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Property preserving abstractions: semantic level Galois connexions between lattices

Properties and satisfaction

We have seen: at the semantic level:

A property ϕ is some semantic set (of states, streams, trees, ...)

A model M represents a set of properties

Conformance (|=) essentially boils down to inclusion of semantic sets

=⇒ We may use a lattice (P, <,t,u,⊥,T ) to represent this situation:

P1<P2 represents M|=ϕ (or M|=M ′ or ϕ|=ϕ′)

An Abstraction α must define a property preserving mapping between
concrete and abstract properties:

|α(M)|<|α(ϕ)| implies |M|<|ϕ|

But: M defines also a (set of) basic property transformations F (succ ,
pred , ...) used to compute the semantics of M or ϕ.

=⇒ as we want to compute |M|, |α(M)| ... by computing fixpoints of
basic functions associated with M, α(M), ... we want to preserve these
functions at the first place.
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Property preserving abstractions: semantic level Galois connexions between lattices

Preliminaries: Galois connexions

... monotonic mappings between property lattices

b c

⊥

Disjunctions of a, b, c

a

T

Property lattice (L, <) representing (|l|, |=)Susanne Graf Abstraction for system verification 23 / 63
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Property preserving abstractions: semantic level Galois connexions between lattices

Preliminaries: Galois connexions

Let (L, <,t,u,⊥,>), (LA, <A,tA,uA,⊥A,>A) be (property) lattices and
α : L 7→ LA, γ : LA 7→ L strict monotonic functions.

(α, γ) is a Galois connexion from L to LA if

Id < α ◦ γ — α ◦ γ ◦ α = α (α ◦ γ is an extensive closure)

γ ◦ α <A Id — γ ◦ α ◦ γ = γ (γ ◦ α is a reductive closure)

That is, we also have

α distributes over t and γ distributes over u (no loss of precision)

α and γ are each others inverse on the set of closed elements
{q ∈ L | q ∈ img(α ◦ γ)}, {qA ∈ LA | qA ∈ img(γ ◦ α)}. Closed
elements of L are properties representable in LA.

for Boolean lattices, α, γ have duals α̃ = ¬α¬, γ̃ = ¬γ¬
(α̃, γ̃) is a Galois connexion from L̃ to L̃A (lattices for > and >A),
and (γ̃, α̃) from LA to L.
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Property preserving abstractions: semantic level Galois connexions between lattices

Preliminaries on property transformers

Relation ρ relates semantic “items”. A property is a set of items (states,
sequences, ...).

ρ

Binary relation ρ defines 4 basic functions on sets (property transformers):
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Preliminaries on property transformers

postρ(X )

X
ρ

ρ defines 4 property transformers:

postρ(X ) = {q′ | ∃q ∈ X ∧ q →ρ q′} (post-condition)

postρ monotonic, distributes over t

Susanne Graf Abstraction for system verification 25 / 63



Property preserving abstractions: semantic level Galois connexions between lattices

Preliminaries on property transformers

preρ(Y )

X
ρ Y

ρ defines 4 property transformers:

postρ(X ) = {q′ | ∃q ∈ X ∧ q →ρ q′} (post-condition)
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Property preserving abstractions: semantic level Galois connexions between lattices

Preliminaries on property transformers

preρ(Y )

ρ
p̃reρ(Y )

Y

ρ defines 4 property transformers:

p̃reρ(Y ) = {q | ∀q →ρ q′ =⇒ q′ ∈ Y } (weakest precondition)

p̃reρ monotonic, distributes over u
if ρ total on Q: p̃reρ =⇒ preρ
postρ ◦ p̃reρ an upper closure

(postρ, p̃reρ), a Galois connexion (from left to right)
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Preliminaries on property transformers

p̃ostρ(X )

ρ
Z

postρ(Z)

ρ defines 4 property transformers:

p̃ostρ(X ) = p̃reρ−1(X )
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Property preserving abstractions: semantic level Galois connexions between lattices

Preliminaries on property transformers

p̃ostρ(X )

ρ
Z

postρ(Z)

Furthermore:

(p̃ostρ, preρ), (p̃reρ, postρ): connexions between dual lattices
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Property preserving abstractions: semantic level Galois connexions between lattices

Property preservation with Galois connexions

��

��

γ

α

F

FA : LA 7→ LA

F

F : L 7→ L (monotonic) (monotonic)

Remind that elements of the lattice are “properties” (sets of items)
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Property preserving abstractions: semantic level Galois connexions between lattices

Property preservation with Galois connexions

��
��
��
��

��

��

FA

<

γ

α

F

FA : LA 7→ LA

F

F : L 7→ L (monotonic) (monotonic)

γ ◦ F ◦ α <A FA ⇔ (α◦)
F ◦ α <A α ◦ FA ⇔ (◦γ)
F < α ◦ FA ◦ γ ⇔ (γ◦)

γ ◦ F < FA ◦ γ
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Property preserving abstractions: semantic level Galois connexions between lattices

Property preservation with Galois connexions

��
��
��
��

��

��

P0

F (P0)

PA
0

FA(PA
0 )

FA

<

γ

α

F

FA : LA 7→ LA

F

F : L 7→ L (monotonic) (monotonic)

F , FA: obtained from Fi (resp. FA
i ) using ◦, t, u and fix-point operators.

Typically: reach, the least fix-point of the successor function (post→) for
calculating set of reachable states from the initial states

Susanne Graf Abstraction for system verification 26 / 63
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Property preservation with Galois connexions
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PA
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FA
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γ

α

F
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F , FA: obtained from Fi (resp. FA
i ) using ◦, t, u and fix-point operators.

F (P0) < γ(FA(PA
0 ))
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Property preservation with Galois connexions
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Property preserving abstractions: semantic level Galois connexions between lattices

Property preservation with Galois connexions
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P = γ(PA)

<

PA

<

<

P0

F (P0)

PA
0

FA(PA
0 )

FA

<

γ

α

F

FA : LA 7→ LA

F

F : L 7→ L (monotonic) (monotonic)

P = γ(PA) — an invariance property to hold, then

FA(PA
0 ) <A PA implies F (P0) < P

MA|=ϕA implies M|=ϕ
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Property preserving abstractions: semantic level Galois connexions between lattices

Example: Abstract Peterson

α:
(1) group states to 5 abstract ones (black, green, blue, red, yellow),
(2) draw a (green / blue) transition between abstract states if there is one
between a corresponding pair of concrete ones

crit0 crit1

crit1crit0

init

α(|M|) satisfies property (1) mutual ex-
clusion.

A typical α which does satisfy

γ ◦ post→ ◦ α <A post→A

and there fore also

reach(init) < γ(reachA(initA))

Susanne Graf Abstraction for system verification 27 / 63
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Property preserving abstractions: semantic level Galois connexions between lattices

Property preservation ... continued

To combine model-checking and abstraction, we are interested in

proving properties of the form init < F where F represents a
requirement ϕ obtained as a fix-point, and init the initial states,
computing fix-points on the (smaller) abstract lattice: we need under
approximations of F .

Consider (α̃, γ̃), the dual of (α, γ) between dual lattices.

if F on L obtained from Fi using ◦, ∨, ∧ and fix-point operators, and
analogously for FA

if γ̃ ◦ Fi ◦ α̃ >A FA
i (which is equivalent to γ ◦ F̃i ◦ α <A F̃A

i )
if (P1, ...) with Pi ∈ L, and PA

i = α̃(Pi )

Then F (P1, ...) > γ̃(FA(PA
1 , ...)): initA <A FA(PA

1 , ...) is an under
approximation of F (P1, ...). If γ̃(initA) < init

Preservation of verification results from LA to L:

initA <A FA(PA
1 , ...) implies init < F (P1, ...).

Susanne Graf Abstraction for system verification 28 / 63
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Property preserving abstractions: semantic level Galois connexions between lattices

Property preservation ... continued

Strong property preservation: allows to preserve both satisfaction and non
satisfaction: FA must both over- and under- approximate F , in the
following sense. Assume:

(1) For (α, γ) from L to LA and (α′, γ′) from LA to L, init, P are
representable (closed) for both connexions.

(2) γ ◦ F ◦ α <A FA and γ′ ◦ FA ◦ α′ < F on representable properties.

Then, we have strong preservation of verification results:

FA(α(init)) < α(P) implies F (init) < P
and

F (init) < P implies γ′(init) <A γ′(P)

A particular case is (α′, γ′) = (γ̃, α̃).

Strong property preservation is interesting, but generally hard to achieve
... and composition is more difficult.
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Property preserving abstractions: semantic level Galois connexions between lattices

Why ist is not sufficient to require equality

Why do we not just require

γ ◦ F ◦ α = FA

that is, that FA is exact ?
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