
Abstraction for
system verification

Susanne Graf

VERIMAG, CNRS

Marktoberdorf, August 2010

Outline

1 Motivation

2 Property preserving abstractions: semantic level
Galois connexions between lattices
Abstractions for transition systems

3 Effectively computing abstractions

4 Verification of composed systems

Susanne Graf Abstraction for system verification 2 / 63

Motivation

1 Motivation

2 Property preserving abstractions: semantic level
Galois connexions between lattices
Abstractions for transition systems

3 Effectively computing abstractions

4 Verification of composed systems

Susanne Graf Abstraction for system verification 3 / 63

Motivation

What is verification?

We consider a specification / verification setting to be given by:

(1) a set of potential design specifications, called “models” M, with
M ∈M (how)

(2) a set of potential requirements L, with ϕ ∈ L (what)

(3∗) a satisfaction or conformance relation |=⊆ 2M×L relating models and
properties. We write M |= ϕ and M 6|= ϕ.

(4) an algorithm to check M |= ϕ (model-checking)

∗ Sometimes, we also consider the cases

M |= M ′ (refinement)

ϕ |= ϕ′ (requirements engineering)

Susanne Graf Abstraction for system verification 4 / 63

Motivation

What is verification?

We consider a specification / verification setting to be given by:

(1) a set of potential design specifications, called “models” M, with
M ∈M (how)

(2) a set of potential requirements L, with ϕ ∈ L (what)

(3∗) a satisfaction or conformance relation |=⊆ 2M×L relating models and
properties. We write M |= ϕ and M 6|= ϕ.

(4) an algorithm to check M |= ϕ (model-checking)

∗ Sometimes, we also consider the cases

M |= M ′ (refinement)

ϕ |= ϕ′ (requirements engineering)

Susanne Graf Abstraction for system verification 4 / 63

Motivation

Example for M and ϕ: Peterson mutex algorithm

d0 := false;

end loop
 crit: d0 := false;

 b : wait (not d1 or turn=1)

 a : d0 := true ; turn := 0 ;

loop

P0 P1

d1 := false;

 A :

end loop
 Crit: d1 := false;

 B : wait (not d0 or turn=0)

d1 := true ; turn := 1 ;

loop

Does the design M guarantee the following requirements?
mutual exclusion: at most one process is in critical section crit
deadlock freedom: system is never definitively blocked
non-blocking: always, any of the critical sections is reachable in a
bounded number of steps
fairness: when a process is engaged (in b resp. B) its critical section
must be reached in a bounded number of steps.

Susanne Graf Abstraction for system verification 5 / 63

Motivation

Example for M and ϕ: Peterson mutex algorithm

d0 := false;

end loop
 crit: d0 := false;

 b : wait (not d1 or turn=1)

 a : d0 := true ; turn := 0 ;

loop

P0 P1

d1 := false;

 A :

end loop
 Crit: d1 := false;

 B : wait (not d0 or turn=0)

d1 := true ; turn := 1 ;

loop

Does the design M guarantee the following requirements?
mutual exclusion: at most one process is in critical section crit
deadlock freedom: system is never definitively blocked
non-blocking: always, any of the critical sections is reachable in a
bounded number of steps
fairness: when a process is engaged (in b resp. B) its critical section
must be reached in a bounded number of steps.

Susanne Graf Abstraction for system verification 5 / 63

Motivation

(1) Design specifications

... express:

a (set of) potential solution(s) (use a shared variable “turn”)

i.e. specific algorithms/ components/ ...

can (in principle) be “implemented”

Typical formalisms:

programs, abstract programs

(extended) automata, transition systems (TS), Kripke structures,
Petri Nets, ...

Composition: parallel composition (P0‖P1)

Design specifications are often operational.

Susanne Graf Abstraction for system verification 6 / 63

Motivation

(1) Design specifications

... express:

a (set of) potential solution(s) (use a shared variable “turn”)

i.e. specific algorithms/ components/ ...

can (in principle) be “implemented”

Typical formalisms:

programs, abstract programs

(extended) automata, transition systems (TS), Kripke structures,
Petri Nets, ...

Composition: parallel composition (P0‖P1)

Design specifications are often operational.

Susanne Graf Abstraction for system verification 6 / 63

Motivation

(1) Design specifications

... express:

a (set of) potential solution(s) (use a shared variable “turn”)

i.e. specific algorithms/ components/ ...

can (in principle) be “implemented”

Typical formalisms:

programs, abstract programs

(extended) automata, transition systems (TS), Kripke structures,
Petri Nets, ...

Composition: parallel composition (P0‖P1)

Design specifications are often operational.

Susanne Graf Abstraction for system verification 6 / 63

Motivation

(1) Design specifications

... express:

a (set of) potential solution(s) (use a shared variable “turn”)

i.e. specific algorithms/ components/ ...

can (in principle) be “implemented”

Typical formalisms:

programs, abstract programs

(extended) automata, transition systems (TS), Kripke structures,
Petri Nets, ...

Composition: parallel composition (P0‖P1)

Design specifications are often operational.

Susanne Graf Abstraction for system verification 6 / 63

Motivation

Example: Peterson as a composition of symb. TS

turn : shared

d1 : local to P1

d0 : local to P0

d0=fs , d1 ? , turn ?

d0=tr , d1 ? , turn=0

[not d1 or turn = 1]

d0=tr, d1 ? , turn ?

d0=fs , d1 ? , turn ?

b

P0

c

a

Susanne Graf Abstraction for system verification 7 / 63

Motivation

Example: Peterson as a global symbolic TS

cC

aA

bA

cA

aB

aC

bB

bC

cB

Susanne Graf Abstraction for system verification 8 / 63

Motivation

Example: Peterson as a global symbolic TS

d0=fs , d1=fs , turn ?

d0=tr, d1=fs , turn=0

[not d1 or turn = 1]

[d0=fs , d1=fs , turn=0]

d0=tr , d1=tr, turn=1

d0=fs , d1=fs , turn=1

d0=tr, d1=fs , turn=0

[not d0 or turn=0] d0, d1, turn : local

cC

aA

bA

cA

aB

aC

bB

bC

cB

Susanne Graf Abstraction for system verification 8 / 63

Motivation

Example: Peterson as a global symbolic TS

d0=fs , d1=fs , turn ?

d0=tr, d1=fs , turn=0

[not d1 or turn = 1]

[d0=fs , d1=fs , turn=0]

d0=tr , d1=tr, turn=1

d0=fs , d1=fs , turn=1

d0=tr, d1=fs , turn=0

[not d0 or turn=0] d0, d1, turn : local

cC

aA

bA

cA

aB

aC

bB

bC

cB

Susanne Graf Abstraction for system verification 8 / 63

Motivation

(2) Requirements

... express

generic or specific properties that a component, system, algorithm, ...
should have (deadlock freedom, mutual exclusion, ...)

specifies “what” it does, its qualities, not how

cannot generally not be meaningfully “implemented” (by a compiler)

Typical formalisms:

(temporal) logic ∀2(¬crit0 ∨ ¬crit1)

(extended) TS , ...
crit0 ∧ crit1

¬crit0 ∨ ¬crit1
composition = conjunction All requirements must be satisfied

may be “executable” or not.
The difference is more in the intent than the form.

Susanne Graf Abstraction for system verification 9 / 63

Motivation

(2) Requirements

... express

generic or specific properties that a component, system, algorithm, ...
should have (deadlock freedom, mutual exclusion, ...)

specifies “what” it does, its qualities, not how

cannot generally not be meaningfully “implemented” (by a compiler)

Typical formalisms:

(temporal) logic ∀2(¬crit0 ∨ ¬crit1)

(extended) TS , ...
crit0 ∧ crit1

¬crit0 ∨ ¬crit1
composition = conjunction All requirements must be satisfied

may be “executable” or not.
The difference is more in the intent than the form.

Susanne Graf Abstraction for system verification 9 / 63

Motivation

(2) Requirements

... express

generic or specific properties that a component, system, algorithm, ...
should have (deadlock freedom, mutual exclusion, ...)

specifies “what” it does, its qualities, not how

cannot generally not be meaningfully “implemented” (by a compiler)

Typical formalisms:

(temporal) logic ∀2(¬crit0 ∨ ¬crit1)

(extended) TS , ...
crit0 ∧ crit1

¬crit0 ∨ ¬crit1
composition = conjunction All requirements must be satisfied

may be “executable” or not.
The difference is more in the intent than the form.

Susanne Graf Abstraction for system verification 9 / 63

Motivation

(2) Requirements

... express

generic or specific properties that a component, system, algorithm, ...
should have (deadlock freedom, mutual exclusion, ...)

specifies “what” it does, its qualities, not how

cannot generally not be meaningfully “implemented” (by a compiler)

Typical formalisms:

(temporal) logic ∀2(¬crit0 ∨ ¬crit1)

(extended) TS , ...
crit0 ∧ crit1

¬crit0 ∨ ¬crit1
composition = conjunction All requirements must be satisfied

may be “executable” or not.
The difference is more in the intent than the form.

Susanne Graf Abstraction for system verification 9 / 63

Motivation

(2) Requirements

... express

generic or specific properties that a component, system, algorithm, ...
should have (deadlock freedom, mutual exclusion, ...)

specifies “what” it does, its qualities, not how

cannot generally not be meaningfully “implemented” (by a compiler)

Typical formalisms:

(temporal) logic ∀2(¬crit0 ∨ ¬crit1)

(extended) TS , ...
crit0 ∧ crit1

¬crit0 ∨ ¬crit1
composition = conjunction All requirements must be satisfied

may be “executable” or not.
The difference is more in the intent than the form.

Susanne Graf Abstraction for system verification 9 / 63

Motivation

(2) Requirements

... express

generic or specific properties that a component, system, algorithm, ...
should have (deadlock freedom, mutual exclusion, ...)

specifies “what” it does, its qualities, not how

cannot generally not be meaningfully “implemented” (by a compiler)

Typical formalisms:

(temporal) logic ∀2(¬crit0 ∨ ¬crit1)

(extended) TS , ...
crit0 ∧ crit1

¬crit0 ∨ ¬crit1
composition = conjunction All requirements must be satisfied

may be “executable” or not.
The difference is more in the intent than the form.

Susanne Graf Abstraction for system verification 9 / 63

Motivation

(3) Satisfaction Relations

... defines what is means that M has property ϕ.

Typically defined on
some semantic do-
main:

Semantic Property Domain Relationship |= Property class

Function relating input/output equality (correctness)
Reachable states inclusion (invariance)
Sets of executions/prefixes/streams inclusion (linear, LTL)
Refusal sets inclusion (reactivity)
TS simulation (structural)

Verification = checking these relationships

Susanne Graf Abstraction for system verification 10 / 63

Motivation

(3) Satisfaction Relations

... defines what is means that M has property ϕ.

Typically defined on
some semantic do-
main:

M, ϕ

mapping

|M|, |ϕ|
Semantic Property Domain Relationship |= Property class

Function relating input/output equality (correctness)
Reachable states inclusion (invariance)
Sets of executions/prefixes/streams inclusion (linear, LTL)
Refusal sets inclusion (reactivity)
TS simulation (structural)

Verification = checking these relationships

Susanne Graf Abstraction for system verification 10 / 63

Motivation

(3) Satisfaction Relations

... defines what is means that M has property ϕ.

Typically defined on
some semantic do-
main:

|M||=|ϕ|

M, ϕ

mapping

|M|, |ϕ|
Semantic Property Domain Relationship |= Property class

Function relating input/output equality (correctness)
Reachable states inclusion (invariance)
Sets of executions/prefixes/streams inclusion (linear, LTL)
Refusal sets inclusion (reactivity)
TS simulation (structural)

Verification = checking these relationships

Susanne Graf Abstraction for system verification 10 / 63

Motivation

(3) Satisfaction Relations

... defines what is means that M has property ϕ.

Typically defined on
some semantic do-
main:

M|=ϕ

conclude

|M||=|ϕ|

M, ϕ

mapping

|M|, |ϕ|
Semantic Property Domain Relationship |= Property class

Function relating input/output equality (correctness)
Reachable states inclusion (invariance)
Sets of executions/prefixes/streams inclusion (linear, LTL)
Refusal sets inclusion (reactivity)
TS simulation (structural)

Verification = checking these relationships

Susanne Graf Abstraction for system verification 10 / 63

Motivation

(3) Satisfaction Relations

... defines what is means that M has property ϕ.

Typically defined on
some semantic do-
main:

M|=ϕ

conclude

|M||=|ϕ|

M, ϕ

mapping

|M|, |ϕ|

Semantic Property Domain Relationship |= Property class

Function relating input/output equality (correctness)
Reachable states inclusion (invariance)
Sets of executions/prefixes/streams inclusion (linear, LTL)
Refusal sets inclusion (reactivity)
TS simulation (structural)

Verification = checking these relationships

Susanne Graf Abstraction for system verification 10 / 63

Motivation

(3) Satisfaction Relations

... defines what is means that M has property ϕ.

Typically defined on
some semantic do-
main:

M|=ϕ

conclude

|M||=|ϕ|

M, ϕ

mapping

|M|, |ϕ|

Semantic Property Domain Relationship |= Property class

Function relating input/output equality (correctness)
Reachable states inclusion (invariance)
Sets of executions/prefixes/streams inclusion (linear, LTL)
Refusal sets inclusion (reactivity)
TS simulation (structural)

Verification = checking these relationships

Susanne Graf Abstraction for system verification 10 / 63

Motivation

(4) Model-checking

... an algorithm for checking the relation |=

|= : M × L 7→ {tr , fs, fail}

fail may be due to

theoretical undecidability of |=
excessive complexity (state explosion) of the algorithm used

incompleteness of the algorithm

... based on some more or less low-level semantic representation of M, ϕ

Susanne Graf Abstraction for system verification 11 / 63

Motivation

(4) Model-checking

... an algorithm for checking the relation |=

|= : M × L 7→ {tr , fs, fail}

fail may be due to

theoretical undecidability of |=
excessive complexity (state explosion) of the algorithm used

incompleteness of the algorithm

... based on some more or less low-level semantic representation of M, ϕ

Susanne Graf Abstraction for system verification 11 / 63

Motivation

(4) Model-checking

... an algorithm for checking the relation |=

|= : M × L 7→ {tr , fs, fail}

fail may be due to

theoretical undecidability of |=
excessive complexity (state explosion) of the algorithm used

incompleteness of the algorithm

... based on some more or less low-level semantic representation of M, ϕ

Susanne Graf Abstraction for system verification 11 / 63

Motivation

Example: Semantic model of the Peterson algorithm

A C

A

f f 0

A

t f 0 t t 1 t t 0 f t 1

t t 1
t t 0

B B

C
Bc

f f 1

Ac C

f t 0t f 1

t t 1

c Cc C

t t 0

a a

A

t f 0

B

f t 1

A

t f 1
B

f t 0

C

t t 1
B

t t 0

b

c b b

a

b
a

a

a

b c b

|M||=ϕ: can be checked easily by calculating fix-points on this graph:

Susanne Graf Abstraction for system verification 12 / 63

Motivation

Example: Semantic model of the Peterson algorithm

b

b

b

b

b

crit0

crit0

crit0
crit1

crit0
crit1

crit1

crit1

crit0

crit0

crit1

crit1

|M||=ϕ: can be checked easily by calculating fix-points on this graph:

init ⊆ |2(¬crit0 ∨ ¬crit1)|
Susanne Graf Abstraction for system verification 12 / 63

Motivation

Example: Semantic model of the Peterson algorithm

b

b

b

b

b

crit0

crit0

crit0
crit1

crit0
crit1

crit1

crit1

crit0

crit0

crit1

crit1

|M||=ϕ: can be checked easily by calculating fix-points on this graph:

b ⊆ |3crit0|
Susanne Graf Abstraction for system verification 12 / 63

Motivation

The main difficulty of verification: complexity

(yes/no/fail)

(yes/no/?)M|=ϕ

conclude

|M||=|ϕ|

M, ϕ

mapping

|M|, |ϕ|

M: compact syntax, program,

timed automata, transition system

(TS) with variables, composition, ...

|M|: less structure, e.g. labeled TS

{+ constraints}

=⇒ Model-checking algorithms |= typically work in 2 steps:

|=step 1: transformation into semantic models |M|, |ϕ|
|=step 2: evaluate satisfaction based on |M|, |ϕ|

Main complexity: step 1 (for M) −→ state explosion

Note: performant procedures |= mix steps 1 and 2: avoid computing |M|
exhaustively. But the problem of complexity explosion remains.

Susanne Graf Abstraction for system verification 13 / 63

Motivation

The main difficulty of verification: complexity

(yes/no/fail)

(yes/no/?)M|=ϕ

conclude

|M||=|ϕ|

M, ϕ

mapping

|M|, |ϕ|

M: compact syntax, program,

timed automata, transition system

(TS) with variables, composition, ...

|M|: less structure, e.g. labeled TS

{+ constraints}

=⇒ Model-checking algorithms |= typically work in 2 steps:

|=step 1: transformation into semantic models |M|, |ϕ|
|=step 2: evaluate satisfaction based on |M|, |ϕ|

Main complexity: step 1 (for M) −→ state explosion

Note: performant procedures |= mix steps 1 and 2: avoid computing |M|
exhaustively. But the problem of complexity explosion remains.

Susanne Graf Abstraction for system verification 13 / 63

Motivation

The main difficulty of verification: complexity

(yes/no/fail)

(yes/no/?)M|=ϕ

conclude

|M||=|ϕ|

M, ϕ

mapping

|M|, |ϕ|

M: compact syntax, program,

timed automata, transition system

(TS) with variables, composition, ...

|M|: less structure, e.g. labeled TS

{+ constraints}

=⇒ Model-checking algorithms |= typically work in 2 steps:

|=step 1: transformation into semantic models |M|, |ϕ|
|=step 2: evaluate satisfaction based on |M|, |ϕ|

Main complexity: step 1 (for M) −→ state explosion

Note: performant procedures |= mix steps 1 and 2: avoid computing |M|
exhaustively. But the problem of complexity explosion remains.

Susanne Graf Abstraction for system verification 13 / 63

Motivation

The main difficulty of verification: complexity

(yes/no/fail)

(yes/no/?)M|=ϕ

conclude

|M||=|ϕ|

M, ϕ

mapping

|M|, |ϕ|

M: compact syntax, program,

timed automata, transition system

(TS) with variables, composition, ...

|M|: less structure, e.g. labeled TS

{+ constraints}

=⇒ Model-checking algorithms |= typically work in 2 steps:

|=step 1: transformation into semantic models |M|, |ϕ|
|=step 2: evaluate satisfaction based on |M|, |ϕ|

Main complexity: step 1 (for M) −→ state explosion

Note: performant procedures |= mix steps 1 and 2: avoid computing |M|
exhaustively. But the problem of complexity explosion remains.

Susanne Graf Abstraction for system verification 13 / 63

Motivation

The main difficulty of verification: complexity

(yes/no/fail)

(yes/no/?)M|=ϕ

conclude

|M||=|ϕ|

M, ϕ

mapping

|M|, |ϕ|

M: compact syntax, program,

timed automata, transition system

(TS) with variables, composition, ...

|M|: less structure, e.g. labeled TS

{+ constraints}

=⇒ Model-checking algorithms |= typically work in 2 steps:

|=step 1: transformation into semantic models |M|, |ϕ|
|=step 2: evaluate satisfaction based on |M|, |ϕ|

Main complexity: step 1 (for M) −→ state explosion

Note: performant procedures |= mix steps 1 and 2: avoid computing |M|
exhaustively. But the problem of complexity explosion remains.

Susanne Graf Abstraction for system verification 13 / 63

Motivation

The main difficulty of verification: complexity

(yes/no/fail)

(yes/no/?)M|=ϕ

conclude

|M||=|ϕ|

M, ϕ

mapping

|M|, |ϕ|

M: compact syntax, program,

timed automata, transition system

(TS) with variables, composition, ...

|M|: less structure, e.g. labeled TS

{+ constraints}

=⇒ Model-checking algorithms |= typically work in 2 steps:

|=step 1: transformation into semantic models |M|, |ϕ|
|=step 2: evaluate satisfaction based on |M|, |ϕ|

Main complexity: step 1 (for M) −→ state explosion

Note: performant procedures |= mix steps 1 and 2: avoid computing |M|
exhaustively. But the problem of complexity explosion remains.

Susanne Graf Abstraction for system verification 13 / 63

Motivation

The main difficulty of verification: complexity

(yes/no/fail)

(yes/no/?)M|=ϕ

conclude

|M||=|ϕ|

M, ϕ

mapping

|M|, |ϕ|

M: compact syntax, program,

timed automata, transition system

(TS) with variables, composition, ...

|M|: less structure, e.g. labeled TS

{+ constraints}

=⇒ Model-checking algorithms |= typically work in 2 steps:

|=step 1: transformation into semantic models |M|, |ϕ|
|=step 2: evaluate satisfaction based on |M|, |ϕ|

Main complexity: step 1 (for M) −→ state explosion

Note: performant procedures |= mix steps 1 and 2: avoid computing |M|
exhaustively. But the problem of complexity explosion remains.

Susanne Graf Abstraction for system verification 13 / 63

Motivation

What is abstraction?

An abstraction is a property preserving transformation

Given

a verification setting: (M, L, |=)

a transformation α : M 7→MA with MA ⊆M

Then

α is an abstraction for (M,L, |=) if

∀M ∈M ∀ϕ ∈ L . α(M)|=ϕ implies M|=ϕ

α is called strongly property preserving if in addition

∀M ∈M ∀ϕ ∈ L . α(M) 6 |=ϕ implies M 6 |=ϕ

Susanne Graf Abstraction for system verification 14 / 63

Motivation

What is abstraction?

An abstraction is a property preserving transformation

Given

a verification setting: (M, L, |=)

a transformation α : M 7→MA with MA ⊆M

Then

α is an abstraction for (M,L, |=) if

∀M ∈M ∀ϕ ∈ L . α(M)|=ϕ implies M|=ϕ

α is called strongly property preserving if in addition

∀M ∈M ∀ϕ ∈ L . α(M) 6 |=ϕ implies M 6 |=ϕ

Susanne Graf Abstraction for system verification 14 / 63

Motivation

What is abstraction?

An abstraction is a property preserving transformation

Given

a verification setting: (M, L, |=)

a transformation α : M 7→MA with MA ⊆M

Then

α is an abstraction for (M,L, |=) if

∀M ∈M ∀ϕ ∈ L . α(M)|=ϕ implies M|=ϕ

α is called strongly property preserving if in addition

∀M ∈M ∀ϕ ∈ L . α(M) 6 |=ϕ implies M 6 |=ϕ

Susanne Graf Abstraction for system verification 14 / 63

Motivation

What is abstraction?

An abstraction is a property preserving transformation

Given

a verification setting: (M, L, |=)

a transformation α : M 7→MA with MA ⊆M

Then

α is an abstraction for (M,L, |=) if

∀M ∈M ∀ϕ ∈ L . α(M)|=ϕ implies M|=ϕ

α is called strongly property preserving if in addition

∀M ∈M ∀ϕ ∈ L . α(M) 6 |=ϕ implies M 6 |=ϕ

Susanne Graf Abstraction for system verification 14 / 63

Motivation

What is abstraction?

An abstraction is a property preserving transformation

Given

a verification setting: (M, L, |=)

a transformation α : M 7→MA with MA ⊆M

Then

α is an abstraction for (M,L, |=) if

∀M ∈M ∀ϕ ∈ L . α(M)|=ϕ implies M|=ϕ

α is called strongly property preserving if in addition

∀M ∈M ∀ϕ ∈ L . α(M) 6 |=ϕ implies M 6 |=ϕ

Susanne Graf Abstraction for system verification 14 / 63

Motivation

Example: Abstracted semantic model of Peterson

α:
(1) group states to 5 abstract ones (black, green, blue, red, yellow),
(2) draw a (green / blue) transition between abstract states if there is one
between a corresponding pair of concrete ones

crit0

crit1

crit0

crit0 crit0

crit0

crit0crit1

crit1crit1

crit1

crit1

α(|M|) satisfies properties (1) mutual
exclusion and (2) non-blocking. We
cannot evaluate (3) fairness.

What can we conclude?

Answer: only (1) allows a conclusion for

the original concrete model. α does not

preserve the other results

Susanne Graf Abstraction for system verification 15 / 63

Motivation

Example: Abstracted semantic model of Peterson

α:
(1) group states to 5 abstract ones (black, green, blue, red, yellow),
(2) draw a (green / blue) transition between abstract states if there is one
between a corresponding pair of concrete ones

α(|M|) satisfies properties (1) mutual
exclusion and (2) non-blocking. We
cannot evaluate (3) fairness.

What can we conclude?

Answer: only (1) allows a conclusion for

the original concrete model. α does not

preserve the other results

Susanne Graf Abstraction for system verification 15 / 63

Motivation

Example: Abstracted semantic model of Peterson

α:
(1) group states to 5 abstract ones (black, green, blue, red, yellow),
(2) draw a (green / blue) transition between abstract states if there is one
between a corresponding pair of concrete ones

crit0

crit1

crit0

crit0 crit0

crit0

crit0crit1

crit1crit1

crit1

crit1

α(|M|) satisfies properties (1) mutual
exclusion and (2) non-blocking. We
cannot evaluate (3) fairness.

What can we conclude?

Answer: only (1) allows a conclusion for

the original concrete model. α does not

preserve the other results

Susanne Graf Abstraction for system verification 15 / 63

Motivation

Example: Abstracted semantic model of Peterson

α:
(1) group states to 5 abstract ones (black, green, blue, red, yellow),
(2) draw a (green / blue) transition between abstract states if there is one
between a corresponding pair of concrete ones

crit0 crit1

crit1crit0

init

α(|M|) satisfies properties (1) mutual
exclusion and (2) non-blocking. We
cannot evaluate (3) fairness.

What can we conclude?

Answer: only (1) allows a conclusion for

the original concrete model. α does not

preserve the other results

Susanne Graf Abstraction for system verification 15 / 63

Motivation

Example: Abstracted semantic model of Peterson

α:
(1) group states to 5 abstract ones (black, green, blue, red, yellow),
(2) draw a (green / blue) transition between abstract states if there is one
between a corresponding pair of concrete ones

crit0 crit1

crit1crit0

init

α(|M|) satisfies properties (1) mutual
exclusion and (2) non-blocking. We
cannot evaluate (3) fairness.

What can we conclude?

Answer: only (1) allows a conclusion for

the original concrete model. α does not

preserve the other results

Susanne Graf Abstraction for system verification 15 / 63

Motivation

Example: Abstracted semantic model of Peterson

α:
(1) group states to 5 abstract ones (black, green, blue, red, yellow),
(2) draw a (green / blue) transition between abstract states if there is one
between a corresponding pair of concrete ones

crit0 crit1

crit1crit0

init

α(|M|) satisfies properties (1) mutual
exclusion and (2) non-blocking. We
cannot evaluate (3) fairness.

What can we conclude?

Answer: only (1) allows a conclusion for

the original concrete model. α does not

preserve the other results

Susanne Graf Abstraction for system verification 15 / 63

Motivation

Example: Abstracted semantic model of Peterson

α:
(1) group states to 5 abstract ones (black, green, blue, red, yellow),
(2) draw a (green / blue) transition between abstract states if there is one
between a corresponding pair of concrete ones

crit0 crit1

crit1crit0

init

α(|M|) satisfies properties (1) mutual
exclusion and (2) non-blocking. We
cannot evaluate (3) fairness.

What can we conclude?

Answer: only (1) allows a conclusion for

the original concrete model. α does not

preserve the other results

Susanne Graf Abstraction for system verification 15 / 63

Motivation

Why abstraction? what have we gained?

The main motivation: avoid state explosion

Is our abstraction for Peterson useful?: not really,

Note that our abstraction of Peterson cannot be obtained that way.

Susanne Graf Abstraction for system verification 16 / 63

Motivation

Why abstraction? what have we gained?

The main motivation: avoid state explosion

Is our abstraction for Peterson useful?: not really,

Note that our abstraction of Peterson cannot be obtained that way.

Susanne Graf Abstraction for system verification 16 / 63

Motivation

Why abstraction? what have we gained?

The main motivation: avoid state explosion

Is our abstraction for Peterson useful?: not really,

Note that our abstraction of Peterson cannot be obtained that way.

Susanne Graf Abstraction for system verification 16 / 63

Motivation

Why abstraction? what have we gained?

The main motivation: avoid state explosion

Is our abstraction for Peterson useful?: not really,

M, ϕ

|MA||M|

mapping

α

Note that our abstraction of Peterson cannot be obtained that way.
Susanne Graf Abstraction for system verification 16 / 63

Motivation

Why abstraction? what have we gained?

The main motivation: avoid state explosion

Is our abstraction for Peterson useful?: not really,

MA|=ϕ

M |= ϕ

preserves

check

M, ϕ

|MA||M|

mapping

α

Note that our abstraction of Peterson cannot be obtained that way.
Susanne Graf Abstraction for system verification 16 / 63

Motivation

Why abstraction? what have we gained?

The main motivation: avoid state explosion

Is our abstraction for Peterson useful?: not really,

state explosion

MA|=ϕ

M |= ϕ

preserves

check

M, ϕ

|MA||M|

mapping

α

Note that our abstraction of Peterson cannot be obtained that way.
Susanne Graf Abstraction for system verification 16 / 63

Motivation

Why abstraction? what have we gained?

The main motivation: avoid state explosion

Is our abstraction for Peterson useful?: not really,

MA|=ϕ

M |= ϕ

preserves

check

M, ϕ

|MA|

Note that our abstraction of Peterson cannot be obtained that way.
Susanne Graf Abstraction for system verification 16 / 63

Motivation

Why abstraction? what have we gained?

The main motivation: avoid state explosion

Is our abstraction for Peterson useful?: not really,

mapping

MA

MA|=ϕ

M |= ϕ

preserves

check

M, ϕ

|MA|

Note that our abstraction of Peterson cannot be obtained that way.
Susanne Graf Abstraction for system verification 16 / 63

Motivation

Why abstraction? what have we gained?

The main motivation: avoid state explosion

Is our abstraction for Peterson useful?: not really,

mapping

MA

MA|=ϕ

M |= ϕ

preserves

check

M, ϕ

|MA|

Note that our abstraction of Peterson cannot be obtained that way.
Susanne Graf Abstraction for system verification 16 / 63

Motivation

What is particular to system verification?

We are interested in closed systems (the system + some more or less
specific environment).

A system is composed of a (large) number of components (in parallel, ‖)
and there are requirements related to desired and undesired global
(emergent) properties.

Usual verification settings guarantee:

Susanne Graf Abstraction for system verification 17 / 63

Motivation

What is particular to system verification?

We are interested in closed systems (the system + some more or less
specific environment).

A system is composed of a (large) number of components (in parallel, ‖) .

Usual verification settings guarantee:

|= ϕglobM1 ‖ M2 ‖ ‖ Mn

Susanne Graf Abstraction for system verification 17 / 63

Motivation

What is particular to system verification?

We are interested in closed systems (the system + some more or less
specific environment).

A system is composed of a (large) number of components (in parallel, ‖) .

Usual verification settings guarantee:

α

MA
1 MA

2 MA
n‖ ‖ ‖

M1 ‖ M2 ‖ ‖ Mn

Susanne Graf Abstraction for system verification 17 / 63

Motivation

What is particular to system verification?

We are interested in closed systems (the system + some more or less
specific environment).

A system is composed of a (large) number of components (in parallel, ‖) .

Usual verification settings guarantee:

|= ϕglob

α

MA
1 MA

2 MA
n‖ ‖ ‖

M1 ‖ M2 ‖ ‖ Mn

Susanne Graf Abstraction for system verification 17 / 63

Motivation

What is particular to system verification?

We are interested in closed systems (the system + some more or less
specific environment).

A system is composed of a (large) number of components (in parallel, ‖) .

Usual verification settings guarantee:

|= ϕglob

conclude

|= ϕglob

α

MA
1 MA

2 MA
n‖ ‖ ‖

M1 ‖ M2 ‖ ‖ Mn

Susanne Graf Abstraction for system verification 17 / 63

Motivation

What is particular to system verification?

We are interested in closed systems (the system + some more or less
specific environment).

A system is composed of a (large) number of components (in parallel, ‖) .

Usual verification settings guarantee:

|= ϕ2M1 ‖ M2 ‖ ‖ Mn

Susanne Graf Abstraction for system verification 17 / 63

Motivation

What is particular to system verification?

We are interested in closed systems (the system + some more or less
specific environment).

A system is composed of a (large) number of components (in parallel, ‖) .

Usual verification settings guarantee:

α

MA
2

M1 ‖ M2 ‖ ‖ Mn

Susanne Graf Abstraction for system verification 17 / 63

Motivation

What is particular to system verification?

We are interested in closed systems (the system + some more or less
specific environment).

A system is composed of a (large) number of components (in parallel, ‖) .

Usual verification settings guarantee:

|= ϕ2

α

MA
2

M1 ‖ M2 ‖ ‖ Mn

Susanne Graf Abstraction for system verification 17 / 63

Motivation

What is particular to system verification?

We are interested in closed systems (the system + some more or less
specific environment).

A system is composed of a (large) number of components (in parallel, ‖) .

Usual verification settings guarantee:

|= ϕ2

conclude

|= ϕ2

α

MA
2

M1 ‖ M2 ‖ ‖ Mn

Susanne Graf Abstraction for system verification 17 / 63

Motivation

What is particular to system verification?

A system is composed of a (large) number of components (in parallel, ‖)
and there are requirements related to desired and undesired global
(emergent) properties.

Usual settings guarantee

|= ϕ2

conclude

|= ϕ2

α

MA
2

M1 ‖ M2 ‖ ‖ Mn

But — it is hard to find a useful α for which the premises
α(M1)‖...‖α(Mn)|=ϕ or α(Mi)|=ϕi hold and can be checked.

We want appropriate reasoning rules for

composing verification results

combining them with abstraction
Susanne Graf Abstraction for system verification 18 / 63

Motivation

What is particular to system verification?

A system is composed of a (large) number of components (in parallel, ‖)
and there are requirements related to desired and undesired global
(emergent) properties.

Usual settings guarantee

|= ϕ2

conclude

|= ϕ2

α

MA
2

M1 ‖ M2 ‖ ‖ Mn

But — it is hard to find a useful α for which the premises
α(M1)‖...‖α(Mn)|=ϕ or α(Mi)|=ϕi hold and can be checked.

We want appropriate reasoning rules for

composing verification results

combining them with abstraction
Susanne Graf Abstraction for system verification 18 / 63

Motivation

Summary: problems we do address

Property preservation (which abstraction preserves which properties)

How to effectively calculate abstractions

How to achieve verification of global properties by combining
abstraction and rules for composing results

Susanne Graf Abstraction for system verification 19 / 63

Motivation

Summary: problems we do address

Property preservation (which abstraction preserves which properties)

How to effectively calculate abstractions

How to achieve verification of global properties by combining
abstraction and rules for composing results

Susanne Graf Abstraction for system verification 19 / 63

Motivation

Summary: problems we do address

Property preservation (which abstraction preserves which properties)

How to effectively calculate abstractions

How to achieve verification of global properties by combining
abstraction and rules for composing results

Susanne Graf Abstraction for system verification 19 / 63

Motivation

Summary: problems we do address

Property preservation (which abstraction preserves which properties)

How to effectively calculate abstractions

How to achieve verification of global properties by combining
abstraction and rules for composing results

Susanne Graf Abstraction for system verification 19 / 63

Motivation

Summary: problems we do not address

Adequate languages for expressing models and requirements.

Appropriate composition frameworks

Appropriate satisfaction relations |=

Algorithms |= for solving verification problems M|=ϕ for a given
framework.

Abstraction refinement: when both MA|=ϕ and MA 6 |=ϕ fail
(CEGAR approaches).

Susanne Graf Abstraction for system verification 20 / 63

	Motivation
	Property preserving abstractions: semantic level
	Galois connexions between lattices
	Abstractions for transition systems

	Effectively computing abstractions
	Verification of composed systems

