
From requirements to
specification and
(continuous) verification
(Part 1 -- SAVVY-WS)

1

Our setting

service providerservice provider

service provider

service integrator
added-value service

2

Our setting

3

Service

composition

assumptions

domain properties
guarantees

requirements

Service A

Service D

Service C

Service B

Service F

environment

Open world: the problem

• External services may evolve autonomously

• The assumptions made at design-time may be
later invalidated

• What can be done at design-time?

• What needs to be done at run-time?

4

SAVVY-WS

• Service Analysis, Verification and Validation methodologY
for Web Services

– It supports the development of verified composite
services, built as BPEL workflows

• Compositions are guaranteed to satisfy certain global
correctness properties

• External services are assumed to be known at the level of
the interface (abstract services) and their assumed
behavior is specified as we will describe

– any concrete service that offers a “compatible”
interface may be later bound

5

Conceptual approach

• An assumption-promise based approach

– a service integrator assumes that the external services
used in the composition satisfy their stated
specification

– under this assumption, the system is designed to
promise a certain service to its clients

• But since the external services may deviate wrt to their
stated specification

– a monitor does run-time verification

– suitable reactions may be activated
• reactions ignored in this presentation

6

BPEL—Business Process
Execution Language

• Supports the definition of Business Processes (BPs) which
use external Web Services

• BPs coordinate (orchestrate) external Web services

• A BPEL BP can be seen in turn as a service

7

Orchestration

(coordinator)

Web service

1

Web service

3
Web service

n

Web service

2

1: receive 2: invoke

3: invoke 4: …n: invoke

5: reply

client

Web

Service

Loan Approval Process

receive

reply

PortType of the

WSDL service

BPEL and WSDL

• WSDL Web Service Description Language

– syntactic description

• BPEL processes are exposed as services through a WSDL
interface

– message exchanges depend on the defined WSDL
operations

8

WSDL

• Describes the
interface of a service
in terms of
operations and
parameters

• Contains definition
of message types

• The description is an
XML document

9

concrete

section

abstract

section

Example: a preview

10

6. <<invoke>>

Return the best offer

1. Receive

BPEL Basic Activities

<invoke partnerLink="..." portType="..." operation="..."

inputVariable="..." outputVariable="..."/>

<!-- process invokes an operation on a partner: -->

<receive partnerLink="..." portType="..." operation="..."

variable="..." [createInstance="..."]/>

<!-- process receives invocation from a partner: -->

<reply partnerLink="..." portType="..." operation="..."

variable="..."/>

<!-- process sends reply message in partner invocation: -->

<assign>

<copy>

<from variable="..."/> <to variable="..."/>

</copy>+

</assign>

<!– Data assignment between variables -->

11

More Basic Activities

<throw faultName="..." faultVariable="... "/>

<!-- process signals an internal fault -->

<terminate />

<!– terminates the process execution -->

<wait (for="..." | until="...")/>

<!-- process execution is delayed for a certain period of time or until a

certain deadline is reached -->

<empty />

<!– Do nothing; a convenience element -->

12

Variables

• Necessary to maintain the process state

• Their types can be:

– WSDL message

– XML type

– XML Schema element

• Contents of (inbound and outbound) messages are stored
in variables

13

The TeleAssistance (TA)
Process

receive

while

pick

invoke

if

invoke

"mild"

panic

button

invoke

"high"

14

Assumed properties

 LabServiceTime—Lab

after sending the patient’s data to the lab, a

reply is received within 1 hour

 FASConfirmHospitalization—FA Squad

if the FAS is invoked three times over a week,

with a "High" severity level for a certain

patient, within one day a notification is

received that the patient has been hospitalized

15

Promised properties

 FASInvokeMildAlarm

after receiving a message from the LAB
indicating that an alarm must be issued to the
FAS, the TA process must send a "Mild" alarm
notification to the FAS service within four hours

 MDCheckUp

if a certain patient pushes the pButtonMsg
three times during a time span of a week, the
patient must be hospitalized within one day

16

Car rental process

17

Sample properties

 ParkingInOut (AP)—car parking sensor service

between two events signaling that a car exits
the parking, an event signaling entrance for the
same car must occur

 RentCar (PP)

if a car enters the parking and does not exit
until a client requests it for renting, then the
request must succeed

18

Two kinds of verification, one
language

• ALBERT (Assertion Language for BPEL pRocess
inTeractions)
– can express assumptions and promises

• Can be used for two kinds of verification
– design-time (model checking)

• promised properties are satisfied by the workflow under the
assumption that assumed properties hold

– run-time (monitoring+ run-time verification)
• checks if assumptions are valid

– services satisfy their promises

19

20

ALBERT
• A linear temporal logic language

• Variables correspond to BPEL variables

• State a triple (V, I, t), where

– V is a set of <var, val> pairs

– I is a location in the workflow: set of labels

– t is the time at which the state is generated

• State changes are associated with location
counter change in the workflow

– internal activities (assign)

– interactions with the world

21

ALBERT in a nutshell

• It predicates on variables

• Classical boolean operators and quantifications

• Event predicate

– OnEvent(XXX) true in a state if event XXX occurs in that
state; e.g., onEvent(invoke_XXX)

• true in a state if the service XXX is invoked in that state

• Future Temporal Operators

– Becomes, Until, Within

• Functions

– elapsed, past, count, …

22

ALBERT—syntax

23

ALBERT—semantics

24

• Semantics is explained by referring to sequences
of time-stamped states of the BPEL process (timed
state word)

– an infinite sequence s0, s1, s2, ..., where each si is
a state (Vi, Ii, ti)
• the sequence is strictly monotonic (time consuming operation

occurs in a transition)

Becomes and Until

Becomes(X)

Until(A,B)

25

true when

evaluated

in t3 and t5

true when

evaluated

in t2 (and

also in t1)

Within

Within (X, K)

26

X true within K instants

true when

evaluated in t2

with t5-t2 ≤ K

past and elapsed

past(A,onEvent(B))

elapsed(onEvent(X))

27

= t7-t5 when

evaluated in t7

= 0 when

evaluated in t5 and in t6

= 1 when evaluated in t7

count

• In t7 (with t7-t2 ≤ k and t7-t1 > k):
– count(A, k) = 1

– Becomes(count(B, k) = 4) is true

28

k

ALBERT properties

• Properties are in the form

it is always true that XXX holds

that is, they are process invariants

• In Albert, they have the form

Always XXX
• which stands for XXX and not (true Until not XXX)

• For convention, the outer Always is omitted

29

Useful derived operators

• We saw Always (also)

• Eventually (also ◊)

– ◊X defined as true Until X

• When(X, Y) when A is true in the future, B is also
true

– When(X, Y) defined as ◊X (X Until X Y)

30

Using ALBERT (TeleAssistance)

31

 LabServiceTime (AP)

after sending the patient’s data to the lab, a

reply is received within 1 hour

onEvent(invoke_AnalyzeData)

Within(onEvent(receive_AnalyzeData), 60)

Using ALBERT (TA cont.)

32

 AverageLabServiceTime (AP)

the average response time of requests to

analyze data completed in past 10 hrs should be

less than 45 min.

avg(elapsed(onEvent(invoke_AnalyzeData)),

onEvent(receive_AnalyzeData), 600) <= 45

Using ALBERT (TA cont.)

 FASInvokeMildAlarm (PP)

after receiving a message from the LAB
indicating that an alarm must be issued to the
FAS, the TA process must send a "Mild" alarm
notification to the FAS service within four hours

onEvent(receive_AnalyzeData) ∧

$analysisResult/suggestion = ‘sendAlarm’)

Within(onEvent(alarmNotif) ∧$alarmNotif/level= ‘mild’),240)

33

Using ALBERT (TA cont.)

 MDCheckUp (PP)

if a certain patient sends the pButtonMsg three
times during a time span of a week, the patient
must be hospitalized within one day

x (Becomes (count(onEventl(pButtonMsg)∧$alarmNotif/pId=x,

10080) =3)

Within(onEvent(patHospitalized)∧$patHospitalized/pID=x, 1440))

34

Using ALBERT (CarRental)

 ParkingInOut (AP)

between two events signaling that a car exits

the parking, an event signaling entrance for the

same car must occur

 x ((onEvent(carExit) ∧$carExit/carID=x)

Until(not (onEvent(carExit) ∧$carExit/carID=x),

onEventl(carEnter) ∧$carEnter/carID=x))

35

Using ALBERT (CR cont.)
 CISUpdate (AP)

if a car is marked available in the Car InfoSyst

and it is not marked unavailable until a

lookUpCar is performed, then lookup for that car

must show that the car is available
 x (onEvent(receive_MarkAvail) ∧ $carInfo/carID=x ∧

Until (not (onEvent(receive_MarkUnavail)∧$carInfo/carID=x),

onEvent(invoke_LookUp) ∧ $carInfo/carId=x)

When(onEvent(invoke_LookUp) ∧ $carInfo/carId=x,

Eventually((onEvent(receive_LookUp) ∧
$carInfo/carId=x∧$qRes/res!="no")))

36

Using ALBERT (CR cont.)

 RentCar (PP)

if a car enters the parking and does not exit until
a client requests it for renting, then the request
must succeed

 x (onEvent(carEnter) ∧ $carEnter/carID=x ∧

Until (not (onEvent(carExit) ∧ $carEnter/carID=x),

onEvent(invoke_FindCar) ∧ $carInfo/carId=x))

When(onEvent(invoke_FindCar) ∧ $carInfo/id=x,

Eventually((onEvent(invoke_FindCarCB) ∧ $carInfo/carId=x
∧ $queryResult/res!="no")))

37

Execution and monitoring

38

Properties of run-time
verification

• Size of the state history kept in the ActivePool

– Maximum among:
• maximum nesting level of past functions

• 1 (if there is at least a Becomes predicate)

• maximum number of states needed for the various count and
fun time windows

• Number of threads required for the verification

– 1, for each Until (sub)formula

– number of states in the sequence of process states that
may occur in a time interval long K, for each
Within(A,K) (sub)formula

39

