Abstraction for
system verification

Susanne Graf

VERIMAG, CNRS

Marktoberdorf, August 2010

Outline

Motivation

Property preserving abstractions: semantic level
m Galois connexions between lattices
m Abstractions for transition systems

Effectively computing abstractions

A Verification of composed systems

Susanne Graf Abstraction for system verification 2 /63

Motivation

Motivation

HA Property preserving abstractions: semantic level
m Galois connexions between lattices
m Abstractions for transition systems

Effectively computing abstractions

A Verification of composed systems

Susanne Graf Abstraction for system verification 3/63

Motivation

What is verification?

We consider a specification / verification setting to be given by:

(1) a set of potential design specifications, called “models” M, with
M e M (how)

(2) a set of potential requirements L, with ¢ € £ (what)

(3*) a satisfaction or conformance relation |= C 2*% relating models and
properties. We write M |= ¢ and M £~ ¢.

(4) an algorithm to check M |= ¢ (model-checking)

Susanne Graf Abstraction for system verification 4 /63

Motivation

What is verification?

We consider a specification / verification setting to be given by:

(1) a set of potential design specifications, called “models” M, with
M e M (how)

(2) a set of potential requirements L, with ¢ € £ (what)

(3*) a satisfaction or conformance relation |= C 2*% relating models and
properties. We write M |= ¢ and M £~ ¢.

(4) an algorithm to check M |= ¢ (model-checking)

* Sometimes, we also consider the cases
B M= M (refinement)

m ¢ = (requirements engineering)

Susanne Graf Abstraction for system verification 4 /63

Motivation

Example for M and : Peterson mutex algorithm

PO

do := false; dl :=false;

loop loop
a : do:=true;turn:=0; dl:=true;turn:=1;
b : wait (not d1 or turn=1) wait (not dO or turn=0)
crit: do := false; d1 := false;

end loop end loop

Susanne Graf Abstraction for system verification 5 /63

Motivation

Example for M and : Peterson mutex algorithm

PO

do := false; dl :=false;

loop loop
a : do:=true;turn:=0; dl:=true;turn:=1;
b : wait (not d1 or turn=1) wait (not dO or turn=0)
crit: do := false; d1 := false;

end loop end loop

Does the design M guarantee the following requirements?
m mutual exclusion: at most one process is in critical section crit
m deadlock freedom: system is never definitively blocked
m non-blocking: always, any of the critical sections is reachable in a
bounded number of steps
m fairness: when a process is engaged (in b resp. B) its critical section
must be reached in a bounded number of steps.

Susanne Graf Abstraction for system verification 5 /63

Motivation

(1) Design specifications

Susanne Graf Abstraction for system verification 6 /63

Motivation

(1) Design specifications

. express:
m a (set of) potential solution(s) (use a shared variable “turn”)
m i.e. specific algorithms/ components/ ...

m can (in principle) be “implemented”

Susanne Graf Abstraction for system verification 6 /63

Motivation

(1) Design specifications

. express:
m a (set of) potential solution(s) (use a shared variable “turn”)
m i.e. specific algorithms/ components/ ...

m can (in principle) be “implemented”

Typical formalisms:
m programs, abstract programs

m (extended) automata, transition systems (TS), Kripke structures,
Petri Nets, ...

m Composition: parallel composition (Po||P1)

Susanne Graf Abstraction for system verification 6 /63

Motivation

(1) Design specifications

. express:
m a (set of) potential solution(s) (use a shared variable “turn”)
m i.e. specific algorithms/ components/ ...

m can (in principle) be “implemented”

Typical formalisms:
m programs, abstract programs

m (extended) automata, transition systems (TS), Kripke structures,
Petri Nets, ...
m Composition: parallel composition (Po||P1)

Design specifications are often operational.

Susanne Graf Abstraction for system verification

6/ 63

Motivation

Example: Peterson as a composition of symb. TS

PO
\ do=fs ,d1 ?,turn ?

dO=tr,d1 ?, turn=0

do=fs,d1/?,turn ?

()

[not d1 or turn = 1]
dO=tr,d1 2, turn ?

do : local to PO

d1 : local to P1
turn : shared

Susanne Graf Abstraction for system verification 7/63

Motivation

Example: Peterson as a global symbolic TS

Susanne Graf Abstraction for system verification 8 /63

Motivation

Example: Peterson as a global symbolic TS

\ do=fs , d1=fs, turn ?

d0=fs, d1=fs, turn=1

[d0=fs , d1=fs , turn=0]

do=tr, d1_tr tum 1 /

[“°t do ortum=0] do, d1, turn : local

Susanne Graf Abstraction for system verification 8 /63

Motivation

Example: Peterson as a global symbolic TS

\ do=fs , d1=fs, turn ?

“do=fs , d1=fs , turn=1

do=tr, dy&fs , tu\'n_O N
\ AN
AN
1
|

\
S \ \
do=tr , d1=tr, turn=Y !

\
[“0“‘00’1”"‘—9] / do, d1, turn : local

Susanne Graf Abstraction for system verification 8 /63

[d0=fs , d1=fs , turn=0]

Motivation
(2) Requirements

. express

m generic or specific properties that a component, system, algorithm, ...
should have (deadlock freedom, mutual exclusion, ...)

m specifies “what” it does, its qualities, not how

m cannot generally not be meaningfully “implemented” (by a compiler)

Typical formalisms:

<) =

may be “executable” or not.
The difference is more in the intent than the form.

Susanne Graf Abstraction for system verification 9 /63

Motivation
(2) Requirements

. express

m generic or specific properties that a component, system, algorithm, ...
should have (deadlock freedom, mutual exclusion, ...)

m specifies “what” it does, its qualities, not how
m cannot generally not be meaningfully “implemented” (by a compiler)

\OO P

Susanne Graf Abstraction for system verification 9/63

Motivation
(2) Requirements

. express

m generic or specific properties that a component, system, algorithm, ...
should have (deadlock freedom, mutual exclusion, ...)

m specifies “what” it does, its qualities, not how
m cannot generally not be meaningfully “implemented” (by a compiler)

Typical formalisms:

m (temporal) logic VO(—crity V —crity)

\OO P

Susanne Graf Abstraction for system verification 9/63

Motivation
(2) Requirements

. express

m generic or specific properties that a component, system, algorithm, ...
should have (deadlock freedom, mutual exclusion, ...)

m specifies “what” it does, its qualities, not how
m cannot generally not be meaningfully “implemented” (by a compiler)

Typical formalisms:

m (temporal) logic VO(—crity V —crity)
\ 't it

m (extended) TS, ... OO CZ%EO A crity
—crity V —crity

Susanne Graf Abstraction for system verification 9/63

Motivation
(2) Requirements

. express

m generic or specific properties that a component, system, algorithm, ...
should have (deadlock freedom, mutual exclusion, ...)

m specifies “what” it does, its qualities, not how
m cannot generally not be meaningfully “implemented” (by a compiler)

Typical formalisms:

m (temporal) logic VO(—crity V —crity)
\ 't it

m (extended) TS, ... OO CZ%EO A crity
—crity V —crity

B composition = conjunction All requirements must be satisfied

Susanne Graf Abstraction for system verification 9/63

Motivation
(2) Requirements

. express

m generic or specific properties that a component, system, algorithm, ...
should have (deadlock freedom, mutual exclusion, ...)

m specifies “what” it does, its qualities, not how
m cannot generally not be meaningfully “implemented” (by a compiler)

Typical formalisms:

m (temporal) logic VO(—crity V —crity)
\ 't it

m (extended) TS, ... OO CZ%EO A crity
—crity V —crity

B composition = conjunction All requirements must be satisfied

may be “executable” or not.
The difference is more in the intent than the form.

Susanne Graf Abstraction for system verification 9/63

Motivation

(3) Satisfaction Relations

... defines what is means that M has property ¢.

Typically defined on
some semantic do-
main:

Susanne Graf Abstraction for system verification 10 / 63

Motivation

(3) Satisfaction Relations

... defines what is means that M has property ¢.

Typically defined on
some semantic do-
main:

M, ©

mapping

(M, ||

Susanne Graf Abstraction for system verification

10 / 63

Motivation

(3) Satisfaction Relations

... defines what is means that M has property ¢.

Typically defined on
some semantic do-
main:

M, ©

mapping

(M, ||

IM|= el

Susanne Graf Abstraction for system verification 10 / 63

Motivation

(3) Satisfaction Relations

... defines what is means that M has property ¢.

Typically defined on
some semantic do-

main:
M, ¢ M=
mapping conclude
M|, [»] IM| = ||

Susanne Graf Abstraction for system verification 10 / 63

Motivation

(3) Satisfaction Relations

... defines what is means that M has property ¢.

M, M=
Typically defined on
some semantic do- mapping conclude
main:
M, || — [M[E=g|
’ Semantic Property Domain Relationship = ‘ Property class ‘
Function relating input/output equality (correctness)
Reachable states inclusion (invariance)
Sets of executions/prefixes/streams | inclusion (linear, LTL)
Refusal sets inclusion (reactivity)
TS simulation (structural)

Susanne Graf

Abstraction for system verification

10 / 63

Motivation

(3) Satisfaction Relations

... defines what is means that M has property ¢.

M, M=
Typically defined on
some semantic do- mapping conclude
main:
M, || — [M[E=g|
’ Semantic Property Domain Relationship = ‘ Property class ‘
Function relating input/output equality (correctness)
Reachable states inclusion (invariance)
Sets of executions/prefixes/streams | inclusion (linear, LTL)
Refusal sets inclusion (reactivity)
TS simulation (structural)

Verification = checking these relationships

Susanne Graf

Abstraction for system verification

10 / 63

Motivation

(4) Model-checking

. an algorithm for checking the relation =

=M x Lo {tr,fs, fail}

Susanne Graf Abstraction for system verification

11/ 63

Motivation

(4) Model-checking

. an algorithm for checking the relation =
=M x Lo~ {tr, fs, fail}

fail may be due to
m theoretical undecidability of =
m excessive complexity (state explosion) of the algorithm used

m /ncompleteness of the algorithm

Susanne Graf Abstraction for system verification 11 / 63

Motivation

(4) Model-checking

. an algorithm for checking the relation =
=M x Lo~ {tr, fs, fail}

fail may be due to
m theoretical undecidability of =
m excessive complexity (state explosion) of the algorithm used

m /ncompleteness of the algorithm

... based on some more or less low-level semantic representation of M,

Susanne Graf Abstraction for system verification 11 / 63

Motivation

Example: Semantic model of the Peterson algorithm

Susanne Graf Abstraction for system verification 12 / 63

Motivation

Example: Semantic model of the Peterson algorithm

rit0 critd
/" eritt crit1
/

|M|=p: can be checked easily by calculating fix-points on this graph:

init C |O(—crity \V —crity))|

Susanne Graf Abstraction for system verification 12 / 63

Motivation

Example: Semantic model of the Peterson algorithm

rit0 critd
/" eritt crit1
/

|M|=p: can be checked easily by calculating fix-points on this graph:

b C [Ccerity

Susanne Graf Abstraction for system verification 12 / 63

Motivation

The main difficulty of verification: complexity

M, o ME¢ (yes/no/?)
mapping conclude
M1, 1] M@l (ves/no/fail)

Susanne Graf Abstraction for system verification 13 / 63

Motivation

The main difficulty of verification: complexity

M, o Mo (esfror?) M: compact syntax, program,

timed automata, transition system

mapping conclude (TS) with variables, composition, ...
[M],] IMIE=le| (ves/no/fail)

Susanne Graf Abstraction for system verification

13/ 63

Motivation

The main difficulty of verification: complexity

M, o ME o (ves/no)?) M: compact syntax, program,
timed automata, transition system
mapping conclude (TS) with variables, composition, ...
|M|: less structure, e.g. labeled TS

M1, [l IMIEI@l (ves/no/fail {+ constraints}

Susanne Graf Abstraction for system verification 13 / 63

Motivation

The main difficulty of verification: complexity

M, o ME o (ves/no)?) M: compact syntax, program,
timed automata, transition system
mapping conclude (TS) with variables, composition, ...
|M|: less structure, e.g. labeled TS

M1, [l IMIEI@l (ves/no/fail {+ constraints}

= Model-checking algorithms |= typically work in 2 steps:

—step 1. transformation into semantic models | M|,

|

Susanne Graf Abstraction for system verification

13/ 63

Motivation

The main difficulty of verification: complexity

M, o ME o (ves/no)?) M: compact syntax, program,
timed automata, transition system
mapping conclude (TS) with variables, composition, ...
|M|: less structure, e.g. labeled TS

M1, [l IMIEI@l (ves/no/fail {+ constraints}

= Model-checking algorithms |= typically work in 2 steps:

—step 1. transformation into semantic models | M|,

¢l
=steP 2 evaluate satisfaction based on |M],

|

Susanne Graf Abstraction for system verification

13/ 63

Motivation

The main difficulty of verification: complexity

M, o M (ves/no)?) M: compact syntax, program,
timed automata, transition system
mapping conclude (TS) with variables, composition, ...
|M|: less structure, e.g. labeled TS

M1, [l IMIEI@l (ves/no/fail {+ constraints}

= Model-checking algorithms |= typically work in 2 steps:

—step 1. transformation into semantic models | M|,

|

=steP 2: evaluate satisfaction based on |M|, ||
Main complexity: step 1 (for M) — state explosion
Susanne Graf Abstraction for system verification

13/ 63

Motivation

The main difficulty of verification: complexity

M, o ME o (ves/no)?) M: compact syntax, program,
timed automata, transition system
mapping conclude (TS) with variables, composition, ...
|M|: less structure, e.g. labeled TS

M1, [l IMIEI@l (ves/no/fail {+ constraints}

= Model-checking algorithms |= typically work in 2 steps:

—step 1. transformation into semantic models | M|,

|

=steP 2 evaluate satisfaction based on |M],

¢l
Main complexity: step 1 (for M) — state explosion

Note: performant procedures = mix steps 1 and 2: avoid computing | M|
exhaustively. But the problem of complexity explosion remains.

Susanne Graf Abstraction for system verification

13/ 63

Motivation

What is abstraction?

Susanne Graf Abstraction for system verification 14 / 63

Motivation

What is abstraction?

An abstraction is a property preserving transformation

Susanne Graf Abstraction for system verification 14 / 63

Motivation

What is abstraction?

An abstraction is a property preserving transformation

Given
m a verification setting: (M, L, &)
m a transformation o : M +— M* with M4 C M

Then

Susanne Graf Abstraction for system verification 14 / 63

Motivation

What is abstraction?

An abstraction is a property preserving transformation
Given
m a verification setting: (M, L, &)
®m a transformation @ : M — M* with MA C M
Then

m « is an abstraction for (M, L, =) if

VM e MYy e L. a(M)=yp implies M=y

Susanne Graf Abstraction for system verification 14 / 63

Motivation

What is abstraction?

An abstraction is a property preserving transformation
Given
m a verification setting: (M, L,)
m a transformation o : M — M?A with MA C M
Then
m « is an abstraction for (M, L, =) if

VM e MVy e L. ao(M)

= implies M|=¢
m « is called strongly property preserving if in addition

VM e MYy e L.a(M) /~¢ implies M /~=¢

Susanne Graf Abstraction for system verification 14 / 63

Motivation

Example: Abstracted semantic model of Peterson

Susanne Graf Abstraction for system verification 15 / 63

Motivation

Example: Abstracted semantic model of Peterson

(1) group states to 5 abstract ones (black, green, blue, red,),
a: | (2) draw a (green / blue) transition between abstract states if there is one
between a corresponding pair of concrete ones

Susanne Graf Abstraction for system verification 15 / 63

Motivation

Example: Abstracted semantic model of Peterson

(1) group states to 5 abstract ones (black, green, blue, red,),
a: | (2) draw a (green / blue) transition between abstract states if there is one
between a corresponding pair of concrete ones

Susanne Graf Abstraction for system verification 15 / 63

Motivation

Example: Abstracted semantic model of Peterson

(1) group states to 5 abstract ones (black, green, blue, red,),
a: | (2) draw a (green / blue) transition between abstract states if there is one
between a corresponding pair of concrete ones

0 O

Susanne Graf Abstraction for system verification 15 / 63

Motivation

Example: Abstracted semantic model of Peterson

(1) group states to 5 abstract ones (black, green, blue, red,),
a: | (2) draw a (green / blue) transition between abstract states if there is one
between a corresponding pair of concrete ones

O o a(|M]) satisfies properties (1) mutual

exclusion and (2) non-blocking. We
cannot evaluate (3) fairness.

Susanne Graf Abstraction for system verification 15 / 63

Motivation

Example: Abstracted semantic model of Peterson

(1) group states to 5 abstract ones (black, green, blue, red,),
a: | (2) draw a (green / blue) transition between abstract states if there is one
between a corresponding pair of concrete ones

O o a(|M]) satisfies properties (1) mutual

exclusion and (2) non-blocking. We
cannot evaluate (3) fairness.

What can we conclude?

Susanne Graf Abstraction for system verification 15 / 63

Motivation

Example: Abstracted semantic model of Peterson

(1) group states to 5 abstract ones (black, green, blue, red,),
a: | (2) draw a (green / blue) transition between abstract states if there is one
between a corresponding pair of concrete ones

O o a(|M]) satisfies properties (1) mutual

exclusion and (2) non-blocking. We
cannot evaluate (3) fairness.

What can we conclude?

Answer: only (1) allows a conclusion for
the original concrete model. « does not
preserve the other results

Susanne Graf Abstraction for system verification 15 / 63

Motivation

Why abstraction? what have we gained?

Susanne Graf Abstraction for system verification 16 / 63

Motivation

Why abstraction? what have we gained?

The main motivation: avoid state explosion

Susanne Graf Abstraction for system verification 16 / 63

Motivation

Why abstraction? what have we gained?

The main motivation: avoid state explosion

Is our abstraction for Peterson useful?:

Susanne Graf Abstraction for system verification

16 / 63

Motivation

Why abstraction? what have we gained?

The main motivation: avoid state explosion

Is our abstraction for Peterson useful?: not really,
M,
mapping

|M| — |MA|

Susanne Graf Abstraction for system verification

16 / 63

Motivation

Why abstraction? what have we gained?

The main motivation: avoid state explosion

Is our abstraction for Peterson useful?: not really,

M,

mapping

A check
M| - M7

Susanne Graf Abstraction for system verification

M= ¢

preserves

MA:L,:Z

16 / 63

Motivation

Why abstraction? what have we gained?

The main motivation: avoid state explosion

Is our abstraction for Peterson useful?: not really,

M,
mapping
« A check
IM| — M7
state explgsion
Susanne Graf Abstraction for system verification

M= ¢

preserves

MA:L,,’I

16 / 63

Motivation

Why abstraction? what have we gained?

The main motivation: avoid state explosion

Is our abstraction for Peterson useful?: not really,
M, ¢ M=o

preserves

check

|MA MA =

Susanne Graf Abstraction for system verification 16 / 63

Motivation

Why abstraction? what have we gained?

The main motivation: avoid state explosion

Is our abstraction for Peterson useful?: not really,

M, pm === == == == —~— > MA M ': P
I
I .
: mappng preserves
\
check
|MA MA@

Susanne Graf Abstraction for system verification 16 / 63

Motivation

Why abstraction? what have we gained?

The main motivation: avoid state explosion

Is our abstraction for Peterson useful?: not really,

M, pm === == == == —~— > I\/IA M ': P
I
I .
: mappng preserves
\
check
|MA MA =

Note that our abstraction of Peterson cannot be obtained that way.

Susanne Graf Abstraction for system verification 16 / 63

Motivation

What is particular to system verification?

We are interested in closed systems (the system + some more or less
specific environment).

A system is composed of a (large) number of components (in parallel, ||)

and there are requirements related to desired and undesired global
(emergent) properties.

Susanne Graf Abstraction for system verification 17 / 63

Motivation

What is particular to system verification?
We are interested in closed systems (the system + some more or less
specific environment).

A system is composed of a (large) number of components (in parallel, ||) .

Usual verification settings guarantee:

Mol M I M

Susanne Graf Abstraction for system verification 17 / 63

Motivation

What is particular to system verification?

We are interested in closed systems (the system + some more or less
specific environment).

A system is composed of a (large) number of components (in parallel, ||) .

Usual verification settings guarantee:

My Mool I Mn

My Mg [

Susanne Graf Abstraction for system verification 17 / 63

Motivation

What is particular to system verification?

We are interested in closed systems (the system + some more or less
specific environment).

A system is composed of a (large) number of components (in parallel

Usual verification settings guarantee:

My Mool I Mn

oM l

_glob
®

Susanne Graf Abstraction for system verification

D

17 / 63

Motivation

What is particular to system verification?
We are interested in closed systems (the system + some more or less
specific environment).

A system is composed of a (large) number of components (in parallel

Usual verification settings guarantee:

L I Ma P
‘ « conclude
MY Mg M @b

Susanne Graf Abstraction for system verification

D

17 / 63

Motivation

What is particular to system verification?
We are interested in closed systems (the system + some more or less
specific environment).

A system is composed of a (large) number of components (in parallel, ||) .

Usual verification settings guarantee:

Ml M M =

Susanne Graf Abstraction for system verification 17 / 63

Motivation

What is particular to system verification?
We are interested in closed systems (the system + some more or less
specific environment).

A system is composed of a (large) number of components (in parallel

Usual verification settings guarantee:

My M I,

«

M

Susanne Graf Abstraction for system verification

D

17 / 63

Motivation

What is particular to system verification?
We are interested in closed systems (the system + some more or less
specific environment).

A system is composed of a (large) number of components (in parallel, ||) .

Usual verification settings guarantee:

My M I,

Susanne Graf Abstraction for system verification 17 / 63

Motivation

What is particular to system verification?

We are interested in closed systems (the system + some more or less
specific environment).

A system is composed of a (large) number of components (in parallel, ||) .

Usual verification settings guarantee:

v [m] oM
«
conclude
My o

Susanne Graf Abstraction for system verification 17 / 63

Motivation

What is particular to system verification?

A system is composed of a (large) number of components (in parallel, ||)

and there are requirements related to desired and undesired global
(emergent) properties.

Usual settings guarantee

M)]l I M,

«
conclude
2

M

©

P

But — it is hard to find a useful « for which the premises
a(My)||...]|e(Mpn) = or a(M;)}=¢" hold and can be checked.

Susanne Graf Abstraction for system verification 18 / 63

Motivation

What is particular to system verification?

A system is composed of a (large) number of components (in parallel, ||)

and there are requirements related to desired and undesired global
(emergent) properties.

Usual settings guarantee

«
conclude
2

M

M)]l I M,

©

P

But — it is hard to find a useful « for which the premises
a(M)|...|[a(Mp) =@ or a(M;)=¢" hold and can be checked.
We want appropriate reasoning rules for

m composing verification results

m combining them with abstraction

Susanne Graf Abstraction for system verification 18 / 63

Motivation

Summary: problems we do address

Susanne Graf Abstraction for system verification 19 / 63

Motivation

Summary: problems we do address

m Property preservation (which abstraction preserves which properties)

Susanne Graf Abstraction for system verification 19 / 63

Motivation

Summary: problems we do address

m Property preservation (which abstraction preserves which properties)

m How to effectively calculate abstractions

Susanne Graf Abstraction for system verification 19 / 63

Motivation

Summary: problems we do address

m Property preservation (which abstraction preserves which properties)
m How to effectively calculate abstractions

m How to achieve verification of global properties by combining
abstraction and rules for composing results

Susanne Graf Abstraction for system verification 19 / 63

Motivation

Summary: problems we do not address

m Adequate /anguages for expressing models and requirements.
m Appropriate composition frameworks
m Appropriate satisfaction relations =

m Algorithms |= for solving verification problems M= for a given
framework.

m Abstraction refinement: when both MA}=y and MA /= fail
(CEGAR approaches).

Susanne Graf Abstraction for system verification 20 / 63

	Motivation
	Property preserving abstractions: semantic level
	Galois connexions between lattices
	Abstractions for transition systems

	Effectively computing abstractions
	Verification of composed systems

