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Domain assumptions

• Their goal is to bridge the gap between requirements and 
specifications

• If we have a formal representation as follows

– R = requirements

– S = specification

– D = domain assumptions

it is necessary to prove that

– S ∧ D  R
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Dependability focus

• Nonfunctional requirements are key aspects of 
dependability

• We focus here on

– reliability

– performance

• Quantitative assessment necessary

• Uncertainty is a characteristic factor

• Need to deal with quantitative, probabilistic
data
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Our setting 

At design time there is uncertainty because of 
incomplete/partial knowledge on the domain + 
because changes are likely to occur at run-time in

– Input distributions/usage profiles

– External services
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Requirements breakdown

• D= Df∧ Du ∧ Ds  

– Df is the fixed/stable part

– Du = Usage profile

– Ds = S1 ∧ .... ∧ Sn

• where Si  is the assumption on i-th external service 
(from SLA document) 

• At design-time we need to verify that            

S ∧ (Df∧ Du ∧ Ds)  R
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At run-time

• Reality may subvert our expectations!

• Continuous verification needed
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Development-time/run-time 
boundary vanishes

• The model must be kept alive at run-time and re-
analyzed after changes

• Monitored data must be fed back as new 
parameters of the model

• The mapping data  parameters is achieved via 
machine learning
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Which models?

• We wish to have modelling notations that allow us 
to reason about performance and reliability in a 
quantitative way

• We mostly work with Markov models

– here we focus on Discrete-Time Markov Chains 
(DTMCs)
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A detour: DTMCs

• A finite-state machine where transitions are labelled with 
probabilities

– the sum of probabilities associated with transitions 
exiting each state is 1

• At every time slot a transition is chosen randomly based on 
current state (a coin is flipped at every time slot)
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An example

A simple communication protocol operating with a channel

12C. Baier, JP Katoen, “Principles of model checking” MIT Press, 2008

delivered try lost

start

1

0.9

1

1

0.1

S        D        T        L

S    0        0        1        0

D    1        0        0        0

T     0      0.9       0      0.1

L     0       0         1        0

matrix representation



A detour: temporal logic

• We saw a first example of a modal extension to 
propositional logic: LTL (Linear Temporal Logic)

– it expresses properties over linear sequences of 
states

– each state has a unique next state

• CTL (Computation Tree Logic)

– can express properties over a branching 
structure

– each state can have several next states
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CTL
• State formulae

– ϕ ::= true | a | ϕ1 ∧ ϕ2 | ϕ | φ | φ

• Path formulae

– φ ::= o ϕ | ϕ1 U  ϕ2
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CTL*
• State formulae

– ϕ ::= true | a | ϕ1 ∧ ϕ2 | ϕ | φ | φ

• Path formulae

– φ ::= ϕ | φ1 ∧ φ2 | φ | o φ | φ1 U  φ2

CTL and LTL have incomparable expressiveness

CTL* more expressive than LTL and CTL



PCTL

• Probabilistic extension of CTL

• In a state, instead of existential and universal quantifiers 
over paths we can state P≈p [φ], where p is a probability 
value and  ≈ is <, >, ≤, ≥

– e.g.: P<0.2 [φ] means that the probability for the set of 
paths (leaving the state) to satisfy φ is less than 0.2

• In addition, path formulas also include step-bounded until

– ϕ1 U≤k ϕ2

• An example of a reliability statement

– P>0.8 [ (system state = success)]
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PCTL*

• Same philosophy as for CTL* over CTL

– a  path formula can be a state formula
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• State formulae

– ϕ ::= true | a | ϕ1 ∧ ϕ2 | ϕ | P≈p [φ]

• Path formulae

– φ ::= ϕ | φ1 ∧ φ2 | φ | o φ | φ1 U  φ2

• An example of a PCTL* reliability statement
Pconstr [ (through_state ∧ absorbing_state)]

PCTL* is more expressive than PCTL



Probabilistic model checking

• Given:

– a DTMC M

– a state s of M

– a PCTL or a PCTL* state formula ϕ

determine if M |= ϕ

• Results of analysis:

– OK, property satisfied

– property violated

– ... out of memory

• Existing tools
• PRISM (Kwiatkowska et al.) http://www.prismmodelchecker.org/

• MRMC (Katoen, Hermanns, ...) http://www.mrmc-tool.org/trac/

17C. Baier, JP Katoen, “Principles of model checking” MIT Press, 2008
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Our approach (KAMI) in action

FACT: Users classified as 

BigSpender or 

SmallSpender (SS), based 

on their usage profile.
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Assumptions
User profile domain knowledge

External service assumptions (reliability)
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DTMC model

Property check via model checking

R1:  “Probability of success is > 0.8”

R2: “Probability of a ExpShipping failure for a user recognized as                                     

BigSpender <  0.035”

•R3: “Probability of an authentication failure is less then < 0.06”

0.084

0.056

0.031

20



What happens at run time?

• We monitor the actual behavior

• A statistical (Bayesian) approach estimates the  updated 
DTMC matrix (posterior) given run time traces and prior 
transitions

• Boils down to the following updating rule

A-priori Knowledge A-posteriori Knowledge
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Why is this useful?
• Fault

– Machine or environment do not behave as expected

• Failure

– Experienced violation of requirement

• Assume that a fault is detected (due to environment).          
3 cases are possible 

– All Reqs still valid
• OK, but contract violated

– Some Req violated + violation experienced in real world
• Failure detection

– Some Req violated, but violation not experience yet
• Failure prediction
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In our example

0.067

R2: “Probability of an ExpShipping failure for a user recognized as                                     

BigSpender <  0.035”

violated!

Monitored data  fed to Bayesian estimator estimate higher

failure probability
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In our example

0.633

Similarly, suppose we detect a change in user profile

R2 violated!
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In our example

0.067

R2: “Probability of a ExpShipping failure for a user recognized as                                     

BigSpender <  0.035”

Failure

predicted

by model

Suppose that execution traces that lead to updating the failure probability

of ExpShipping are those involving small spenders
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Development-time vs run-time

• DT and RT verification requirements may differ in terms of 
time constraints

• Time constraints for RT verification are especially 
stringent if the results are to be used for adaptation

• Issues

– can the RT model be the same as the one used at DT?

– should it be a simplified (less precise) version?

– can analysis be performed incrementally?
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Cost of model checking

• Model checking is an expensive analysis technique

– PCTL

• Polynomial in size(DTMC)

• Linear in  size(formula)

– PCTL*

• Polynomial in size(DTMC)

• Double exponential in size(formula)
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A possible solution

• Assumptions

– we know which parts of the model may change 
(DTMC parameters)

– the structure does not change

• Then a verification formula can be pre-computed 
at design-time

– variables in the formula represent dynamic 
data, whose values become known at run-time

• Run-time verification can be performed efficiently 
on-the-fly
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Reaction policies

• A largely unexplored territory

• We tried with rebinding policies

• But we are far from a complete picture

• Problem statement

• many “equivalent” (“substitutable”) services 
exist for any abstract service invocation

• how can the “best” service be chosen?

29C. Ghezzi et al. “QoS Driven Dynamic Binding in-the-many”, QoSA 2010, LNCS



Selection problem and load 
balancing 

• Service selection similar to load balancing 
where

– services are the resources

– composite workflows are clients

• Resources are heterogeneous

• Clients must select the resource

– based on which information?
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Framework definition

• A multi-client multi-provider stochastic system is a 6-
tuple: 

< C, P, F1, F2, F3, SS > 

– C: set of clients

– P: set of service providers

– F1: client's probability to submit a service request

– F2: size of a request

– F3: provider's processing rate

– SS: selection strategy
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Framework definition

Client

Equivalent

Service 

Providers

F1(c,t) defines the 

probability to submit

a new request for the

Client c, at time t

Request

F2(c,t) defines the size 

of the new request for

Client c, at time t

SS decides which is the

provider that will

handle our request

F3(p,t) defines the

processing

capacity 

of provider p, at

time t

Higher values for F1(c,t) increase the number of requests  

that the providers are in charge to serve

By changing F1(c,t) 

we can stress the system with a variable load

All clients use the same SS strategy

however, SS bases service selection on 

client-specific data

The response time of a service provider depends on

Processing capacity defined by F3

Number of clients waiting to be served

< C, P, F1, F2, F3, SS >
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Efficiency estimator

• For each service, each client c stores its knowledge in the 
efficiency of providers in an estimator vector eec

– eec(p) is the current client’s evaluation of p’s
performance

1) How can eec be managed?

2) Which provider should be selected based on eec?
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Updating ee

• T is the response time 
measured by the client

• w determine the weight of 
the current record respect 
to the previous ones

• jdc(p) collects the number 
of requests served by 
provider p

Notice that:

• Only the p entry is updated.

• The estimate of all other 
providers does not change

c

p

eec(p) := W T + (1 – W) eec(p) 

jdc(p) ++ 

W := w + (1 – w)/ jdc(p)
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Selection Strategies

• Distributed : each client selects the service according to
its own available information

– Minimum Strategy

– Probabilistic Strategy

– Collaborative Strategy

• PROSS: choice delegated to a (logically) centralized proxy

– Proxy Minimum Strategy

– Proxy Probabilistic Strategy
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Minimum Strategy

• Select service provider with the best expected 
performance

- minimum value in eec

• Pros

- the simplest and most intuitive algorithm

• Cons

– bad load balancing

– poor efficiency
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Probabilistic Strategy

• Select the service provider with probability pdc.

• pdc is a function of:

– eec

– n : how much “explorative” is the client

37



Probabilistic Strategy

• Pros: Minimum Strategy problems solved!

– Better Load Balancing 

– More efficient!

• Cons: according to the definition of eec, performance 
estimates may not reflect the current situation (they are 
based on that client’s experience only!

• How to solve?

– Communicating Clients

– (Logically) Centralized Approach
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Collaborative Strategy

• Allows communication between clients

• Each client c maintains  its own eec

• ee vectors of a neighborhood are shared when a decision 
is made

• Selection still remains probabilistic

• Pros: decision based on more accurate 

performance estimates

• Cons: the local communication is

not sufficient to obtain good

results
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PROSS

• PROxy Service Selector, a 
centralized entity which:

– Makes the decision

– Links to the client 
submitting the request

• Information available:

– Global efficiency 
estimator ee

– pending_requests
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PROSS

• PROSS acts as a load 
balancer

• Service providers are 
unaware of the entire 
selection process

• Service interaction 
paradigm simplified
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A possible distributed PROSS

• Token Ring Architecture

• Global ee computed as 
the average of the ee
vectors of all nodes

• pending_requests as the 
sum of the 
pending_requests vectors 
of all nodes

• Consistency maintained 
respect to the logical 
view
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Validation

• Numerical simulations in Matlab of the Multi-client multi-
provider stochastic system

• Setup of a number of possible scenarios

– Different probabilistic request submission function for 
the pool of clients

– Different processing capacities for the pool of providers

• Study of the performances of the different SS strategy for 
each of the scenarios defined previously

• PROSS wins—see (*) for details

(*) C. Ghezzi et al. “QoS Driven Dynamic Binding in-the-many”, QoSA 2010, LNCS 43


