
From requirements to
specification and
(continuous) verification
(Part 2)

1I. Epifani, C. Ghezzi, R. Mirandola, G. Tamburrelli, "Model Evolution by Run-Time Parameter Adaptation", ICSE 2009

C. Ghezzi, G. Tamburrelli, "Reasoning on Non Functional Requirements for Integrated Services", RE 2009.

The machine and the world

Specification

Domain

properties

(assumptions)

Goals

Requirements

2

Domain

properties

(assumptions)

Goals

Requirements

Domain assumptions

• Their goal is to bridge the gap between requirements and
specifications

• If we have a formal representation as follows

– R = requirements

– S = specification

– D = domain assumptions

it is necessary to prove that

– S ∧ D  R

3

Dependability focus

• Nonfunctional requirements are key aspects of
dependability

• We focus here on

– reliability

– performance

• Quantitative assessment necessary

• Uncertainty is a characteristic factor

• Need to deal with quantitative, probabilistic
data

4

Our setting

At design time there is uncertainty because of
incomplete/partial knowledge on the domain +
because changes are likely to occur at run-time in

– Input distributions/usage profiles

– External services

?

System under

development

?

?
?

?

??

5

Requirements breakdown

• D= Df∧ Du ∧ Ds

– Df is the fixed/stable part

– Du = Usage profile

– Ds = S1 ∧ ∧ Sn

• where Si is the assumption on i-th external service
(from SLA document)

• At design-time we need to verify that

S ∧ (Df∧ Du ∧ Ds)  R

6

At run-time

• Reality may subvert our expectations!

• Continuous verification needed

7

verification

running

system

Environment

Real world

data

Development-time/run-time
boundary vanishes

• The model must be kept alive at run-time and re-
analyzed after changes

• Monitored data must be fed back as new
parameters of the model

• The mapping data  parameters is achieved via
machine learning

8

Situational adaptive software

the world

Models
Goals

Requirements

Assumptions

Code

Model-driven

development

•Reasoner

•Adapter

Components

Services

Monitor

“Real” parameters

Probes

Learner

Offline

evolution

Changes

User profiles

External services

Reasoner

9

Which models?

• We wish to have modelling notations that allow us
to reason about performance and reliability in a
quantitative way

• We mostly work with Markov models

– here we focus on Discrete-Time Markov Chains
(DTMCs)

10

A detour: DTMCs

• A finite-state machine where transitions are labelled with
probabilities

– the sum of probabilities associated with transitions
exiting each state is 1

• At every time slot a transition is chosen randomly based on
current state (a coin is flipped at every time slot)

11

BA

p

q
1 - p 1 – q

An example

A simple communication protocol operating with a channel

12C. Baier, JP Katoen, “Principles of model checking” MIT Press, 2008

delivered try lost

start

1

0.9

1

1

0.1

S D T L

S 0 0 1 0

D 1 0 0 0

T 0 0.9 0 0.1

L 0 0 1 0

matrix representation

A detour: temporal logic

• We saw a first example of a modal extension to
propositional logic: LTL (Linear Temporal Logic)

– it expresses properties over linear sequences of
states

– each state has a unique next state

• CTL (Computation Tree Logic)

– can express properties over a branching
structure

– each state can have several next states

13

CTL
• State formulae

– ϕ ::= true | a | ϕ1 ∧ ϕ2 | ϕ | φ | φ

• Path formulae

– φ ::= o ϕ | ϕ1 U ϕ2

14

CTL*
• State formulae

– ϕ ::= true | a | ϕ1 ∧ ϕ2 | ϕ | φ | φ

• Path formulae

– φ ::= ϕ | φ1 ∧ φ2 | φ | o φ | φ1 U φ2

CTL and LTL have incomparable expressiveness

CTL* more expressive than LTL and CTL

PCTL

• Probabilistic extension of CTL

• In a state, instead of existential and universal quantifiers
over paths we can state P≈p [φ], where p is a probability
value and ≈ is <, >, ≤, ≥

– e.g.: P<0.2 [φ] means that the probability for the set of
paths (leaving the state) to satisfy φ is less than 0.2

• In addition, path formulas also include step-bounded until

– ϕ1 U≤k ϕ2

• An example of a reliability statement

– P>0.8 [(system state = success)]

15

absorbing state
1

PCTL*

• Same philosophy as for CTL* over CTL

– a path formula can be a state formula

16

• State formulae

– ϕ ::= true | a | ϕ1 ∧ ϕ2 | ϕ | P≈p [φ]

• Path formulae

– φ ::= ϕ | φ1 ∧ φ2 | φ | o φ | φ1 U φ2

• An example of a PCTL* reliability statement
Pconstr [(through_state ∧ absorbing_state)]

PCTL* is more expressive than PCTL

Probabilistic model checking

• Given:

– a DTMC M

– a state s of M

– a PCTL or a PCTL* state formula ϕ

determine if M |= ϕ

• Results of analysis:

– OK, property satisfied

– property violated

– ... out of memory

• Existing tools
• PRISM (Kwiatkowska et al.) http://www.prismmodelchecker.org/

• MRMC (Katoen, Hermanns, ...) http://www.mrmc-tool.org/trac/

17C. Baier, JP Katoen, “Principles of model checking” MIT Press, 2008

http://www.prismmodelchecker.org/

Our approach (KAMI) in action

FACT: Users classified as

BigSpender or

SmallSpender (SS), based

on their usage profile.

18

Assumptions
User profile domain knowledge

External service assumptions (reliability)

19

DTMC model

Property check via model checking

R1: “Probability of success is > 0.8”

R2: “Probability of a ExpShipping failure for a user recognized as

BigSpender < 0.035”

•R3: “Probability of an authentication failure is less then < 0.06”

0.084

0.056

0.031

20

What happens at run time?

• We monitor the actual behavior

• A statistical (Bayesian) approach estimates the updated
DTMC matrix (posterior) given run time traces and prior
transitions

• Boils down to the following updating rule

A-priori Knowledge A-posteriori Knowledge

21

Why is this useful?
• Fault

– Machine or environment do not behave as expected

• Failure

– Experienced violation of requirement

• Assume that a fault is detected (due to environment).
3 cases are possible

– All Reqs still valid
• OK, but contract violated

– Some Req violated + violation experienced in real world
• Failure detection

– Some Req violated, but violation not experience yet
• Failure prediction

22

In our example

0.067

R2: “Probability of an ExpShipping failure for a user recognized as

BigSpender < 0.035”

violated!

Monitored data fed to Bayesian estimator estimate higher

failure probability

23

In our example

0.633

Similarly, suppose we detect a change in user profile

R2 violated!

24

In our example

0.067

R2: “Probability of a ExpShipping failure for a user recognized as

BigSpender < 0.035”

Failure

predicted

by model

Suppose that execution traces that lead to updating the failure probability

of ExpShipping are those involving small spenders

25

Development-time vs run-time

• DT and RT verification requirements may differ in terms of
time constraints

• Time constraints for RT verification are especially
stringent if the results are to be used for adaptation

• Issues

– can the RT model be the same as the one used at DT?

– should it be a simplified (less precise) version?

– can analysis be performed incrementally?

26

Cost of model checking

• Model checking is an expensive analysis technique

– PCTL

• Polynomial in size(DTMC)

• Linear in size(formula)

– PCTL*

• Polynomial in size(DTMC)

• Double exponential in size(formula)

27

A possible solution

• Assumptions

– we know which parts of the model may change
(DTMC parameters)

– the structure does not change

• Then a verification formula can be pre-computed
at design-time

– variables in the formula represent dynamic
data, whose values become known at run-time

• Run-time verification can be performed efficiently
on-the-fly

28

Reaction policies

• A largely unexplored territory

• We tried with rebinding policies

• But we are far from a complete picture

• Problem statement

• many “equivalent” (“substitutable”) services
exist for any abstract service invocation

• how can the “best” service be chosen?

29C. Ghezzi et al. “QoS Driven Dynamic Binding in-the-many”, QoSA 2010, LNCS

Selection problem and load
balancing

• Service selection similar to load balancing
where

– services are the resources

– composite workflows are clients

• Resources are heterogeneous

• Clients must select the resource

– based on which information?

30

Framework definition

• A multi-client multi-provider stochastic system is a 6-
tuple:

< C, P, F1, F2, F3, SS >

– C: set of clients

– P: set of service providers

– F1: client's probability to submit a service request

– F2: size of a request

– F3: provider's processing rate

– SS: selection strategy

31

Framework definition

Client

Equivalent

Service

Providers

F1(c,t) defines the

probability to submit

a new request for the

Client c, at time t

Request

F2(c,t) defines the size

of the new request for

Client c, at time t

SS decides which is the

provider that will

handle our request

F3(p,t) defines the

processing

capacity

of provider p, at

time t

Higher values for F1(c,t) increase the number of requests

that the providers are in charge to serve

By changing F1(c,t)

we can stress the system with a variable load

All clients use the same SS strategy

however, SS bases service selection on

client-specific data

The response time of a service provider depends on

Processing capacity defined by F3

Number of clients waiting to be served

< C, P, F1, F2, F3, SS >

32

Efficiency estimator

• For each service, each client c stores its knowledge in the
efficiency of providers in an estimator vector eec

– eec(p) is the current client’s evaluation of p’s
performance

1) How can eec be managed?

2) Which provider should be selected based on eec?

33

Updating ee

• T is the response time
measured by the client

• w determine the weight of
the current record respect
to the previous ones

• jdc(p) collects the number
of requests served by
provider p

Notice that:

• Only the p entry is updated.

• The estimate of all other
providers does not change

c

p

eec(p) := W T + (1 – W) eec(p)

jdc(p) ++

W := w + (1 – w)/ jdc(p)

34

Selection Strategies

• Distributed : each client selects the service according to
its own available information

– Minimum Strategy

– Probabilistic Strategy

– Collaborative Strategy

• PROSS: choice delegated to a (logically) centralized proxy

– Proxy Minimum Strategy

– Proxy Probabilistic Strategy

35

Minimum Strategy

• Select service provider with the best expected
performance

- minimum value in eec

• Pros

- the simplest and most intuitive algorithm

• Cons

– bad load balancing

– poor efficiency

36

Probabilistic Strategy

• Select the service provider with probability pdc.

• pdc is a function of:

– eec

– n : how much “explorative” is the client

37

Probabilistic Strategy

• Pros: Minimum Strategy problems solved!

– Better Load Balancing

– More efficient!

• Cons: according to the definition of eec, performance
estimates may not reflect the current situation (they are
based on that client’s experience only!

• How to solve?

– Communicating Clients

– (Logically) Centralized Approach

38

Collaborative Strategy

• Allows communication between clients

• Each client c maintains its own eec

• ee vectors of a neighborhood are shared when a decision
is made

• Selection still remains probabilistic

• Pros: decision based on more accurate

performance estimates

• Cons: the local communication is

not sufficient to obtain good

results

39

PROSS

• PROxy Service Selector, a
centralized entity which:

– Makes the decision

– Links to the client
submitting the request

• Information available:

– Global efficiency
estimator ee

– pending_requests

40

PROSS

• PROSS acts as a load
balancer

• Service providers are
unaware of the entire
selection process

• Service interaction
paradigm simplified

41

A possible distributed PROSS

• Token Ring Architecture

• Global ee computed as
the average of the ee
vectors of all nodes

• pending_requests as the
sum of the
pending_requests vectors
of all nodes

• Consistency maintained
respect to the logical
view

42

Validation

• Numerical simulations in Matlab of the Multi-client multi-
provider stochastic system

• Setup of a number of possible scenarios

– Different probabilistic request submission function for
the pool of clients

– Different processing capacities for the pool of providers

• Study of the performances of the different SS strategy for
each of the scenarios defined previously

• PROSS wins—see (*) for details

(*) C. Ghezzi et al. “QoS Driven Dynamic Binding in-the-many”, QoSA 2010, LNCS 43

