
From requirements to 
specification and
(continuous) verification
(Part 1  -- SAVVY-WS)
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Open world: the problem

• External services may evolve autonomously

• The assumptions made at design-time may be 
later invalidated

• What can be done at design-time?

• What needs to be done at run-time?
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SAVVY-WS

• Service Analysis, Verification and Validation methodologY
for Web Services

– It supports the development of verified composite 
services, built as BPEL workflows

• Compositions are guaranteed to satisfy certain global 
correctness properties

• External services are assumed to be known at the level of 
the interface (abstract services) and their assumed 
behavior is specified as we will describe

– any concrete service that offers a “compatible” 
interface may be later bound
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Conceptual approach

• An assumption-promise based approach

– a service integrator assumes that the external services 
used in the composition satisfy their stated 
specification

– under this assumption, the system is designed to 
promise a certain service to its clients

• But since the external services may deviate wrt to their 
stated specification

– a monitor does run-time verification

– suitable reactions may be activated
• reactions ignored in this presentation
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BPEL—Business Process 
Execution Language

• Supports the definition of Business Processes (BPs) which 
use external Web Services

• BPs coordinate (orchestrate) external Web services

• A BPEL BP can be seen in turn as a service
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BPEL and WSDL

• WSDL Web Service Description Language

– syntactic description

• BPEL processes are exposed as services through a WSDL 
interface 

– message exchanges depend on the defined WSDL 
operations
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WSDL

• Describes the 
interface of a service 
in terms of 
operations and 
parameters

• Contains definition 
of message types

• The description is an 
XML document
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Example: a preview
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BPEL Basic Activities

<invoke partnerLink="..." portType="..." operation="..."

inputVariable="..." outputVariable="..."/>

<!-- process invokes an operation on a partner:       -->

<receive partnerLink="..." portType="..." operation="..."

variable="..." [createInstance="..."]/>

<!-- process receives invocation from a partner:         -->

<reply partnerLink="..." portType="..." operation="..."

variable="..."/>

<!-- process sends reply message in partner invocation:      -->

<assign> 

<copy> 

<from variable="..."/> <to variable="..."/>

</copy>+

</assign>

<!– Data assignment between variables       -->
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More Basic Activities

<throw faultName="..." faultVariable="... "/>

<!-- process signals an internal fault -->

<terminate />

<!– terminates the process execution -->

<wait (for="..." | until="...")/>

<!-- process execution is delayed for a certain period of time or until a 

certain deadline is reached -->

<empty /> 

<!– Do nothing; a convenience element -->
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Variables

• Necessary to maintain the process state

• Their types can be:

– WSDL message

– XML type

– XML Schema element

• Contents of (inbound and outbound) messages are stored 
in variables
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The TeleAssistance (TA) 
Process
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Assumed properties

 LabServiceTime—Lab

after sending the patient’s data to the lab, a 

reply is received within 1 hour

 FASConfirmHospitalization—FA Squad

if the FAS is invoked three times over a week, 

with a "High" severity level for a certain 

patient, within one day a notification is 

received that the patient has been hospitalized
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Promised properties

 FASInvokeMildAlarm

after receiving a message from the LAB 
indicating that an alarm must be issued to the 
FAS, the TA process must send a "Mild" alarm 
notification to the FAS service within four hours

 MDCheckUp

if a certain patient pushes the pButtonMsg
three times during a time span of a week, the 
patient must be hospitalized within one day
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Car rental process
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Sample properties

 ParkingInOut (AP)—car parking sensor service

between two events signaling that a car exits 
the parking, an event signaling entrance for the 
same car must occur

 RentCar (PP)

if a car enters the parking and does not exit 
until a client requests it for renting, then the 
request must succeed
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Two kinds of verification, one 
language

• ALBERT (Assertion Language for BPEL pRocess
inTeractions)
– can express assumptions and promises

• Can be used for two kinds of verification
– design-time (model checking)

• promised properties are satisfied by the workflow under the 
assumption that assumed properties hold

– run-time (monitoring+ run-time verification)
• checks if assumptions are valid

– services satisfy their promises
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ALBERT
• A linear temporal logic language

• Variables correspond to BPEL variables

• State a triple (V, I, t), where

– V is a set of <var, val> pairs

– I is a location in the workflow: set of labels

– t is the time at which the state is generated 

• State changes are associated with location 
counter change in the workflow

– internal activities (assign)

– interactions with the world
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ALBERT in a nutshell

• It predicates on variables

• Classical boolean operators and quantifications

• Event predicate

– OnEvent(XXX) true in a state if event XXX occurs in that 
state; e.g.,  onEvent(invoke_XXX)

• true in a state if the service XXX is invoked in that state

• Future Temporal Operators

– Becomes, Until, Within

• Functions

– elapsed, past, count, …
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ALBERT—syntax 
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ALBERT—semantics 
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• Semantics is explained by referring to sequences 
of time-stamped states of the BPEL process (timed 
state word)

– an infinite sequence s0, s1, s2, ..., where each si is 
a state (Vi, Ii, ti)
• the sequence is strictly monotonic (time consuming operation 

occurs in a transition)



Becomes and Until

Becomes(X)

Until(A,B)
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Within

Within (X, K)

26

X true within K instants

true when 

evaluated in t2

with t5-t2 ≤ K



past and elapsed

past(A,onEvent(B))

elapsed(onEvent(X))
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= t7-t5 when 

evaluated in t7

= 0 when 

evaluated in t5 and in t6

= 1 when evaluated in t7



count

• In t7 (with t7-t2 ≤ k and t7-t1 > k):
– count(A, k) = 1

– Becomes(count(B, k) = 4) is true
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ALBERT properties

• Properties are in the form

it is always true that XXX holds

that is, they are process invariants

• In Albert, they have the form

Always XXX 
• which stands for XXX and not (true Until not XXX)

• For convention, the outer Always is omitted
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Useful derived operators

• We saw Always (also  )

• Eventually (also ◊)

– ◊X defined as  true Until X

• When(X, Y) when A is true in the future, B is also 
true

– When(X, Y) defined as ◊X  ( X Until X Y)
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Using ALBERT (TeleAssistance)
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 LabServiceTime (AP)

after sending the patient’s data to the lab, a 

reply is received within 1 hour

onEvent(invoke_AnalyzeData) 

Within(onEvent(receive_AnalyzeData), 60)



Using ALBERT (TA cont.)
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 AverageLabServiceTime (AP)

the average response time of requests to 

analyze data completed in past 10 hrs should be 

less than 45 min.

avg(elapsed(onEvent(invoke_AnalyzeData)), 

onEvent(receive_AnalyzeData), 600) <= 45



Using ALBERT (TA cont.)

 FASInvokeMildAlarm (PP)

after receiving a message from the LAB 
indicating that an alarm must be issued to the 
FAS, the TA process must send a "Mild" alarm 
notification to the FAS service within four hours

onEvent(receive_AnalyzeData) ∧

$analysisResult/suggestion = ‘sendAlarm’)



Within(onEvent(alarmNotif) ∧$alarmNotif/level= ‘mild’),240)
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Using ALBERT (TA cont.)

 MDCheckUp (PP)

if a certain patient sends the pButtonMsg three 
times during a time span of a week, the patient 
must be hospitalized within one day

x (Becomes (count(onEventl(pButtonMsg)∧$alarmNotif/pId=x,

10080) =3)



Within(onEvent(patHospitalized)∧$patHospitalized/pID=x, 1440))
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Using ALBERT (CarRental)

 ParkingInOut (AP)

between two events signaling that a car exits 

the parking, an event signaling entrance for the 

same car must occur

 x ((onEvent(carExit) ∧$carExit/carID=x)

Until(not (onEvent(carExit) ∧$carExit/carID=x),

onEventl(carEnter) ∧$carEnter/carID=x))
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Using ALBERT (CR cont.) 
 CISUpdate (AP)

if a car is marked available in the Car InfoSyst

and it is not marked unavailable until a 

lookUpCar is performed, then lookup for that car 

must show that the car is available
 x (onEvent(receive_MarkAvail) ∧ $carInfo/carID=x ∧

Until (not (onEvent(receive_MarkUnavail)∧$carInfo/carID=x),

onEvent(invoke_LookUp) ∧ $carInfo/carId=x)



When(onEvent(invoke_LookUp) ∧ $carInfo/carId=x,

Eventually((onEvent(receive_LookUp) ∧
$carInfo/carId=x∧$qRes/res!="no")))
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Using ALBERT (CR cont.) 

 RentCar (PP)

if a car enters the parking and does not exit until 
a client requests it for renting, then the request 
must succeed

 x (onEvent(carEnter) ∧ $carEnter/carID=x ∧

Until (not (onEvent(carExit) ∧ $carEnter/carID=x),

onEvent(invoke_FindCar) ∧ $carInfo/carId=x))



When(onEvent(invoke_FindCar) ∧ $carInfo/id=x,

Eventually((onEvent(invoke_FindCarCB) ∧ $carInfo/carId=x
∧ $queryResult/res!="no")))
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Execution and monitoring
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Properties of run-time 
verification

• Size of the state history kept in the ActivePool

– Maximum among:
• maximum nesting level of past functions

• 1 (if there is at least a Becomes predicate)

• maximum number of states needed for the various count and 
fun time windows

• Number of threads required for the verification

– 1, for each Until (sub)formula

– number of states in the sequence of process states that 
may occur in a time interval long K, for each 
Within(A,K) (sub)formula
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