### 1 Motivation

### **2** Property preserving abstractions: semantic level

- Galois connexions between lattices
- Abstractions for transition systems

### **3** Effectively computing abstractions

### **4** Verification of composed systems

We have seen: at the semantic level:

- A property  $\varphi$  is some semantic set (of states, streams, trees, ...)
- A model M represents a set of properties
- Conformance ( $\models$ ) essentially boils down to inclusion of semantic sets
- $\implies \text{We may use a lattice } (\mathcal{P}, <, \sqcup, \sqcap, \bot, T) \text{ to represent this situation:} \\ P_1 < P_2 \text{ represents } M \models \varphi \quad (\text{or } M \models M' \text{ or } \varphi \models \varphi')$

An Abstraction  $\alpha$  must define a property preserving mapping between concrete and abstract properties:

 $|\alpha(M)| < |\alpha(\varphi)|$  implies  $|M| < |\varphi|$ 

But: M defines also a (set of) basic property transformations F (succ, pred, ...) used to compute the semantics of M or  $\varphi$ .

 $\implies$  as we want to *compute* |M|,  $|\alpha(M)|$  ... by computing fixpoints of basic functions associated with M,  $\alpha(M)$ , ... we want to *preserve these functions* at the first place.

We have seen: at the semantic level:

- A property  $\varphi$  is some semantic set (of states, streams, trees, ...)
- A model M represents a set of properties
- Conformance ( $\models$ ) essentially boils down to inclusion of semantic sets
- $\implies \text{We may use a lattice } (\mathcal{P}, <, \sqcup, \sqcap, \bot, T) \text{ to represent this situation:} \\ P_1 < P_2 \text{ represents } M \models \varphi \quad (\text{or } M \models M' \text{ or } \varphi \models \varphi')$

An Abstraction  $\alpha$  must define a property preserving mapping between concrete and abstract properties:

 $|\alpha(M)| < |\alpha(\varphi)|$  implies  $|M| < |\varphi|$ 

But: M defines also a (set of) basic property transformations F (succ, pred, ...) used to compute the semantics of M or  $\varphi$ .

 $\implies$  as we want to *compute* |M|,  $|\alpha(M)|$  ... by computing fixpoints of basic functions associated with M,  $\alpha(M)$ , ... we want to *preserve these functions* at the first place.

We have seen: at the semantic level:

- A property  $\varphi$  is some semantic set (of states, streams, trees, ...)
- A model M represents a set of properties
- Conformance ( $\models$ ) essentially boils down to inclusion of semantic sets
- $\implies \text{We may use a lattice } (\mathcal{P}, <, \sqcup, \sqcap, \bot, T) \text{ to represent this situation:} \\ P_1 < P_2 \text{ represents } M \models \varphi \quad (\text{or } M \models M' \text{ or } \varphi \models \varphi')$

An Abstraction  $\alpha$  must define a property preserving mapping between concrete and abstract properties:

 $|\alpha(M)| < |\alpha(\varphi)|$  implies  $|M| < |\varphi|$ 

But: *M* defines also a (set of) basic property transformations *F* (succ, pred, ...) used to compute the semantics of *M* or  $\varphi$ .

 $\implies$  as we want to *compute* |M|,  $|\alpha(M)|$  ... by computing fixpoints of basic functions associated with M,  $\alpha(M)$ , ... we want to *preserve these functions* at the first place.

We have seen: at the semantic level:

- A property  $\varphi$  is some semantic set (of states, streams, trees, ...)
- A model M represents a set of properties
- Conformance ( $\models$ ) essentially boils down to inclusion of semantic sets
- $\implies \text{We may use a lattice } (\mathcal{P}, <, \sqcup, \sqcap, \bot, T) \text{ to represent this situation:} \\ \frac{P_1 < P_2}{P_1} \text{ represents } M \models \varphi \quad (\text{or } M \models M' \text{ or } \varphi \models \varphi')$

An Abstraction  $\alpha$  must define a property preserving mapping between concrete and abstract properties:

 $|\alpha(M)| < |\alpha(\varphi)|$  implies  $|M| < |\varphi|$ 

But: *M* defines also a (set of) basic property transformations *F* (succ, pred, ...) used to compute the semantics of *M* or  $\varphi$ .

 $\implies$  as we want to *compute* |M|,  $|\alpha(M)|$  ... by computing fixpoints of basic functions associated with M,  $\alpha(M)$ , ... we want to *preserve these functions* at the first place.

... monotonic mappings between property lattices







... monotonic mappings between property lattices



Disjunctions of a, b, c

```
\alpha: distributes over \sqcup
```

 $\alpha$ : "is represented by" (abstraction)

... monotonic mappings between property lattices



Disjunctions of a, b, c

```
\gamma: distributes over \sqcap
\gamma: "represents" (concretisation)
```

Susanne Graf

... monotonic mappings between property lattices



Disjunctions of a, b, c

 $\alpha$ : distributes over  $\sqcup$ 

 $\gamma$ : distributes over  $\sqcap$ 

 $\begin{aligned} & \textit{Id} < \alpha \circ \gamma \quad \alpha = \alpha \circ \gamma \circ \alpha \\ & \gamma \circ \alpha <^{\textit{A}} \textit{Id} \quad \gamma = \gamma \circ \alpha \circ \gamma \end{aligned}$ 

... monotonic mappings between property lattices



Disjunctions of a, b, c

 $\alpha$ : distributes over  $\sqcup$ 

 $\gamma$ : distributes over  $\square$ 

 $\begin{aligned} & \textit{Id} < \alpha \circ \gamma \quad \alpha = \alpha \circ \gamma \circ \alpha \\ & \gamma \circ \alpha <^{\textit{A}} \textit{Id} \quad \gamma = \gamma \circ \alpha \circ \gamma \end{aligned}$ 

... monotonic mappings between property lattices



Disjunctions of a, b, c

 $\alpha$ : distributes over  $\sqcup$ 

 $\gamma$ : distributes over  $\square$ 

 $Id < \alpha \circ \gamma \quad \alpha = \alpha \circ \gamma \circ \alpha$  $\gamma \circ \alpha <^{A} Id \quad \gamma = \gamma \circ \alpha \circ \gamma$ 

$$\gamma(x) = \sqcup_{\alpha(x') < A_X} x'$$

Susanne Graf

... monotonic mappings between property lattices



Disjunctions of a, b, c

 $\alpha$ : distributes over  $\sqcup$ 

 $\gamma$ : distributes over  $\square$ 

 $Id < \alpha \circ \gamma \quad \alpha = \alpha \circ \gamma \circ \alpha$  $\gamma \circ \alpha <^{A} Id \quad \gamma = \gamma \circ \alpha \circ \gamma$ 

$$\gamma(x) = \sqcup_{\alpha(x') < A_X} x'$$

Susanne Graf

... monotonic mappings between property lattices



Disjunctions of a, b, c

 $\alpha$ : distributes over  $\sqcup$ 

 $\gamma$ : di

Abstract property lattice

$$\mathsf{Id} < \alpha \circ \gamma \quad \alpha = \alpha \circ \gamma \circ \alpha$$

$$istributes over \ \sqcap$$

 $\gamma \circ \alpha <^{\mathsf{A}} \mathsf{Id} \quad \gamma = \gamma \circ \alpha \circ \gamma$ 

 $\gamma(x) = \sqcup_{\alpha(x') < {}^{A_x}} x'$ 

Susanne Graf

Let  $(L, <, \sqcup, \sqcap, \bot, \top)$ ,  $(L^A, <^A, \sqcup^A, \sqcap^A, \bot^A, \top^A)$  be (property) lattices and  $\alpha : L \mapsto L^A$ ,  $\gamma : L^A \mapsto L$  strict monotonic functions.

 $(\alpha, \gamma)$  is a Galois connexion from L to  $L^A$  if

• Id  $< \alpha \circ \gamma - \alpha \circ \gamma \circ \alpha = \alpha$  ( $\alpha \circ \gamma$  is an extensive closure)

• 
$$\gamma \circ \alpha <^{\mathcal{A}} Id - \gamma \circ \alpha \circ \gamma = \gamma \ (\gamma \circ \alpha \text{ is a reductive closure})$$

That is, we also have

- $\alpha$  distributes over  $\square$  and  $\gamma$  distributes over  $\square$  (no loss of precision)
- α and γ are each others inverse on the set of *closed* elements
   {Q ∈ L | Q ∈ img(α ∘ γ)}, {Q<sup>A</sup> ∈ L<sup>A</sup> | Q<sup>A</sup> ∈ img(γ ∘ α)}. Closed
   elements of L are properties *representable* in L<sup>A</sup>.

• for Boolean lattices,  $\alpha$ ,  $\gamma$  have duals  $\widetilde{\alpha} = \neg \alpha \neg$ ,  $\widetilde{\gamma} = \neg \gamma \neg$ 

•  $(\widetilde{\alpha}, \widetilde{\gamma})$  is a Galois connexion from  $\widetilde{L}$  to  $\widetilde{L^{A}}$  (lattices for > and ><sup>A</sup>), and  $(\widetilde{\gamma}, \widetilde{\alpha})$  from  $L^{A}$  to L.

Relation  $\rho$  relates semantic "items". A *property* is a set of items (states, sequences, ...).



Binary relation  $\rho$  defines 4 basic functions on sets (property transformers):



 $\rho$  defines 4 property transformers:

■  $post_{\rho}(X) = \{q' \mid \exists q \in X \land q \rightarrow_{\rho} q'\}$  (post-condition)

**p***ost*<sub>o</sub> monotonic, distributes over  $\Box$ 



 $\rho$  defines 4 property transformers:

■  $post_{\rho}(X) = \{q' \mid \exists q \in X \land q \rightarrow_{\rho} q'\}$  (post-condition)

• 
$$pre_{\rho}(Y) = post_{\rho^{-1}}(Y)$$
 (predecessors)



 $\rho$  defines 4 property transformers:

- $\widetilde{\textit{pre}}_{\rho}(Y) = \{q \mid \forall q \rightarrow_{\rho} q' \implies q' \in Y\}$  (weakest precondition)
- $\widetilde{pre}_{\rho}$  monotonic, distributes over  $\Box$
- if  $\rho$  total on  $Q: \widetilde{pre}_{\rho} \implies pre_{\rho}$
- **post**<sub> $\rho$ </sub>  $\circ \widetilde{pre}_{\rho}$  an upper closure
- $(post_{\rho}, \widetilde{pre}_{\rho})$ , a Galois connexion (from left to right)



 $\rho$  defines 4 property transformers:

■  $\widetilde{post}_{\rho}(X) = \widetilde{pre}_{\rho^{-1}}(X)$ ■  $(pre_{\rho}, \widetilde{post}_{\rho})$  is a Galois connexion (from right to left)



#### Furthermore:

• 
$$(\widetilde{post}_{\rho}, pre_{\rho})$$
,  $(\widetilde{pre}_{\rho}, post_{\rho})$ : connexions between dual lattices



Remind that elements of the lattice are "properties" (sets of items)







*F*,  $F^A$ : obtained from  $F_i$  (resp.  $F_i^A$ ) using  $\circ$ ,  $\sqcup$ ,  $\sqcap$  and fix-point operators.

*Typically*: *reach*, the least fix-point of the successor function  $(post_{\rightarrow})$  for calculating set of *reachable states* from the initial states



*F*,  $F^A$ : obtained from  $F_i$  (resp.  $F_i^A$ ) using  $\circ$ ,  $\sqcup$ ,  $\sqcap$  and fix-point operators.

$$F(P_0) < \gamma(F^{\mathcal{A}}(P_0^{\mathcal{A}}))$$







# **Example: Abstract Peterson**



# **Example: Abstract Peterson**

(1) group *states* to 5 abstract ones (black, green, blue, red, yellow),
 (2) draw a (green / blue) *transition* between abstract states if there is one between a corresponding pair of concrete ones



 $\alpha(|M|)$  satisfies property (1) *mutual exclusion*.

A typical  $\alpha$  which does satisfy

$$\gamma \circ \textit{post}_{\rightarrow} \circ \alpha <^{A} \textit{post}_{\rightarrow^{A}}$$

and there fore also

 $reach(init) < \gamma(reach^{A}(init^{A}))$ 

# **Example: Abstract Peterson**

(1) group *states* to 5 abstract ones (black, green, blue, red, yellow),
 (2) draw a (green / blue) *transition* between abstract states if there is one between a corresponding pair of concrete ones



 $\alpha(|M|)$  satisfies property (1) *mutual exclusion*.

A typical  $\alpha$  which does satisfy

$$\gamma \circ \textit{post}_{\rightarrow} \circ \alpha <^{\mathsf{A}} \textit{post}_{\rightarrow^{\mathsf{A}}}$$

and there fore also

 $reach(init) < \gamma(reach^{A}(init^{A}))$ 

To combine model-checking and abstraction, we are interested in

- proving properties of the form *init* < F where F represents a requirement φ obtained as a fix-point, and *init* the initial states,
- computing fix-points on the (smaller) abstract lattice: we need under approximations of F.

Consider  $(\tilde{\alpha}, \tilde{\gamma})$ , the dual of  $(\alpha, \gamma)$  between dual lattices.

■ if F on L obtained from F<sub>i</sub> using o, V, A and fix-point operators, and analogously for F<sup>A</sup>

■ if  $\tilde{\gamma} \circ F_i \circ \tilde{\alpha} >^A F_i^A$  (which is equivalent to  $\gamma \circ \tilde{F}_i \circ \alpha <^A F_i^A$ ) ■ if  $(P_1,...)$  with  $P_i \in L$ , and  $P_i^A = \tilde{\alpha}(P_i)$ 

Then  $F(P_1,...) > \widetilde{\gamma}(F_A(P_1^A,...))$ :  $init^A <^A F^A(P_1^A,...)$  is an under approximation of  $F(P_1,...)$ . If  $\widetilde{\gamma}(init^A) < init$ 

Preservation of verification results from  $L^A$  to L:

To combine model-checking and abstraction, we are interested in

- proving properties of the form *init* < F where F represents a requirement φ obtained as a fix-point, and *init* the initial states,
- computing fix-points on the (smaller) abstract lattice: we need under approximations of F.



Consider  $(\tilde{\alpha}, \tilde{\gamma})$ , the dual of  $(\alpha, \gamma)$  between dual lattices.

 $\_$  if E on L obtained from E; using o. V.  $\land$  and fix-point operators, and

Susanne Graf

To combine model-checking and abstraction, we are interested in

- proving properties of the form *init* < F where F represents a requirement φ obtained as a fix-point, and *init* the initial states,
- computing fix-points on the (smaller) abstract lattice: we need under approximations of F.



Consider  $(\tilde{\alpha}, \tilde{\gamma})$ , the dual of  $(\alpha, \gamma)$  between dual lattices.

Susanne Graf

Consider  $(\tilde{\alpha}, \tilde{\gamma})$ , the dual of  $(\alpha, \gamma)$  between dual lattices.

- if F on L obtained from F<sub>i</sub> using o, V, A and fix-point operators, and analogously for F<sup>A</sup>
- if  $\widetilde{\gamma} \circ F_i \circ \widetilde{\alpha} >^A F_i^A$  (which is equivalent to  $\gamma \circ \widetilde{F}_i \circ \alpha <^A \widetilde{F_i^A}$ ) • if  $(P_1, ...)$  with  $P_i \in L$ , and  $P_i^A = \widetilde{\alpha}(P_i)$

Then  $F(P_1,...) > \widetilde{\gamma}(F_A(P_1^A,...))$ : *init<sup>A</sup>* <<sup>A</sup>  $F^A(P_1^A,...)$  is an *under* approximation of  $F(P_1,...)$ . If  $\widetilde{\gamma}(init^A) < init$ 

Preservation of verification results from  $L^A$  to L:

 $init^A <^A F^A(P_1^A, ...)$  implies  $init < F(P_1, ...)$ .

Consider  $(\tilde{\alpha}, \tilde{\gamma})$ , the dual of  $(\alpha, \gamma)$  between dual lattices.

■ if F on L obtained from F<sub>i</sub> using o, V, A and fix-point operators, and analogously for F<sup>A</sup>

• if  $\widetilde{\gamma} \circ F_i \circ \widetilde{\alpha} >^A F_i^A$  (which is equivalent to  $\gamma \circ \widetilde{F}_i \circ \alpha <^A \widetilde{F_i^A}$ ) • if  $(P_1, ...)$  with  $P_i \in L$ , and  $P_i^A = \widetilde{\alpha}(P_i)$ 

Then  $F(P_1,...) > \widetilde{\gamma}(F_A(P_1^A,...))$ : *init<sup>A</sup>* <<sup>A</sup>  $F^A(P_1^A,...)$  is an *under* approximation of  $F(P_1,...)$ . If  $\widetilde{\gamma}(init^A) < init$ 

Preservation of verification results from  $L^A$  to L:

 $init^A <^A F^A(P_1^A, ...)$  implies  $init < F(P_1, ...)$ .

Consider  $(\tilde{\alpha}, \tilde{\gamma})$ , the dual of  $(\alpha, \gamma)$  between dual lattices.

- if F on L obtained from F<sub>i</sub> using o, V, A and fix-point operators, and analogously for F<sup>A</sup>
- if  $\widetilde{\gamma} \circ F_i \circ \widetilde{\alpha} >^A F_i^A$  (which is equivalent to  $\gamma \circ \widetilde{F}_i \circ \alpha <^A F_i^A$ ) • if  $(P_1, ...)$  with  $P_i \in L$ , and  $P_i^A = \widetilde{\alpha}(P_i)$

Then  $F(P_1,...) > \widetilde{\gamma}(F_A(P_1^A,...))$ : *init<sup>A</sup>* <<sup>A</sup>  $F^A(P_1^A,...)$  is an *under* approximation of  $F(P_1,...)$ . If  $\widetilde{\gamma}(init^A) < init$ 

Preservation of verification results from  $L^A$  to L:

 $init^A <^A F^A(P_1^A, ...)$  implies  $init < F(P_1, ...)$ .

Strong property preservation: allows to preserve both satisfaction and non satisfaction:  $F^A$  must both over- and under- approximate F, in the following sense. Assume:

For (α, γ) from L to L<sup>A</sup> and (α', γ') from L<sup>A</sup> to L, init, P are representable (closed) for both connexions.

(2)  $\gamma \circ F \circ \alpha <^{A} F^{A}$  and  $\gamma' \circ F^{A} \circ \alpha' < F$  on representable properties.

Then, we have strong preservation of verification results:

$$F^{A}(\alpha(init)) < \alpha(P) \text{ implies } F(init) < P$$
  
and  
$$F(init) < P \text{ implies } \gamma'(init) <^{A} \gamma'(P)$$

A particular case is  $(\alpha', \gamma') = (\widetilde{\gamma}, \widetilde{\alpha}).$ 

Strong property preservation is interesting, but generally hard to achieve ... and composition is more difficult.

Strong property preservation: allows to preserve both satisfaction and non satisfaction:  $F^A$  must both over- and under- approximate F, in the following sense. Assume:

For (α, γ) from L to L<sup>A</sup> and (α', γ') from L<sup>A</sup> to L, init, P are representable (closed) for both connexions.

(2)  $\gamma \circ F \circ \alpha <^{A} F^{A}$  and  $\gamma' \circ F^{A} \circ \alpha' < F$  on representable properties.

Then, we have strong preservation of verification results:

$$F^{A}(\alpha(init)) < \alpha(P)$$
 implies  $F(init) < P$   
and  
 $F(init) < P$  implies  $\gamma'(init) <^{A} \gamma'(P)$ 

A particular case is  $(\alpha', \gamma') = (\widetilde{\gamma}, \widetilde{\alpha}).$ 

Strong property preservation is interesting, but generally hard to achieve ... and composition is more difficult.

Strong property preservation: allows to preserve both satisfaction and non satisfaction:  $F^A$  must both over- and under- approximate F, in the following sense. Assume:

For (α, γ) from L to L<sup>A</sup> and (α', γ') from L<sup>A</sup> to L, init, P are representable (closed) for both connexions.

(2)  $\gamma \circ F \circ \alpha <^{A} F^{A}$  and  $\gamma' \circ F^{A} \circ \alpha' < F$  on representable properties.

Then, we have strong preservation of verification results:

$$F^{A}(\alpha(init)) < \alpha(P) \text{ implies } F(init) < P$$
  
and  
 $F(init) < P \text{ implies } \gamma'(init) <^{A} \gamma'(P)$ 

A particular case is  $(\alpha', \gamma') = (\widetilde{\gamma}, \widetilde{\alpha}).$ 

Strong property preservation is interesting, but generally hard to achieve ... and composition is more difficult.

# Why ist is not sufficient to require equality

Why do we not just require

$$\gamma \circ F \circ \alpha = F^A$$

that is, that  $F^A$  is exact ?

# Why ist is not sufficient to require equality

Why do we not just require

$$\gamma \circ F \circ \alpha = F^A$$

that is, that  $F^A$  is exact ?



# Why ist is not sufficient to require equality

Why do we not just require

$$\gamma \circ \mathsf{F} \circ \alpha = \mathsf{F}^{\mathsf{A}}$$

that is, that  $F^A$  is exact ?

