitoring+ run-time verification)
• checks if assumptions are valid

– services satisfy their promises

19

20

ALBERT
• A linear temporal logic language

• Variables correspond to BPEL variables

• State a triple (V, I, t), where

– V is a set of <var, val> pairs

– I is a location in the workflow: set of labels

– t is the time at which the state is generated

• State changes are associated with location
counter change in the workflow

– internal activities (assign)

– interactions with the world

21

ALBERT in a nutshell

• It predicates on variables

• Classical boolean operators and quantifications

• Event predicate

– OnEvent(XXX) true in a state if event XXX occurs in that
state; e.g., onEvent(invoke_XXX)

• true in a state if the service XXX is invoked in that state

• Future Temporal Operators

– Becomes, Until, Within

• Functions

– elapsed, past, count, …

22

ALBERT—syntax

23

ALBERT—semantics

24

• Semantics is explained by referring to sequences
of time-stamped states of the BPEL process (timed
state word)

– an infinite sequence s0, s1, s2, ..., where each si is
a state (Vi, Ii, ti)
• the sequence is strictly monotonic (time consuming operation

occurs in a transition)

Becomes and Until

Becomes(X)

Until(A,B)

25

true when

evaluated

in t3 and t5

true when

evaluated

in t2 (and

also in t1)

Within

Within (X, K)

26

X true within K instants

true when

evaluated in t2

with t5-t2 ≤ K

past and elapsed

past(A,onEvent(B))

elapsed(onEvent(X))

27

= t7-t5 when

evaluated in t7

= 0 when

evaluated in t5 and in t6

= 1 when evaluated in t7

count

• In t7 (with t7-t2 ≤ k and t7-t1 > k):
– count(A, k) = 1

– Becomes(count(B, k) = 4) is true

28

k

ALBERT properties

• Properties are in the form

it is always true that XXX holds

that is, they are process invariants

• In Albert, they have the form

Always XXX
• which stands for XXX and not (true Until not XXX)

• For convention, the outer Always is omitted

29

Useful derived operators

• We saw Always (also )

• Eventually (also ◊)

– ◊X defined as true Until X

• When(X, Y) when A is true in the future, B is also
true

– When(X, Y) defined as ◊X  ( X Until X Y)

30

Using ALBERT (TeleAssistance)

31

 LabServiceTime (AP)

after sending the patient’s data to the lab, a

reply is received within 1 hour

onEvent(invoke_AnalyzeData) 

Within(onEvent(receive_AnalyzeData), 60)

Using ALBERT (TA cont.)

32

 AverageLabServiceTime (AP)

the average response time of requests to

analyze data completed in past 10 hrs should be

less than 45 min.

avg(elapsed(onEvent(invoke_AnalyzeData)),

onEvent(receive_AnalyzeData), 600) <= 45

Using ALBERT (TA cont.)

 FASInvokeMildAlarm (PP)

after receiving a message from the LAB
indicating that an alarm must be issued to the
FAS, the TA process must send a "Mild" alarm
notification to the FAS service within four hours

onEvent(receive_AnalyzeData) ∧

$analysisResult/suggestion = ‘sendAlarm’)



Within(onEvent(alarmNotif) ∧$alarmNotif/level= ‘mild’),240)

33

Using ALBERT (TA cont.)

 MDCheckUp (PP)

if a certain patient sends the pButtonMsg three
times during a time span of a week, the patient
must be hospitalized within one day

x (Becomes (count(onEventl(pButtonMsg)∧$alarmNotif/pId=x,

10080) =3)



Within(onEvent(patHospitalized)∧$patHospitalized/pID=x, 1440))

34

Using ALBERT (CarRental)

 ParkingInOut (AP)

between two events signaling that a car exits

the parking, an event signaling entrance for the

same car must occur

 x ((onEvent(carExit) ∧$carExit/carID=x)

Until(not (onEvent(carExit) ∧$carExit/carID=x),

onEventl(carEnter) ∧$carEnter/carID=x))

35

Using ALBERT (CR cont.)
 CISUpdate (AP)

if a car is marked available in the Car InfoSyst

and it is not marked unavailable until a

lookUpCar is performed, then lookup for that car

must show that the car is available
 x (onEvent(receive_MarkAvail) ∧ $carInfo/carID=x ∧

Until (not (onEvent(receive_MarkUnavail)∧$carInfo/carID=x),

onEvent(invoke_LookUp) ∧ $carInfo/carId=x)



When(onEvent(invoke_LookUp) ∧ $carInfo/carId=x,

Eventually((onEvent(receive_LookUp) ∧
$carInfo/carId=x∧$qRes/res!="no")))

36

Using ALBERT (CR cont.)

 RentCar (PP)

if a car enters the parking and does not exit until
a client requests it for renting, then the request
must succeed

 x (onEvent(carEnter) ∧ $carEnter/carID=x ∧

Until (not (onEvent(carExit) ∧ $carEnter/carID=x),

onEvent(invoke_FindCar) ∧ $carInfo/carId=x))



When(onEvent(invoke_FindCar) ∧ $carInfo/id=x,

Eventually((onEvent(invoke_FindCarCB) ∧ $carInfo/carId=x
∧ $queryResult/res!="no")))

37

Execution and monitoring

38

Properties of run-time
verification

• Size of the state history kept in the ActivePool

– Maximum among:
• maximum nesting level of past functions

• 1 (if there is at least a Becomes predicate)

• maximum number of states needed for the various count and
fun time windows

• Number of threads required for the verification

– 1, for each Until (sub)formula

– number of states in the sequence of process states that
may occur in a time interval long K, for each
Within(A,K) (sub)formula

39

