Abstraction for system verification

Susanne Graf

VERIMAG, CNRS

Marktoberdorf, August 2010

Outline

1 Motivation

2 Property preserving abstractions: semantic level

- Galois connexions between lattices
- Abstractions for transition systems

3 Effectively computing abstractions

4 Verification of composed systems

- **2** Property preserving abstractions: semantic level
 - Galois connexions between lattices
 - Abstractions for transition systems

3 Effectively computing abstractions

4 Verification of composed systems

What is verification?

We consider a specification / verification setting to be given by:

- (1) a set of potential *design specifications*, called "models" \mathcal{M} , with $M \in \mathcal{M}$ (how)
- (2) a set of potential *requirements* \mathcal{L} , with $\varphi \in \mathcal{L}$ (what)
- (3*) a satisfaction or conformance relation $\models \subseteq 2^{\mathcal{M} \times \mathcal{L}}$ relating models and properties. We write $M \models \varphi$ and $M \not\models \varphi$.
 - (4) an algorithm to check $M \models \varphi$ (model-checking)

* Sometimes, we also consider the cases

• $M \models M'$ (refinement)

• $\varphi \models \varphi'$ (requirements engineering)

What is verification?

We consider a specification / verification setting to be given by:

- (1) a set of potential *design specifications*, called "models" \mathcal{M} , with $M \in \mathcal{M}$ (how)
- (2) a set of potential *requirements* \mathcal{L} , with $\varphi \in \mathcal{L}$ (what)
- (3*) a satisfaction or conformance relation $\models \subseteq 2^{\mathcal{M} \times \mathcal{L}}$ relating models and properties. We write $M \models \varphi$ and $M \not\models \varphi$.
 - (4) an algorithm to check $M \models \varphi$ (model-checking)

* Sometimes, we also consider the cases

- $M \models M'$ (refinement)
- $\varphi \models \varphi'$ (requirements engineering)

Example for M and φ : Peterson mutex algorithm

Does the *design M* guarantee the following *requirements*?

- mutual exclusion: at most one process is in critical section crit
- deadlock freedom: system is never definitively blocked
- non-blocking: always, any of the critical sections is reachable in a bounded number of steps
- fairness: when a process is engaged (in b resp. B) its critical section must be reached in a bounded number of steps.

Example for M and φ : Peterson mutex algorithm

Does the *design M* guarantee the following *requirements*?

- mutual exclusion: at most one process is in critical section crit
- deadlock freedom: system is never definitively blocked
- non-blocking: always, any of the critical sections is reachable in a bounded number of steps
- fairness: when a process is engaged (in b resp. B) its critical section must be reached in a bounded number of steps.

... express:

- a (set of) potential solution(s) (use a shared variable "turn")
- i.e. specific algorithms/ components/ ...
- can (in principle) be "implemented"

Typical formalisms:

- programs, abstract programs
- (extended) automata, transition systems (TS), Kripke structures, Petri Nets, ...
- Composition: parallel composition $(P_0 || P_1)$

... express:

- a (set of) potential solution(s) (use a shared variable "turn")
- i.e. specific algorithms/ components/ ...
- can (in principle) be "implemented"

Typical formalisms:

- programs, abstract programs
- (extended) automata, transition systems (TS), Kripke structures, Petri Nets, ...
- Composition: parallel composition $(P_0 || P_1)$

... express:

- a (set of) potential solution(s) (use a shared variable "turn")
- i.e. specific algorithms/ components/ ...
- can (in principle) be "implemented"

Typical formalisms:

- programs, abstract programs
- (extended) automata, transition systems (TS), Kripke structures, Petri Nets, ...
- Composition: parallel composition $(P_0 || P_1)$

... express:

- a (set of) potential solution(s) (use a shared variable "turn")
- i.e. specific algorithms/ components/ ...
- can (in principle) be "implemented"

Typical formalisms:

- programs, abstract programs
- (extended) automata, transition systems (TS), Kripke structures, Petri Nets, ...
- Composition: parallel composition $(P_0 || P_1)$

Example: Peterson as a composition of symb. TS

Example: Peterson as a global symbolic TS

Example: Peterson as a global symbolic TS

Susanne Graf

Example: Peterson as a global symbolic TS

... express

generic or specific properties that a component, system, algorithm, ... should have (deadlock freedom, mutual exclusion, ...)

specifies "what" it does, its qualities, not how

cannot generally not be meaningfully "implemented" (by a compiler)

Typical formalisms:

(temporal) logic

(extended) TS , ...

 $\forall \Box (\neg crit_0 \lor \neg crit_1)$

composition = conjunction

All requirements must be satisfied

may be "executable" or not.

The difference is more in the intent than the form.

Susanne Graf

- ... express
 - generic or specific properties that a component, system, algorithm, ... should have (deadlock freedom, mutual exclusion, ...)
 - specifies "what" it does, its qualities, not how
 - cannot generally not be meaningfully "implemented" (by a compiler)

Typical formalisms:

(temporal) logic

```
(extended) TS , ...
```

 $\forall \Box (\neg crit_0 \lor \neg crit_1)$

All requirements must be satisfied

may be "executable" or not.

The difference is more in the intent than the form.

Susanne Graf

- ... express
 - generic or specific properties that a component, system, algorithm, ... should have (deadlock freedom, mutual exclusion, ...)
 - specifies "what" it does, its qualities, not how
 - cannot generally not be meaningfully "implemented" (by a compiler)

Typical formalisms:

(temporal) logic

```
(extended) TS , ...
```

 $\forall \Box (\neg crit_0 \lor \neg crit_1)$

All requirements must be satisfied

```
may be "executable" or not.
```

composition = conjunction

The difference is more in the intent than the form.

Susanne Graf

- ... express
 - generic or specific properties that a component, system, algorithm, ... should have (deadlock freedom, mutual exclusion, ...)
 - specifies "what" it does, its qualities, not how
 - cannot generally not be meaningfully "implemented" (by a compiler)

Typical formalisms:

- (temporal) logic
- (extended) TS , ...

 $\forall \Box (\neg crit_0 \lor \neg crit_1)$

All requirements must be satisfied

may be "executable" or not.

composition = conjunction

The difference is more in the intent than the form.

Susanne Graf

- ... express
 - generic or specific properties that a component, system, algorithm, ... should have (deadlock freedom, mutual exclusion, ...)
 - specifies "what" it does, its qualities, not how
 - cannot generally not be meaningfully "implemented" (by a compiler)
- Typical formalisms:
 - (temporal) logic
 - (extended) TS , ...

 $crit_0 \wedge crit_1$

 $\forall \Box (\neg crit_0 \lor \neg crit_1)$

composition = conjunction

All requirements must be satisfied

may be "executable" or not.

The difference is more in the intent than the form.

Susanne Graf

- ... express
 - generic or specific properties that a component, system, algorithm, ... should have (deadlock freedom, mutual exclusion, ...)
 - specifies "what" it does, its qualities, not how
 - cannot generally not be meaningfully "implemented" (by a compiler)

Typical formalisms:

- (temporal) logic
- (extended) TS , ...

 $\forall \Box (\neg crit_0 \lor \neg crit_1)$

composition = conjunction

All requirements must be satisfied

may be "executable" or not.

The difference is more in the intent than the form.

Susanne Graf

(3) Satisfaction Relations

... defines what is means that M has property φ .

Typically defined on some *semantic do-*

main:

Semantic Property Domain	Relationship ⊨	Property class
Function relating input/output	equality	(correctness)
Reachable states	inclusion	(invariance)
Sets of executions/prefixes/streams	inclusion	(linear, LTL)
Refusal sets	inclusion	(reactivity)
TS	simulation	(structural)

Verification = checking these relationships

(3) Satisfaction Relations

... defines what is means that M has property φ . Typically defined on some semantic domain: M, φ

mapping

Semantic Property DomainRelationship =Property classFunction relating input/outputequality(correctness)Reachable statesinclusion(invariance)	Susanne Graf	Abstraction for system verification	10 / 63
Semantic Property DomainRelationship =Property classFunction relating input/outputequality(correctness)	Reachable states	inclusion	(invariance)
Semantic Property DomainRelationship =Property class	Function relating input/o	utput equality	(correctness)
	Semantic Property Doma	in Relationship	Property class

(3) Satisfaction Relations

... defines what is means that M has property φ . Typically defined on some *semantic domain*: M, φ

mapping

(3) Satisfaction Relations

... defines what is means that M has property φ . Typically defined on some *semantic domain*:

(3) Satisfaction Relations

... defines what is means that M has property φ .

Semantic Property Domain	$Relationship \models$	Property class
Function relating input/output	equality	(correctness)
Reachable states	inclusion	(invariance)
Sets of executions/prefixes/streams	inclusion	(linear, LTL)
Refusal sets	inclusion	(reactivity)
TS	simulation	(structural)

Verification = checking these relationships

(3) Satisfaction Relations

... defines what is means that M has property φ .

Semantic Property Domain	$Relationship \models$	Property class
Function relating input/output	equality	(correctness)
Reachable states	inclusion	(invariance)
Sets of executions/prefixes/streams	inclusion	(linear, LTL)
Refusal sets	inclusion	(reactivity)
TS	simulation	(structural)

Verification = checking these relationships

Susanne Graf

(4) Model-checking

... an algorithm for checking the relation \models

 $\models : \mathcal{M} \times \mathcal{L} \mapsto \{tr, fs, fail\}$

fail may be due to

- theoretical undecidability of |=
- excessive complexity (*state explosion*) of the algorithm used
- *incompleteness* of the algorithm

... based on some more or less low-level semantic representation of $M,\,arphi$

(4) Model-checking

... an algorithm for checking the relation \models

 $\models : \mathcal{M} \times \mathcal{L} \mapsto \{tr, fs, fail\}$

fail may be due to

- theoretical *undecidability* of ⊨
- excessive complexity (state explosion) of the algorithm used
- incompleteness of the algorithm

... based on some more or less low-level semantic representation of $M,\,arphi$

(4) Model-checking

... an algorithm for checking the relation \models

 $\models : \mathcal{M} \times \mathcal{L} \mapsto \{tr, fs, fail\}$

fail may be due to

- theoretical *undecidability* of ⊨
- excessive complexity (state explosion) of the algorithm used
- incompleteness of the algorithm

... based on some more or less low-level semantic representation of M, φ

Example: Semantic model of the Peterson algorithm

 $|M| \models \varphi$: can be checked easily by calculating fix-points on this graph:

Susanne Graf

Example: Semantic model of the Peterson algorithm

 $|M| \models \varphi$: can be checked easily by calculating fix-points on this graph:

init $\subseteq |\Box(\neg crit_0 \lor \neg crit_1)|$

Susanne Graf

Example: Semantic model of the Peterson algorithm

 $|M| \models \varphi$: can be checked easily by calculating fix-points on this graph:

 $b \subseteq |\Diamond crit_0|$

Susanne Graf

The main difficulty of verification: complexity

M: compact syntax, program, timed automata, transition system
(TS) with variables, composition, ...
|M|: less structure, e.g. labeled TS {+ constraints}

 $\implies \text{Model-checking algorithms} \models \text{typically work in 2 steps:} \\ \models^{step 1}: \text{ transformation into semantic models } |M|, |\varphi| \\ \models^{step 2}: \text{ evaluate satisfaction based on } |M|, |\varphi|$

Main complexity: step 1 (for M) \longrightarrow state explosion

Note: performant procedures \models mix steps 1 and 2: avoid computing |M| exhaustively. But the problem of complexity explosion remains.

The main difficulty of verification: complexity

 \mathcal{M} : compact syntax, program, timed automata, transition system (TS) with variables, composition, ... $|\mathcal{M}|$: less structure, e.g. labeled TS {+ constraints}

 $\implies \text{Model-checking algorithms} \models \text{typically work in 2 steps:} \\ \models^{step 1}: \text{ transformation into semantic models } |M|, |\varphi| \\ \models^{step 2}: \text{ evaluate satisfaction based on } |M|, |\varphi|$

Main complexity: step 1 (for M) \longrightarrow state explosion

Note: performant procedures \models mix steps 1 and 2: avoid computing |M| exhaustively. But the problem of complexity explosion remains.

The main difficulty of verification: complexity

 $\implies \text{Model-checking algorithms} \models \text{typically work in 2 steps:} \\ \models^{step 1}: \text{ transformation into semantic models } |M|, |\varphi| \\ \models^{step 2}: \text{ evaluate satisfaction based on } |M|, |\varphi|$

Main complexity: step 1 (for M) \longrightarrow state explosion

Note: performant procedures \models mix steps 1 and 2: avoid computing |M| exhaustively. But the problem of complexity explosion remains.
The main difficulty of verification: complexity

 \mathcal{M} : compact syntax, program, timed automata, transition system (TS) with variables, composition, ... $|\mathcal{M}|$: less structure, e.g. labeled TS {+ constraints}

 $\implies \text{Model-checking algorithms} \models \text{typically work in 2 steps:} \\ \models^{step 1}: \text{ transformation into semantic models } |M|, |\varphi| \\ \models^{step 2}: \text{ evaluate satisfaction based on } |M|, |\varphi|$

Main complexity: step 1 (for M) \longrightarrow state explosion

The main difficulty of verification: complexity

 $\implies \text{Model-checking algorithms} \models \text{typically work in 2 steps:} \\ \models^{step 1}: \text{ transformation into semantic models } |M|, |\varphi| \\ \models^{step 2}: \text{ evaluate satisfaction based on } |M|, |\varphi|$

Main complexity: step 1 (for M) \longrightarrow state explosion

The main difficulty of verification: complexity

 \mathcal{M} : compact syntax, program, timed automata, transition system (TS) with variables, composition, ... $|\mathcal{M}|$: less structure, e.g. labeled TS {+ constraints}

 $\implies \text{Model-checking algorithms} \models \text{typically work in 2 steps:} \\ \models^{step 1}: \text{ transformation into semantic models } |M|, |\varphi| \\ \models^{step 2}: \text{ evaluate satisfaction based on } |M|, |\varphi|$

Main complexity: step 1 (for M) \longrightarrow state explosion

The main difficulty of verification: complexity

 \mathcal{M} : compact syntax, program, timed automata, transition system (TS) with variables, composition, ... $|\mathcal{M}|$: less structure, e.g. labeled TS {+ constraints}

 $\implies \text{Model-checking algorithms} \models \text{typically work in 2 steps:} \\ \models^{step 1}: \text{ transformation into semantic models } |M|, |\varphi| \\ \models^{step 2}: \text{ evaluate satisfaction based on } |M|, |\varphi|$

Main complexity: step 1 (for M) \longrightarrow state explosion

An abstraction is a property preserving transformation

Given

- \blacksquare a verification setting: ($\mathcal{M},\,\mathcal{L},\,\models)$
- a transformation α : $\mathcal{M} \mapsto \mathcal{M}^A$ with $\mathcal{M}^A \subseteq \mathcal{M}$

Then

•
$$\alpha$$
 is an *abstraction* for $(\mathcal{M}, \mathcal{L}, \models)$ if
 $\forall M \in \mathcal{M} \ \forall \varphi \in \mathcal{L} \ . \ \alpha(M) \models \varphi \text{ implies } M \models \varphi$

An abstraction is a property preserving transformation

Given

a verification setting: (\mathcal{M} , \mathcal{L} , \models)

■ a transformation α : $\mathcal{M} \mapsto \mathcal{M}^A$ with $\mathcal{M}^A \subseteq \mathcal{M}$

Then

•
$$\alpha$$
 is an *abstraction* for $(\mathcal{M}, \mathcal{L}, \models)$ if
 $\forall M \in \mathcal{M} \ \forall \varphi \in \mathcal{L} \ . \ \alpha(M) \models \varphi \text{ implies } M \models \varphi$

An abstraction is a property preserving transformation

Given

- **a** verification setting: ($\mathcal{M}, \mathcal{L}, \models$)
- a transformation α : $\mathcal{M} \mapsto \mathcal{M}^{\mathcal{A}}$ with $\mathcal{M}^{\mathcal{A}} \subseteq \mathcal{M}$

Then

•
$$\alpha$$
 is an *abstraction* for $(\mathcal{M}, \mathcal{L}, \models)$ if
 $\forall M \in \mathcal{M} \ \forall \varphi \in \mathcal{L} \ . \ \alpha(M) \models \varphi$ implies $M \models \varphi$

An abstraction is a property preserving transformation

Given

- **a** verification setting: ($\mathcal{M}, \mathcal{L}, \models$)
- a transformation α : $\mathcal{M} \mapsto \mathcal{M}^{\mathcal{A}}$ with $\mathcal{M}^{\mathcal{A}} \subseteq \mathcal{M}$

Then

•
$$\alpha$$
 is an *abstraction* for $(\mathcal{M}, \mathcal{L}, \models)$ if
 $\forall M \in \mathcal{M} \ \forall \varphi \in \mathcal{L} \ . \ \alpha(M) \models \varphi$ implies $M \models \varphi$

An abstraction is a property preserving transformation

Given

- **a** verification setting: ($\mathcal{M}, \mathcal{L}, \models$)
- a transformation α : $\mathcal{M} \mapsto \mathcal{M}^{\mathcal{A}}$ with $\mathcal{M}^{\mathcal{A}} \subseteq \mathcal{M}$

Then

•
$$\alpha$$
 is an *abstraction* for $(\mathcal{M}, \mathcal{L}, \models)$ if
 $\forall M \in \mathcal{M} \ \forall \varphi \in \mathcal{L} \ . \ \alpha(M) \models \varphi$ implies $M \models \varphi$

Example: Abstracted semantic model of Peterson

(1) group *states* to 5 abstract ones (black, green, blue, red, yellow),
(2) draw a (green / blue) *transition* between abstract states if there is one between a corresponding pair of concrete ones

 $\alpha(|M|)$ satisfies properties (1) *mutual* exclusion and (2) *non-blocking*. We cannot evaluate (3) *fairness*.

What can we conclude?

Answer: only (1) allows a conclusion for the original concrete model. α does not preserve the other results

Example: Abstracted semantic model of Peterson

(1) group states to 5 abstract ones (black, green, blue, red, yellow),

α: (2) draw a (green / blue) *transition* between abstract states if there is one between a corresponding pair of concrete ones

 $\alpha(|M|)$ satisfies properties (1) *mutual* exclusion and (2) *non-blocking*. We cannot evaluate (3) *fairness*.

What can we conclude?

Answer: only (1) allows a conclusion for the original concrete model. α does not preserve the other results

Example: Abstracted semantic model of Peterson

(1) group *states* to 5 abstract ones (black, green, blue, red, yellow),
(2) draw a (green / blue) *transition* between abstract states if there is one between a corresponding pair of concrete ones

 $\alpha(|M|)$ satisfies properties (1) *mutual* exclusion and (2) *non-blocking*. We cannot evaluate (3) *fairness*.

What can we conclude?

Answer: only (1) allows a conclusion for the original concrete model. α does not preserve the other results

 α :

Example: Abstracted semantic model of Peterson

Example: Abstracted semantic model of Peterson

Example: Abstracted semantic model of Peterson

Example: Abstracted semantic model of Peterson

(1) group *states* to 5 abstract ones (black, green, blue, red, yellow), (2) draw a (green / blue) transition between abstract states if there is one α : between a corresponding pair of concrete ones $\alpha(|M|)$ satisfies properties (1) *mutual* exclusion and (2) non-blocking. We init cannot evaluate (3) fairness. What can we conclude? crit0 crit1 Answer: only (1) allows a conclusion for the original concrete model. α does not crit0 crit1 preserve the other results

Why abstraction? what have we gained?

The main motivation: avoid state explosion

Is our abstraction for Peterson useful?: not really,

Note that our abstraction of Peterson cannot be obtained that way.

Why abstraction? what have we gained?

The main motivation: avoid state explosion

Is our abstraction for Peterson useful?: not really,

Note that our abstraction of Peterson cannot be obtained that way.

Why abstraction? what have we gained?

The main motivation: avoid state explosion

Is our abstraction for Peterson useful?: not really,

Note that our abstraction of Peterson cannot be obtained that way.

Why abstraction? what have we gained?

The main motivation: avoid state explosion

Is our abstraction for Peterson useful?: not really,

Note that our abstraction of Peterson cannot be obtained that way.

Susanne Graf

Why abstraction? what have we gained?

The main motivation: avoid state explosion

Is our abstraction for Peterson useful?: not really,

Note that our abstraction of Peterson cannot be obtained that way.

Susanne Graf

Why abstraction? what have we gained?

The main motivation: avoid state explosion

Is our abstraction for Peterson useful?: not really,

Note that our abstraction of Peterson cannot be obtained that way.

Susanne Graf

Why abstraction? what have we gained?

The main motivation: avoid state explosion

Is our abstraction for Peterson useful?: not really,

Note that our abstraction of Peterson cannot be obtained that way.

Susanne Graf

Why abstraction? what have we gained?

The main motivation: avoid state explosion

Is our abstraction for Peterson useful?: not really,

Note that our abstraction of Peterson cannot be obtained that way.

Susanne Graf

Why abstraction? what have we gained?

The main motivation: avoid state explosion

Is our abstraction for Peterson useful?: not really,

Note that our abstraction of Peterson cannot be obtained that way.

Susanne Graf

What is particular to system verification?

We are interested in closed systems (the system + some more or less specific environment).

A system is composed of a (large) number of components (in parallel, \parallel) and there are requirements related to desired and undesired global (*emergent*) properties.

Usual verification settings guarantee:

What is particular to system verification?

We are interested in closed systems (the system + some more or less specific environment).

A system is composed of a (large) number of components (in parallel, \parallel). Usual verification settings guarantee:

 $M_1 \parallel M_2 \parallel \parallel M_n \models \varphi^{glob}$

What is particular to system verification?

We are interested in closed systems (the system + some more or less specific environment).

A system is composed of a (large) number of components (in parallel, \parallel). Usual verification settings guarantee:

What is particular to system verification?

We are interested in closed systems (the system + some more or less specific environment).

A system is composed of a (large) number of components (in parallel, \parallel). Usual verification settings guarantee:

What is particular to system verification?

We are interested in closed systems (the system + some more or less specific environment).

A system is composed of a (large) number of components (in parallel, \parallel). Usual verification settings guarantee:

What is particular to system verification?

We are interested in closed systems (the system + some more or less specific environment).

A system is composed of a (large) number of components (in parallel, \parallel). Usual verification settings guarantee:

 $M_1 \parallel M_2 \parallel \parallel M_n \models \varphi^2$

What is particular to system verification?

We are interested in closed systems (the system + some more or less specific environment).

A system is composed of a (large) number of components (in parallel, \parallel). Usual verification settings guarantee:

What is particular to system verification?

We are interested in closed systems (the system + some more or less specific environment).

A system is composed of a (large) number of components (in parallel, \parallel). Usual verification settings guarantee:

What is particular to system verification?

We are interested in closed systems (the system + some more or less specific environment).

A system is composed of a (large) number of components (in parallel, \parallel). Usual verification settings guarantee:

What is particular to system verification?

A system is composed of a (large) number of components (in parallel, \parallel) and there are requirements related to desired and undesired global (*emergent*) properties.

Usual settings guarantee

But — it is hard to find a useful α for which the premises $\alpha(M_1) \| ... \| \alpha(M_n) \models \varphi$ or $\alpha(M_i) \models \varphi^i$ hold and can be checked.

We want appropriate reasoning rules for

- composing verification results
- combining them with abstraction

Susanne Graf

What is particular to system verification?

A system is composed of a (large) number of components (in parallel, \parallel) and there are requirements related to desired and undesired global (*emergent*) properties.

Usual settings guarantee

But — it is hard to find a useful α for which the premises $\alpha(M_1) \| ... \| \alpha(M_n) \models \varphi$ or $\alpha(M_i) \models \varphi^i$ hold and can be checked.

We want appropriate reasoning rules for

- composing verification results
- combining them with abstraction

Susanne Graf
Motivation

Summary: problems we do address

- Property preservation (which abstraction preserves which properties)
- How to effectively calculate abstractions
- How to achieve verification of global properties by combining abstraction and rules for composing results

Motivation

Summary: problems we do address

Property preservation (which abstraction preserves which properties)

- How to effectively calculate abstractions
- How to achieve verification of global properties by combining abstraction and rules for composing results

Motivation

Summary: problems we do address

- Property preservation (which abstraction preserves which properties)
- How to effectively calculate abstractions
- How to achieve verification of global properties by combining abstraction and rules for composing results

Summary: problems we do address

- Property preservation (which abstraction preserves which properties)
- How to effectively calculate abstractions
- How to achieve verification of global properties by combining abstraction and rules for composing results

Summary: problems we do not address

- Adequate *languages* for expressing models and requirements.
- Appropriate *composition* frameworks
- Appropriate satisfaction relations ⊨
- Algorithms \models for solving verification problems $M \models \varphi$ for a given framework.
- Abstraction refinement: when both $M^A \models \varphi$ and $M^A \not\models \varphi$ fail (CEGAR approaches).