dependable evolvable pervasive software engineering grou
o—0—8 p pe g g group

c';‘“q Slfuof
®
S (-2
o Computing
z
7
®
A)

From requirements to
specification and

(continuous) verification
(Part 2)

—0—0
/dﬁ-eﬂ%a/ |. Epifani, C. Ghezzi, R. Mirandola, G. Tamburrelli, "Model Evolution by Run-Time Parameter Adaptation", ICSE 2009 1

C. Ghezzi, G. Tamburrelli, "Reasoning on Non Functional Requirements for Integrated Services", RE 2009.

dependable evolvable pervasive software engineering grou
o—0—8 p pe g g group

.00 Sity
0"\ O;Q

The machine and the world 12)

Computing
®

Ay

T)

World (the environment) Machine

) 7 SR\ d 4
o . . Bl \
AP v] G L bl
RNt N |
.\:' f, . . 3
. g’ | ' i -] ’
&) - .I

B .

| |

gos)F ' phenomena -

| /I8 _;i“’ ' ‘

\ $ A A

e 2 Rapel), Se—A)
Goals Specification
Requirements .

eepse- :

dependable evolvable pervasive software engineering grou
o—0—8 p pe g g group

09 Sity
o

Computing

Q

gWan

Domain assumptions

e Their goal is to bridge the gap between requirements and
specifications

e If we have a formal representation as follows
- R =requirements
— S = specification
— D = domain assumptions

it is necessary to prove that
- SAD=2>R

teepse- o

dependable evolvable pervasive software engineering grou
o—0—8 p pe g g group

09 Sl'fuof
®
o
puting

an
\‘\V\ S

Dependability focus

s

 Nonfunctional requirements are key aspects of
dependability

e We focus here on

- reliability

- performance
e Quantitative assessment necessary
e Uncertainty is a characteristic factor

e Need to deal with quantitative, probabilistic
data

tegjse- :

dependable evolvable pervasive software engineering grou
o—e p pe g g group

c_b\“g Slfuof

o
puting

& V\G”o

Our setting

At design time there is uncertainty because of
incomplete/partial knowledge on the domain +
because changes are likely to occur at run-time in

- Input distributions/usage profiles
- External services

System under
development

?
O,
5

tegjse- :

dependable evolvable pervasive software engineering group
o—0—

c_b\“g Sl'fuo,
K ®
o

Requirements breakdown

Ay

puting

e D=DAD,AD,
- D¢is the fixed /stable part
- D, = Usage profile
-D,=S;A....AS,

e where S, is the assumption on i-th external service
(from SLA document)

e At design-time we need to verify that
SA(DiAD,AD) 2R

tegjse- ;

dependable evolvable pervasive software engineering group

09 Sity

o' %%
o

Computing

Q

gWan

*—o—0

At run-time

s

e Reality may subvert our expectations!
e Continuous verification needed

verification

Real world
data

dependable evolvable pervasive software engineering group
) Si fuo

Development-time/run-time 3
boundary vanishes R

an
wWNono,

e The model must be kept alive at run-time and re-
analyzed after changes

e Monitored data must be fed back as new
parameters of the model

e The mapping data > parameters is achieved via
machine learning

dependable evolvable pervasive software engineering grou
o—o—o pe pe g g group

9 Si
Q\(\Q “‘ua,,s

Situational adaptive software 3

[

S
Offline
evolution l
“Real” parameters Goals
> Requirements
Assumptions

Model-driven
development

Changes

User profiles
External services Probes
l |
€

o

't

dependable evolvable pervasive software engineering group
o—0—

Which models?

09 SHUO,
®
o
puting

an
0\:\ () 09

e We wish to have modelling notations that allow us
to reason about performance and reliability in a
quantitative way

e We mostly work with Markov models

— here we focus on Discrete-Time Markov Chains
(DTMCs)

(eBp-se- .

dependable evolvable pervasive software engineering group
o—0—

A detour: DTMCs

09 SHUO,
®
o

S

puting

gWan

%

e A finite-state machine where transitions are labelled with
probabilities

— the sum of probabilities associated with transitions
exiting each stateis 1

e Atevery time slot a transition is chosen randomly based on
current state (a coin is flipped at every time slot)

NEONNOE

(eBp-se- g

dependable evolvable pervasive software engineering group

o—0o—
09 S”""O,

An example g

o
puting

A simple communication protocol operating with a channel

S D T L
1 S|0 0 1 0
D| 1 0 0 0
1 0.1 T|o 09 o0 o1
J L]0 O 1 0
0.9 matrix representation
1

ﬂﬂﬂﬂ% C. Baier, JP Katoen, “Principles of model checking” MIT Press, 2008 12

dependable evolvable pervasive software engineering group
o—0—

N
OQ @0

A detour: temporal logic

Ay

e We saw a first example of a modal extension to
propositional logic: LTL (Linear Temporal Logic)

— it expresses properties over linear sequences of
states

— each state has a unique next state
e CTL (Computation Tree Logic)

— can express properties over a branching
structure

— each state can have several next states

(eBp-se- s

dependable evolvable pervasive software engineering grou
o—0—8 p pe g g group

CTL

e State formulae

—pu=truelal g, Ad, || I | Ve
e Path formulae

-pu=0¢ |, U P,

) Sity
o O/G,
o
Computing

Q

gWan

s

CTL and LTL have incomparable expressiveness

CTL*

e State formulae
—¢pu=true|ald Ad, |~ DT | Ve
e Path formulae
—pu=¢ oA | —plop]| @ U @,
CTL* more expressive than LTL and CTL

——o

legpss- .

dependable evolvable pervasive software engineering group

—0o—

PCTL

Sit
09 7
N\ Q'f

o
puting

S

gWan

s

e Probabilistic extension of CTL

e In a state, instead of existential and universal quantifiers
over paths we can state P, [¢@], where p is a probability
value and xis<, >, <, 2

- e.g.: P_,, [@] means that the probability for the set of
paths (leaving the state) to satisfy ¢ is less than 0.2

e In addition, path formulas also include step-bounded until
~ ¢, U ¢,

e An example of a reliability statement
- Py 5 [O(system state = success)] <& absorbing state

1

——o

(eBp-se- s

dependable evolvable pervasive software engineering grou
o—0—8 p pe g g group

a0 Sity
o s
(%

PCTL* o R

s

e Same philosophy as for CTL* over CTL
— a path formula can be a state formula

e State formulae

—¢u=true|a| s Ad, | =[Py [0]

Path formulae
—pu=¢ oA | —plop]| @, U @,

PCTL* is more expressive than PCTL

e An example of a PCTL* reliability statement
Pt [O(through_state ACabsorbing_state)]

(eBp-se- .

dependable evolvable pervasive software engineering grou
o—0—8 p pe g g group

Probabilistic model checking :%-.....
e (iven:)
- aDTMCM

- astatesof M
— a PCTL or a PCTL* state formula ¢
determine if M |= ¢
e Results of analysis:
- OK, property satisfied
— property violated
- ..out of memory

e Existing tools
e PRISM (Kwiatkowska et al.) http://www.prismmodelchecker.org/

e MRMC (Katoen, Hermanns, ...) http://www.mrmc-tool.org/trac/

——o

ﬂﬂﬂﬂ% C. Baier, JP Katoen, “Principles of model checking” MIT Press, 2008 17

http://www.prismmodelchecker.org/

dependable evolvable pervasive software engineering group

o—0o—
0"(\g S'fuo

Our approach (KAMI) in action :¢

0'

puting

FACT: Users classified as
BigSpender or

SmallSpender (SS), based
on their usage profile.

? (Nn‘nShipping)

) /
[normal] \
<>_" (CheckO Uj
[proceed]

(ExpShmpmg_) Logout
[buy mnre] @

3 probabilistic requirements:

R1: “Probability of success is > 0.8"
R2: "Probability of a ExpShipping failure for a user recognized as

BigSpender < 0.035"
R3: "Probability of an authentication failure is less then < 0.06"

(eBp-se- .

[express] i

o—0o—

dependable evolvable pervasive software engineering group

9 Situ,
Assumptions
User profile domain knowledge)
D, n Description Value
D1 P(User is a BS) 0.35
D, o P(BS chooses express shipping) 0.5
D, 3 P(SS chooses express shipping) 0.25
D..4 | P(BS searches again after a buy operation) | 0.2
D, 5 | P(SS searches again after a buy operation) | 0.15
External service assumptions (reliability)
D; o, Description Value
Dg 1 P(Login) 0.03
Dq 5 P(Logout) 0.03
D3 | P(NrmShipping) | 0.05
D 4 | P(ExpShipping) | 0.05
D 5 P(CheckOut) 0.1

puting

19

dependable evolvable pervasive software engineering group

Q“g S'fuo

puting

DTMC model

BigSpender sBan: Em!] ExpShi

|SmaIISpend?ﬂm |_NrmShipping || FailedNrmSh)

Property check via model checking
R1: “Probability of success is >0.8” 0.084

R2: “Probability of a ExpShipping failure for a user recognized as
BigSpender < 0.035” 0.031

*R3: “Probability of an authentication failure is less then < 0.06” 0.056

(eBp-se- x

dependable evolvable pervasive software engineering group
o—0—

Sit
09 7
o

What happens at run time? 3

Ay

e We monitor the actual behavior

e A statistical (Bayesian) approach estimates the updated

DTMC matrix (posterior) given run time traces and prior
transitions

e Boils down to the following updating rule

A-priori Knowledge A-posteriori Knowledge

——Oo
liegp-se- n

dependable evolvable pervasive software engineering group
o—0—

Why is this useful?

e Fault

— Machine or environment do not behave as expected
e Failure

Sit
09 7

o
puting

Q

gWan

[~

Ay

- Experienced violation of requirement

e Assume that a fault is detected (due to environment).
3 cases are possible

— All Regs still valid

e OK, but contract violated

- Some Req violated + violation experienced in real world
e Failure detection

— Some Req violated, but violation not experience yet
e Failure prediction

(eBp-se- :

—0o—

In our example g

dependable evolvable pervasive software engineering group

Sit
09 7
o o’@
[« %
puting

/\

BigSpender Searc

ExpShip 0.067
0 G W@
0.35
_Logout

Logged] N
0.97
O=C) 4 ’ ¥z
0.65
VYR

G Y
0.15
NrmShipping | FalledNrmSﬁ

| SmallSpender) N

Renifissetatsy daitomBaBiianmstalaterfestmaie highrinized as
failure probability

RinSnandar < ﬂ ﬂ35”

=71 \Jrlvl LA A \J
23

dependable evolvable pervasive software engineering group

o—0o—
09 S'fuo

o
puting

an
\‘\V\ °.o

In our example

0.633 [\ Faiedexseh
Ym 0.05 ‘) 1

_Logout

{ofoz
VYR

NrmShipping | FalledNrmSﬁ

BigSpender Searc

0.35

0.65

G; _/
0.15

| SmallSpender) L

Similarly, suppose we detect a change in user profile

(eBp-se- a

dependable evolvable pervasive software engineering group

(\Q S'fuo

O‘
Computing

*—o—0

In our example

ExpShip)\

BigSpender Searc

| Logged]
oXo)
0.03

0.65
G L
0.15
h B

| SmaIISEender b

Suppgsethabapioyitn FeShipaiigaditorereptngtieréabyeinsabapility

of ExpShipping are those involving small spenders
BiaSpender < 0.035"

I-llu\l

/ Logout

ViV

FalledNrmSh

NrmShipping

dependable evolvable pervasive software engineering group

S
09 ity
o O;@

Development-time vs run-time ¢

puting

e DT and RT verification requirements may differ in terms of
time constraints

e Time constraints for RT verification are especially
stringent if the results are to be used for adaptation

e [ssues
— can the RT model be the same as the one used at DT?
— should it be a simplified (less precise) version?
— can analysis be performed incrementally?

(eBp-se- .

dependable evolvable pervasive software engineering group

—0o—

Sit
09 7

Cost of model checking

Ay

o
puting

e Model checking is an expensive analysis technique

- PCTL

e Polynomial in size(DTMC)
e Linear in size(formula)

- PCTL*

e Polynomial in size(DTMC)
e Double exponential in size(formula)

(eBp-se- d

dependable evolvable pervasive software engineering group
o—0—

0 Ug
o' %o

A possible solution 3

s
e Assumptions

— we know which parts of the model may change
(DTMC parameters)

— the structure does not change

e Then a verification formula can be pre-computed
at design-time

— variables in the formula represent dynamic
data, whose values become known at run-time

e Run-time verification can be performed efficiently
on-the-fly

(eBp-se- .

dependable evolvable pervasive software engineering group
o—0—

Sit
09 7

Reaction policies

[

Ay

puting

e Alargely unexplored territory

e We tried with rebinding policies

e But we are far from a complete picture
e Problem statement

e many “equivalent” (“substitutable”) services
exist for any abstract service invocation

e how can the “best” service be chosen?

ﬂﬂﬂﬂ\sa/ C. Ghezzi et al. “QoS Driven Dynamic Binding in-the-many”, QoSA 2010, LNCS 29

dependable evolvable pervasive software engineering group
09 Sl'fuo

Selection problem and load 6
balancing N

an
\‘\V\ S

e Service selection similar to load balancing
where

- services are the resources

— composite workflows are clients
e Resources are heterogeneous
e Clients must select the resource

- based on which information?

(eBp-se- .

dependable evolvable pervasive software engineering grou
o—e p pe g g group

Sit
09 7

o
puting

Q

gWan

Framework definition

s

e A multi-client multi-provider stochastic system is a 6-
tuple:

<(C P, F1, F2, F3,SS >
— C: set of clients
— P: set of service providers
— F1: client's probability to submit a service request
- F2: size of arequest
- F3: provider's processing rate
— SS: selection strategy

(eBp-se- :

dependable evolvable pervasive software engineering group

{ieep-s8-

o—0—
o0 S"fuof@
u u u SO % puting
Framework definition
A)
<(C<P-F1<F2<F3, SS >
SS decides which is the
provider that will
F1(c.t) defines the handle our request
probability to submit Request \/. N—
a new request for the F3(p,t) defines the
Client c, at time t processing
\/_ capacity
J\ of provider p, at
F2(c.t) defines the size - time t
Client of the new request for
Clientc, attime t -
ﬁib&%&é&&mﬁéﬂ% M?ﬂ%d&nﬂbeenﬂmmsts Equivalent
b UBrerseiesemRAnin delindm ke - Service
ByritrapRsEafients waiting to be served Providers
we can stress the system with a variable load
——Oo
32

dependable evolvable pervasive software engineering group

S
09 ity
o

Q

puting

gWan

Efficiency estimator

s

e For each service, each client c¢ stores its knowledge in the
efficiency of providers in an estimator vector ee,

— ee.(p) is the current client’s evaluation of p’s
performance

1) How can ee, be managed?
2) Which provider should be selected based on ee_?

(eBp-se- :

dependable evolvable pervasive software engineering grou
o—e p pe g g group

Sit
09 7
N\ Q'f

o
puting

S

gWan

Updating ee g

e Tis the response time
measured by the client

e wdetermine the weight of
the current record respect
to the previous ones

e jd (p) collects the number
of requests served by

- provider p

C

ce (p) =W T+ (1-W)ee (p) Notice that: |
jd (p) ++ e Only the p entry is updated.
W:=w+ (1-w)/jd(p) e The estimate of all other

providers does not change

——o

(eBp-se- -

dependable evolvable pervasive software engineering group
o—0—

Sit
09 7

Selection Strategies 2

s

puting

e Distributed : each client selects the service according to
its own available information

— Minimum Strategy
- Probabilistic Strategy
— Collaborative Strategy
e PROSS: choice delegated to a (logically) centralized proxy
- Proxy Minimum Strategy
— Proxy Probabilistic Strategy

(eBp-se- .

dependable evolvable pervasive software engineering group

S

) ity

o c@
o

Q

puting

gWan

Minimum Strategy

s

e Select service provider with the best expected
performance

- minimum value in ee,
e Pros

- the simplest and most intuitive algorithm
e Cons

— bad load balancing

— poor efficiency

(eBp-se- -

dependable evolvable pervasive software engineering grou
o—0—8 p pe g g group

Probabilistic Strategy
e Select the service provider with probability pd..
e pd_is afunction of:
- ee,
- n : how much “explorative” is the client
02k w

(eBp-se- ”

dependable evolvable pervasive software engineering group
o—0—

Sit
09 7

o
puting

Q

gWan

Probabilistic Strategy

s

e Pros: Minimum Strategy problems solved!
- Better Load Balancing
— More efficient!

e Cons: according to the definition of ee , performance
estimates may not reflect the current situation (they are
based on that client’s experience only!

e How to solve?
- Communicating Clients
- (Logically) Centralized Approach

eeps8- L

dependable evolvable pervasive software engineering grou
o—0—8 p pe g g group

&0 Situg,

o
puting

& V\G”o

Collaborative Strategy

e Allows communication between clients
e Each client ¢ maintains its own ee,

e cevectors of a neighborhood are shared when a decision
is made

e Selection still remains probabilistic

e Pros: decision based on more accurate
performance estimates

e Cons: the local communication is
not sufficient to obtain good

results
liegpse- z

dependable evolvable pervasive software engineering group

PROSS

e PROxy Service Selector, a
centralized entity which:

— Makes the decision

— Links to the client
submitting the request

e Information available:

- Global efficiency
estimator ee

- pending_requests

o0 Situg,

puting

& V\Gno

P1 PZ‘ ‘ P3 P4‘

Clients

{ieep-s8-

40

dependable evolvable pervasive software engineering group

PROSS

PROSS acts as a load
balancer

Service providers are
unaware of the entire
selection process

Service interaction
paradigm simplified

e Situg,
& ®
S o
o puting
z
Zo
S

P1 PZ‘ ‘ P3 P4‘

Clients

41

dependable evolvable pervasive software engineering group
o—0—

Sit
09 7
o

A possible distributed PROSS 6

0.
-

e Token Ring Architecture

e Global ee computed as
the average of the ee
vectors of all nodes

e pending_requests as the
sum of the
pending_requests vectors =
of all nodes

e (Consistency maintained

respect to the lOgical token=[ee ; pending_requests]
view ee=[ee(pl)....ee(pi),...ee(pn)]
pending_requests=[pr(pl),...pr(pi),...pr(pn)]

——o

(eBp-se- :

dependable evolvable pervasive software engineering group
o—0—

09 SHUO,
®
o

S

puting

gWan

Validation

%

e Numerical simulations in Matlab of the Multi-client multi-
provider stochastic system

e Setup of a number of possible scenarios

- Different probabilistic request submission function for
the pool of clients

— Different processing capacities for the pool of providers

e Study of the performances of the different SS strategy for
each of the scenarios defined previously

e PROSS wins—see (*) for details

ﬂﬂﬂﬂ\sa/ (*) C. Ghezzi et al. “QoS Driven Dynamic Binding in-the-many”, QoSA 2010, LNCS 43

